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Abstract: In this paper, we study Cζ-calculus on generalized Cantor sets, which have self-similar
properties and fractional dimensions that exceed their topological dimensions. Functions with fractal
support are not differentiable or integrable in terms of standard calculus, so we must involve local
fractional derivatives. We have generalized the Cζ-calculus on the generalized Cantor sets known
as middle-ξ Cantor sets. We have suggested a calculus on the middle-ξ Cantor sets for different
values of ξ with 0 < ξ < 1. Differential equations on the middle-ξ Cantor sets have been solved,
and we have presented the results using illustrative examples. The conditions for super-, normal,
and sub-diffusion on fractal sets are given.

Keywords: Hausdorff dimension; middle-ξ Cantor sets; staircase function; Cζ-calculus; diffusion on
fractal; random walk

1. Introduction

It is well known that many phenomena in nature can be modeled by fractals; these shapes can
be observed almost anywhere in the natural world [1]. Fractal antennas have maximal length, area,
and volume to accommodate a multi-band or wide-band design, which is useful in cellular telephone
and microwave communications [2–4]. Fractals also play important roles in biology. For example,
in the neural and vascular networks of the human body, viruses and certain tumors grow and ramify
in a fractal shape [5–7]. In these studies, researchers tried to predict and recognize osteoporosis from
test results and from the fractal structure of bone texture [8]. Fractals have also been hypothesized to
be important for human perception of beauty in artworks [9,10]. Non-Markovian random walks and
fractal dimensions which are connected to physical properties of fractal sets were studied in [11–13].
The polynomial asymptotic behavior of the Wiener index on infinite lattices including fractals has been
given [14].

Anomalous diffusion on fractals has received attention in recent years from various researchers [15,16].
Non-constant diffusion coefficients have been studied [17], and the diffusion coefficient is proportional
to a power of the noise intensity [18]. The models for the diffusion coefficient characterize random
motions in various regions of parameterized space and relate to the fractal structure as a function of
the slope of the map [19,20]. Fractal structural parameters have been applied to obtain porosity and
tortuosity for micro-porous solids [21]. The scale-dependent fractal dimension for a random walk
trajectory was used to derive the diffusion coefficient [22,23]. The quenched-trap model on a fractal
lattice does not lead to continuous-time random walks if the spectral dimension is less than 2 [24].
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Fractional calculus has been applied to define derivatives on fractal curves [25–32]. Fractional
derivatives have non-local properties, so that they are used to model processes with memory
effects [29,30].

Local fractional derivatives were suggested and applied from a physics perspective [33,34] in
a formalism called Cζ-calculus (or Cζ-C), which has also been generalized for unbounded and singular
functions [35]. Schrödinger equations on fractal curves were derived using Cζ-C and Feynman path
methods [36]. A mathematical model of diffraction was given for fractal sets [37]. Non-local derivatives
were defined for fractal sets and applied in fractal mediums [38–40]. The Fokker–Planck equation for
thick fractal absorbers was derived in view of Cζ-C [41].

Anomalous diffusion in fractal comb structures, where the anomalous diffusion exponent depends
on the fractal dimension of the comb structure, has also been studied [42–44], and the theoretical
predictions in these works was recently experimentally proven [45]. Recently, as an application of the
mathematical model, experimental and simulation results were utilized to model sub-diffusion and
super-diffusion in physical processes [46,47].

By conducting research along these lines, we have generalized Cζ-C to middle-ξ Cantor sets.
The outline of the paper is as follows. In Section 2, we review Cζ-C and the basic tools required.

In Section 3, we apply the Cζ-C on the middle-ξ Cantor sets. In Section 4, we consider and solve some
differential equations on middle-ξ Cantor sets, and, in Section 5, we consider diffusion processes on
such sets. Section 4 is devoted to the conclusion.

2. Basic Tools in the Fractal Calculus

In this section, we review the Cantor-like sets and their properties [48], and then summarize
Cζ-C [33,34,38,39].

2.1. Middle-ξ Cantor Sets

Let us consider a unit interval J = [0, 1], and construct the middle-ξ Cantor fractal set Cξ from it
as follows.

In the first step, we remove an open interval of length ξ from the exact middle of the interval I,
to obtain:

Cξ
1 =

[
0,

1− ξ

2

]
∪
[

1 + ξ

2
, 1
]

. (1)

In the second step, we pick up two open disjoint intervals with length ξ2 from the middle of each
of the remaining intervals that comprise the set Cξ

1 , in order to obtain

Cξ
2 =

[
0,

1− ξ − 2ξ2

4

]
∪
[

1− ξ + 2ξ2

4
,

1− ξ

2

]
∪
[

1 + ξ

2
,

3 + ξ − 2ξ2

4

]
∪
[

3 + ξ + 2ξ2

4
, 1
]

. (2)

After iterating this process infinitely many times, with the set constructed at stage k being denoted
by Cξ

k , we obtain the definition of the middle-ξ Cantor set as follows:

Cξ =
∞⋂

k=1

Cξ
k . (3)

It is clear that the set Cξ has a self-similarity property, which makes it easy for us to find its
fractional dimension. Namely, for every middle-ξ Cantor set, the Hausdorff dimension is given by

dimH(Cξ) =
log 2

log 2− log(1− ξ)
, (4)
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where H(Cξ) is the Hausdorff measure that was used to derive Hausdorff dimension [48]. Furthermore,
the middle-ξ Cantor set has zero Lebesgue measure because [48]:

Lm(Cξ) = lim
k→∞

Lm(C
ξ
k ) = lim

k→∞
(1− ξ)k = 0. (5)

Remark 1. If we choose ξ = 1/3, ξ = 1/4, ξ = 1/5, ξ = 3/5, then we obtain the Cantor triadic set,
4-adic-type Cantor-like set, and 5-adic-type Cantor-like set, respectively. Note that middle-ξ Cantor sets with
higher ξ have a larger measure; this was shown by using the idea of differences between Cantor sets [49].
See Section 3 below for more details on these sets.

2.2. Local Fractal Calculus

If Cξ is a middle-ξ Cantor set contained in an interval J = [v, w] ⊂ R, then the flag function for Cξ

is indicated by ϕ(Cξ , J) and defined by [33,34]

ϕ(Cξ , J) =

{
1, if Cξ ∩ J 6= ∅,

0, otherwise.
(6)

For a set Cξ and a subdivision Q[v,w] = {v = y0, y1, y2, . . . , yn = w} of the interval J = [v, w],
we define

ρζ [Cξ , J] =
n

∑
i=1

Γ(ζ + 1)(yi − yi−1)
ζ ϕ(Cξ , [yi−1, yi]) (7)

for any ζ with 0 < ζ ≤ 1. Given δ > 0, the associated coarse-grained mass function γ
ζ
δ(C

ξ , v, w) of the
intersection Cξ ∩ [v, w] is given by

γ
ζ
δ(C

ξ , v, w) = inf
Q[v,w] :|Q|≤δ

ρζ [Cξ , J], (8)

where the infimum is taken over all subdivisions Q of [v, w] satisfying |Q| := max1≤i≤n(yi − yi−1) ≤ δ.
Then, the mass function γζ(Cξ , v, w) is given by [33,34]

γζ(Cξ , v, w) = lim
δ→0

γ
ζ
δ(C

ξ , v, w). (9)

The integral staircase function Sζ

Cξ (y) of order ζ for a fractal set Cξ is defined in [33,34] by

Sζ

Cξ (y) =

{
γζ(Cξ , v0, y), if y ≥ a0,

−γζ(Cξ , v0, y), otherwise,
(10)

where v0 is an arbitrary real number. A point y is a point of change of a function u(y) that is not
constant over any open interval (v, w) involving y. All points of change of y is named the set of change
of u(y) and is indicated by Sch(Sζ

Cξ ) [33,34]. If Sch(Sζ

Cξ ) is a closed set and every point in it is a limit

point, then Sch(Sζ

Cξ ) is called ζ-perfect.
The ς-dimension of Cξ ∩ [v, w] is

dimς(Cξ ∩ [v, w]) = inf{ζ : γζ(Cξ , v, w) = 0}
= sup{ζ : γζ(Cξ , v, w) = ∞}. (11)

We also define the concepts of Cξ-limits and Cξ-continuity, which will be used in the next section.
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For a function h : Cξ → R and a point x ∈ Cξ , a number l is said to be the limit of h through the
points of Cξ , or simply the Cξ-limit of h as z→ x, if given any ε > 0 there exists δ > 0 such that

z ∈ Cξ and |z− x| < δ⇒ |h(z)− l| < ε. (12)

If such a number exists, then it is denoted by:

l = Cξ- lim
z→x

h(z). (13)

A function h : Cξ → R is said to be Cξ-continuous at x ∈ Cξ if

h(x) = Cξ- lim
z→x

h(x). (14)

2.3. Cζ-Differentiation

If Cξ is an ζ-perfect set, then the Cζ-derivative of a function u defined on Cξ at a point y is defined
to be the following, assuming the limit exists [33,34]:

Dζ

Cξ u(y) =

Cξ- limz→y
f (z)− f (y)

Sζ

Cξ (z)−Sζ

Cξ (y)
, if z ∈ Cξ ,

0, otherwise.
(15)

Let u be a bounded function on Cξ and J be a closed interval as above [33,34]. Then, we define

M[u, Cξ , J] = sup
y∈Cξ∩J

u(y) if Cξ ∩ J 6= 0 (16)

= 0 otherwise, (17)

and similarly

m[u, Cξ , J] = inf
y∈Cξ∩J

u(y) if Cξ ∩ J 6= 0 (18)

= 0 otherwise. (19)

If Sζ

Cξ (y) is finite for y ∈ [v, w], and Q = {v = y0, y1, . . . , yn = w} is a subdivision of [v, w],
then the upper Cζ-sum and lower Cζ-sum for a function u over the subdivision Q are given, respectively,
by [33,34]

Uζ [u, Cξ , Q] =
m

∑
j=1

M[u, Cξ , [yj, yj−1]](S
ζ

Cξ (yj)− Sζ

Cξ (yj−1)) (20)

and

Lζ [u, Cξ , Q] =
m

∑
j=1

m[u, Cξ , [yj, yj−1]](S
ζ

Cξ (yj)− Sζ

Cξ (yj−1)). (21)

Let u be a bounded function on Cξ . We say that u is Cζ-integrable on [v, w] if [33,34] the
two quantities ∫ w

v
u(y)dζ

Cξ y = sup
Q[v,w]

Lζ [u, Cξ , Q], (22)

∫ w

v
u(y)dζ

Cξ y = inf
Q[v,w]

Lζ [u, Cξ , Q], (23)
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are equal. In that case, the Cζ-integral of u on [v, w] is denoted by
∫ w

v u(y)dζ

Cξ y and is given by the
common value of Labels (22)–(23).

Fundamental Theorem of Cζ-Calculus. Suppose that u(y) : Cξ → R is Cζ-continuous and bounded
on Cξ . If we define g(z) by

g(z) =
∫ z

a
f(y)dζ

Cξ y (24)

for all y ∈ [v, w], then:
Dζ

Cξ g(y) = f(y)χCξ (y), (25)

where χCξ (y) is the characteristic function of the middle-ξ Cantor set.
Conversely, if f(y) is an Cζ-differentiable function, then we have [33,34]

Dζ

Cξ f(y) = h(y)χCξ (y) (26)

for some function h, and, consequently, it follows that∫ w

v
h(y)dζ

Cξ y = f(b)− f(a). (27)

3. Staircase Functions on Middle-ξ Cantor Sets

In this section, we plot middle-ξ Cantor sets and their staircase functions Sζ

Cξ (y) for special cases,
in order to present details of the paper.

3.1. The Cantor Triadic Set

The Cantor triadic set is generated by iteration as follows:

• Step 1. Remove an open interval of length 1/3 from the middle of the interval J = [0, 1].
• Step 2. Remove an open interval of length (1/3)2 from the middle of each one of the closed

intervals with length 1/3 remaining from step 1.
• . . .
• Step k. Remove an open interval of length (1/3)k from the middle of each one of the closed

intervals with length (1/3)k−1 remaining from step k− 1.

In the case of the Cantor triadic sets, utilizing Equations (4) and (11), we get ς-dimension
as follows:

dimς(C1/3 ∩ [v, w]) = dimH(C1/3) = 0.63. (28)

In Figure 1a, we draw the process mentioned above that established the Cantor triadic set.
Using Equation (10), the staircase function of the Cantor triadic set (S0.63

C1/3(x)) is sketched in
Figure 1c.

The staircase functions have important roles in Cζ-C, being used in integration and differentiation
of functions with fractal support.

3.2. The 5-Adic-Type Cantor-Like Set

The procedure to achieve the 5-adic-type Cantor-like set is similar to that for the Cantor triadic
set, only differed to remove the open interval of length 3/5 in every stage. We exhibit these steps in
Figure 1b.

The ς-dimension of the 5-adic-type Cantor-like set, considering Equations (4) and (11), is

dimς(C3/5 ∩ [v, w]) = dimH(C3/5) = 0.43. (29)

From Equation (10), the staircase function of the 5-adic-type Cantor-like (S0.43
C3/5(y)) is plotted in

Figure 1d.
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(a) Steps 0–4 of the generating process for the
Cantor triadic set

(b) Steps 0–4 of the generating process for the
5-adic-type Cantor-like set
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(c) The staircase function corresponding to
the Cantor triadic set
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(d) The staircase function corresponding to
the 5-adic-type Cantor-like set

Figure 1. Basic properties of some example Cantor sets.

4. Differential Equations on Middle-ξ Cantor Sets

In this section, first, we study the integration and differentiation of functions whose support
is a middle-ξ Cantor set. Secondly, differential equations formulated on middle-ξ Cantor sets are
suggested and solved using illustrative examples.

Example 1. Consider a function with the fractal Cantor triadic set support as follows:

f (x) = sin
(

2πxχ0.63
C1/3(x)

)
(30)

where

χ0.63
C1/3(x) =

{
1

Γ(1+0.63) , x ∈ C1/3,

otherwise, 0,
(31)

is the characteristic function of the fractal Cantor triadic set. We plot the function f (x) in Figure 2a.
The Cζ-derivative of f (x), using conjugacy of Cζ-C and ordinary calculus [33,34], is as follows:

D0.63
C1/3 f (x) =

2π

Γ(1 + 0.63)
cos

(
2πxχ0.63

C1/3(x)
)

, (32)

where Γ(·) denotes the gamma function. A plot of the function D0.63
C1/3 f (x) is shown in Figure 2b.

The Cζ-integration of f (x), considering conjugacy of Cζ-C between the ordinary calculus [33,34], will be
as follows:
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∫ 1

0
sin
(

2πxχ0.63
C1/3(x)

)
d0.63

C1/3 x =
−Γ(1 + 0.63)

2π

[
cos

(
2π

S0.63
C1/3(x)

Γ(1 + 0.63)

)]1

0

=
1

2π

[
1− cos

(
2π

S0.63
C1/3(1)

Γ(1 + 0.63)

)]
= 0,

where we use S0.63
C1/3(1) = Γ(1 + 0.63). In Figure 2c, we plot the integral function of f (x) over [0, 1].

0 0.1 0.2 0.3
x

0.4 0.5 0.6 0.7 0.8 0.9 1

s
in

 (
2

 x
C

1
/3

0
.6

3
(x

))

(a) Graph of the function f (x)
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0
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3
f(

x
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4

2

0
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0
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(b) Graph of the fractal derivative D0.63
C1/3 f (x)
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0.2

0.25

0.3

0.35

01
 f
(x

')
d

C
1
/3

0
.6

3
x
'

(c) Graph of the fractal integral
∫ x

0 f (x′)d0.63
C1/3 x′

Figure 2. Graphs relevant to Example 1.

Example 2. Suppose we have a function on the fractal 5-adic-type Cantor-like set as follows:

g(x) = x2χ0.43
C3/5(x). (33)

This function g(x) is sketched in Figure 3a.
The Cξ-derivative of g(x) is derived by a similar method as used in Example 1, which yields the

following result:
D0.43

C3/5 g(x) = 2xχ0.43
C3/5(x). (34)

We plot D0.43
C3/5 g(x) in Figure 3b.
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In the same manner, we obtain the Fζ-integral of g(x) as follows:

∫ 1

0
(χ0.43

C3/5)x2d0.43
C3/5 x =

1
3Γ(1 + 0.43)

(
S0.43

C3/5(x)
)3
∣∣∣∣1
0

=
1

3Γ(1 + 0.43)

(
S0.43

C3/5(1)
)3

= 0.26. (35)

We plot the Cζ-integral of g(x) in Figure 3c.

We are going to use the above results and examples for solving differential equations on the
middle-ξ Cantor sets.
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0.4

g
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0.6
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(a) Graph of the function g(x)
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3
/5

0
.4
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)
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1

0.1

0.5

0

0

(b) Graph of the fractal derivative D0.43
C3/5 g(x)
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0
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3
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(c) Graph of the fractal integral
∫ x

0 g(x′)d0.43
C3/5 x′

Figure 3. Graphs relevant to Example 2.

5. Diffusion on Middle-ξ Cantor Sets

In this section, we define and give conditions for super, normal and sub-diffusion on middle-ξ
Cantor sets.

5.1. Super-Diffusion

Let us consider time as continuous and space as a middle-ξ Cantor set. We consider a probability
function W(x, t), which is an Cζ-differentiable function of the space coordinate x and is a differentiable
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function of time t in the sense of standard calculus. The fractal diffusion equation for a random walk is
suggested with the conditional probability W(x, t) as follows:

χCξ (x)
∂W(x, t)

∂t
= KCζ (Dζ

Cξ ,x)
2W(x, t), t ∈ R, x ∈ Cξ , (36)

with the initial condition
W(x, t = 0) = δ

ζ

Cξ (x), (37)

where [KCξ ] = (Length2ζ/Time) is a generalized diffusion coefficient, δ
ζ

Cξ (x) is the Dirac delta function
with fractal support. Using conjugacy of Cζ-C between standard calculus [33,34], we have the solution
for Equation (36) as follows:

W(x, t) =
t−1/2√
4πKCξ

exp

−Sζ

Cξ (x)2

4KCξ t

 . (38)

Since Sζ

Cξ (x) ≤ xζ , then Equation (38) can be written as:

W(x, t) 7→ t−1/2√
4πKCξ

exp
[
−x2ζ

4KCξ t

]
. (39)

The function W(x, t) is indicated as the probability distribution of super-diffusion on Cantor sets.
Accordingly, the mean square random walk is

〈Sζ

Cξ (x)2〉 = 4KCξ t. (40)

Using the upper bound Sζ

Cξ (x)2 ≤ x2ζ , we have

〈x2〉 7→ 4KCξ t1/ζ . (41)

5.2. Normal Diffusion

Let us consider space as a middle-ξ Cantor set and fractal time associated with the middle-ξ
Cantor set, both sets having the same value of ξ and the same dimension ζ. The random walk
conditional probability W(x, t) is given by

Dζ

Cξ ,tW(x, t) = GCξ (Dζ

Cξ ,x)
2W(x, t), (42)

where [GCξ ] = (Length2ζ /Timeζ) is a diffusion coefficient. The solution for Equation (42) with the
initial condition Equation (37), utilizing conjugacy of Cζ-C between standard calculus, is:

W(x, t) =
Sζ

Cξ (t)−1/2√
4πGCξ

exp

 −Sζ

Cξ (x)2

4GCξ Sζ

Cξ (t)

 . (43)

Considering the upper bound on the Sζ

Cξ (·), we obtain:

W(x, t) 7→ t−ζ/2√
4πGCξ

exp
[
−x2ζ

4GCξ tζ

]
. (44)

The function W(x, t) indicates the probability distribution for normal diffusion with a
non-Gaussian propagator.
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Applying conjugacy of Cζ-C between standard calculus, we arrive at the mean square
of displacement

〈Sζ

Cξ (x)2〉 = 4GCξ Sζ

Cξ (t), (45)

and if we use the upper bound on Sζ

Cξ (·), we can write Equation (45) as follows:

〈x2〉 7→ 4GCξ t. (46)

5.3. Sub-Diffusion

Let us consider time as a middle-ξ Cantor set with dimension β and space as a middle-ξ Cantor
set with dimension ζ. A random walk on this fractal space-time has conditional probability that can be
obtained by the following differential equation:

Dβ

Cξ′ ,t
W(x, t) = χCξ′ LCξ (Dζ

Cξ ,x)
2W(x, t), (47)

where [LCξ ] = (Length2ζ/Timeβ) is a diffusion coefficient. Solving Equation (42) with the initial
condition Equation (37), using conjugacy of Cζ-C between standard calculus, one can obtain

W(x, t) =
Sβ

Cξ (t)−1/2√
4πLCξ

exp

 −Sζ

Cξ (x)2

4LCξ Sβ

Cξ (t)

 . (48)

In view of the upper bounds on Sζ

Cξ (·), we get

W(x, t) 7→ t−β/2√
4πLCξ

exp
[
−x2ζ

4LCξ tβ

]
. (49)

The function W(x, t) is named as the probability of sub-diffusion for a random walk as
indicated above.

Similarly to the previous cases, the mean square of displacement in this case will be

〈Sζ

Cξ (x)2〉 = 4LCξ Sβ

Cξ (t), (50)

and in the same manner we use upper bounds on Sζ

Cξ (·) to get

〈x2〉 7→ 4LCξ tβ/ζ . (51)

Example 3. Consider a random walk model on the fractal 3-adic-type Cantor-like set. The corresponding mean
square value displacement of the random walk is given by:

〈S0.63
Cξ (x)2〉 = 4LCξ Sβ

Cξ (t), (52)

or
〈x2〉 7→ 4LCξ tβ/0.63, (53)

where the respective cases β > 0.63, β < 0.63, and β = 0.63 are called super-diffusion, sub-diffusion and
normal diffusion on the fractal 3-adic-type Cantor-like set, respectively.

In Figure 4, we draw the graphs of mean square value displacement random walk model for super-diffusion,
sub-diffusion, and normal diffusion on fractal 3-adic-type Cantor-like sets in the case ζ = 0.63.
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Figure 4. Graphs of the mean value displacement of the random walk model for super-diffusion
(in red), sub-diffusion (in green) and normal diffusion (in blue) in the case α = 0.63; the smoothed
curves represent the corresponding processes on the real line.

Remark 2. We conclude the results of Section 5 as follows:

1. The diffusion is super-diffusion on the middle-ξ Cantor set if ζ < β.
2. The diffusion is normal on the middle-ξ Cantor set if ζ = β.
3. The diffusion is sub-diffusion on the middle-ξ Cantor set if ζ > β.

Remark 3. In some figures, we have plotted bars instead of points for the graphs of functions with fractal
support, in order to make the results more clear.

6. Conclusions

The Cζ-calculus is a generalization of ordinary calculus that can be applied on middle-ξ Cantor
sets for different values of ξ. Functions with middle-ξ Cantor set support were considered, and their
derivatives and integrals were derived using Cζ-calculus, which shows the advantage of using
Cζ-calculus over standard calculus. Cζ-derivatives on new fractal sets were discussed and compared
for functions with different fractal supports. New differential equations involving Cζ-derivatives
on middle-ξ Cantor sets have been suggested, which can be used as mathematical models for many
physical problems. For example, we suggest conditions for super-, normal, and sub-diffusion on
fractal sets.
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