
Nanotechnology

ACCEPTED MANUSCRIPT

Hyperbranched TiO2-CdS Nano-Heterostructures for Highly Efficient
Photoelectrochemical Photoanodes
To cite this article before publication: Alessandro Mezzetti et al 2018 Nanotechnology in press https://doi.org/10.1088/1361-6528/aac852

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 131.111.102.4 on 06/06/2018 at 12:23

https://doi.org/10.1088/1361-6528/aac852
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6528/aac852


Hyperbranched TiO2-CdS Nano-Heterostructures for Highly Efficient 

Photoelectrochemical Photoanodes 

Alessandro Mezzetti,a, † Mehrdad Balandeh,a, † Jingshan Luo,b Sebastiano Bellani,a Alessandra Tacca,c Giorgio Divitini,d Chuanwei 

Cheng,e Caterina Ducati,d Laura Meda,c Hongjin Fanb and Fabio Di Fonzoa, * 

a - Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy. 

b - School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. 

c - Centro Ricerche per le Energie Non Convenzionali, Istituto ENI Donegani, Novara, Italy. 

d - Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK. 

e - Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai, China 

† - These authors contributed equally to this work. 

* - Corresponding author: fabio.difonzo@iit.it 

 

Abstract 

Quasi-1D hyperbranched TiO2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act 

as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the 

height of TiO2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA·cm-2 and 

reaching saturation with applied biases as low as 0.35 VRHE. The high internal conversion efficiency of these devices is to be found 

in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties 

of the hyperbranched TiO2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable 

of achieving high solar-to-hydrogen efficiency. 

Introduction 

Photoelectrochemical (PEC) water-splitting stands as a promising method to employ the clean energy of solar light as the driving 

force to extract hydrogen from aqueous solutions, using inexpensive metal oxide photoelectrodes as the working devices.[1] 

Since the discovery of the photocatalytic properties of TiO2 made in 1972 by Honda and Fujishima,[2] research has focused its 

efforts to increase the efficiency of the materials used as photoelectrodes. Due to its low cost, easy availability and high chemical 

stability in both strongly acidic and basic environments, TiO2 has been always considered an important material for applications 

in PEC water-splitting.[3–9] Initial studies on TiO2 have dealt with the development of optimized nanostructures in order to 

improve the efficiency of photoelectrodes. Thin films made by metal oxide nanoparticles display an increased effective surface 

area compared to bulk structures, but suffers from low electron mobility due to electron trapping at grain boundaries.[10–15] 

Quasi-1D nanostructures like nanorods (NRs) and nanotubes (NTs) have been demonstrated to have enhanced electron mobility, 

although the reported efficiencies remain low due to their intrinsic limited surface area and low optical density.[16–21] Latest 
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researches are now focused towards the goal of high surface area quasi-1D hierarchical nanostructures that could benefit from 

both high surface area and enhanced electronic transport.[22–24] 

Regardless of the nanostructure employed, the performances of a bare TiO2 photoelectrode are limited by its wide band-gap of 

3.2 eV, which restricts the photocatalytic activity to the near UV region (up to 385-390 nm of wavelength) and limits the resulting 

solar-to-hydrogen (STH) efficiency to a maximum theoretical value of approximately 2%. Various methods have been developed 

to shift the photoactivity threshold of TiO2 towards the visible region of the solar spectrum, either by doping with other 

elements[25–33] or by sensitization with low band-gap absorber materials. Among the wide range of materials employed for the 

sensitization of TiO2 scaffolds, cadmium sulfide (CdS) stands as a valid candidate thanks to its opto-electronic properties that 

satisfy the strict PEC requirements: the optical bandgap of 2.42 eV allows to absorb light in the visible range up to 510 nm and 

the conduction band and valence band are correctly aligned with respect of the hydrogen and oxygen evolution potentials 

respectively. On the downside, CdS suffers from low charge separation efficiency, leading to a strong photocorrosion in aqueous 

environment, as the photogenerated holes in the valence band oxidize the sulfide ions instead of water, releasing S2+ and Cd2- 

ions in the solution; experimentally, this drawback is fully countered with the addition of one or more sacrificial agents (usually 

Na2S and Na2SO3) into the electrolytic solution employed for the PEC measurements.[34] Furthermore, CdS is classified as a 

toxic material (NFPA 704 Class 3 health hazard) and thus limiting its viability for an eventual industrial scale-up.  Nevertheless, 

CdS has been extensively studied as a prototypical absorber for TiO2 sensitization, resulting in a substantial amount of 

publications spanning over the last years.[35–56] Among these works, different TiO2 morphologies and different techniques for 

CdS sensitization are employed in the fabrication of PEC photoanodes, in order to find the optimal architecture in terms of charge 

generation, onset potential and overall conversion efficiency. 

 

Figure 1 - Schematic of the energy band alignment of the PEC setup employing a TiO2/CdS photoanode as the working electrode, showing the hydrogen evolution 

reaction occurring at the platinum dark cathode and the sulfides sacrificial reaction occurring at the TiO2/CdS photoanode. 

The concept behind this work is to develop a host/guest PEC photoanode comprising an optimized nanostructured metal oxide 

scaffold sensitized with a well-reported photoabsorber material, in order to properly compare and evaluate the effectiveness of 

the proposed structure. Tree-like hyperbranched TiO2 nanostructured scaffolds are developed exploiting gas phase self-assembly 

using the pulsed laser deposition (PLD) technique, resulting in a high surface area scaffold with efficient light harvesting and 
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charge transport properties, as successfully employed in previous works.[57–60] To compensate for the limited absorption range 

of TiO2, the nanostructured scaffolds are sensitized with a thin layer of CdS via chemical bath deposition (CBD), forming a type-II 

heterostructure (Figure 1) that favors the separation of photogenerated charges. Optimization of the resulting heterostructure is 

performed by varying both the thickness of the supporting hyperbranched scaffold and the amount of CdS deposited on the 

scaffold surface through the sensitization process. A thorough analysis is performed to assess the morphological, optical and 

electrochemical properties of the different photoanodes. At the end, a comparison with other architectures present in literature 

is presented, showing the improved performances that the hyperbranched TiO2 scaffold provides to the whole photoanodic 

heterojunction. 

Methods 

Samples preparation 

The TiO2 nanostructures are deposited via pulsed laser deposition (PLD). Laser pulses from a KrF excimer laser 

(wavelength 248 nm, repetition rate 20 Hz, laser fluency of 2.5 J·cm-2) are employed to ablate a titanium dioxide (TiO2) 

target placed within a vacuum chamber (standard vacuum in the order of 10-3 Pa) filled with O2 background gas up to the 

desired working pressure. Briefly, laser pulses impinge upon the target, which is locally vaporized and partially ionized, 

generating a plasma that expands supersonically towards the substrate. The ablated species condense on the substrate 

and form a film, whose morphological characteristics can be controlled by varying the deposition parameters, such as 

background gas pressure, laser fluence and target to substrate distance. Each material has a precise processing window 

where it is possible to induce gas-phase nucleation of clusters. The nucleated clusters scatter upon interaction with the 

background gas molecules, resulting in the self-assembly of quasi-1D nanostructures with a typical diameter of hundreds 

of nanometers and with a height proportional to the deposition time. The films are deposited on 2.3-mm-thick soda-lime 

glasses slides coated with an FTO conductive coating (sheet resistance of 15 Ω/sq), properly etched to obtain a limited 

active area of 1.8 cm2. All samples are deposited at room temperature, yielding amorphous films. The crystalline phase 

transition from the deposited amorphous phase is achieved through a post-deposition annealing treatment, performed 

in a muffle furnace in air for 2 hours at 500°C. As reported in previous works concerning quasi-1D TiO2 nanostructures 

deposited via PLD, different background pressures yield TiO2 film morphologies ranging from compact to extremely 

porous, with a small operational window where hyperbranched nanostructures are obtained. The range for hierarchical 

structures is found between 5 Pa and 20 Pa, with an optimal value of 7 Pa here employed to obtain the hyperbranched 

scaffolds. A reference device is fabricated using a TiO2 nanoparticle paste, deposited on the same FTO-coated glass 

substrate using the Doctor Blade technique and calcinated through a thermal treatment in air for 30 minutes at 500 ˚C.  

The sensitization technique – a specific type of chemical bath deposition called Successive Ionic Layer Absorption and 

Recombination (SILAR) – is employed to deposit a thin and homogeneous layer of CdS over the complex hierarchical 

structure of the TiO2 scaffolds. The sensitization protocol consists in immersing the bare TiO2 samples first in a 20 mM 

ethanol solution containing the cadmium chemical precursor (cadmium acetate dehydrate, Cd(Ac)2∙2H2O) for 90 seconds, 

in order to allow the Cd2+ ions to be adsorbed on the TiO2 surface. The samples where then rinsed in pure ethanol and 
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dried with a nitrogen flux. The dried samples where successively immersed in a 20 mM methanol solution containing the 

sulfur chemical precursor (sodium sulfide nonahydrate, Na2S∙9H2O) for 90 seconds, so that the preadsorbed Cd2+ ions 

could react with the S2- anions and form the desired CdS. As for the previous steps, the samples are rinsed in a pure 

methanol solution and dried with a nitrogen flux. All the aforementioned steps make up for a single cycle of the SILAR 

procedure, which can then be repeated subsequently in order to tailor the thickness of the deposited CdS film.  

Samples characterization 

Film morphology is investigated using a Field Emission Scanning Electron Microscope (Zeiss SUPRA 40) and a High-

Resolution Transmission Electron Microscope (JEOL 4000EX with LaB6 filament operated at 400 kV accelerating voltage). 

Additional information on the crystallinity of the films is obtained through X-ray diffraction (Philips PW3020, Cu Kα 

radiation) and Raman spectroscopy (Renishaw InVia, excitation wavelength 532 nm) analyses.  

The optical properties of the samples are probed with a UV/VIS spectrometer (Perkin Elmer Lambda 1050) operating with 

an integrating sphere. The absorptance is calculated from the experimental transmittance and reflectance data with the 

following formula: 

𝐴 =  100 −  𝑇 −  𝑅 

where A is the absorptance, T is the transmittance and R is the reflectance. 

Linear sweep voltammetry (LSV) measurements are carried out using a potentiostat/galvanostat (Autolab PGSTAT30) 

with a scan rate of 20 mV/s in a 3-electrodes configuration, with a TiO2/CdS sample as the working electrode, a platinum 

wire (surface area of 0.8 mm2) as the counter electrode and Ag/AgCl in saturated KCl as the reference electrode. The 

electrolyte is an aqueous solution of 0.25 M Na2S · 9H2O and 0.35 M Na2SO3 with a measured pH of 12.4. The illumination 

source is a Class AAA solar simulator (Oriel Model 94063A with solar filter) that simulates the AM 1.5G solar spectrum 

with a calibrated intensity of 100 mW·cm-2. 

Incident-photon-to-current efficiency (IPCE) curves are obtained using the same 3-electrodes configuration, with the 

illumination source being a 150 W Xenon lamp coupled to a monochromator (Oriel Cornerstone 130); the photocurrent 

signal is recorded with the potentiostat/galvanostat (Autolab PGSTAT 30) and the incident irradiance is measured with a 

calibrated silicon photodiode (Centronic OSD 7Q). The measurements are performed with an applied bias of 0.2 VRHE, 

corresponding to the maximum power point voltage of the devices obtained from the LSV curves. The IPCE values are 

then calculated in accordance to the following formula: 

𝐼𝑃𝐶𝐸 = 1.24 × 103 ×
𝐽 (

𝜇𝐴
𝑐𝑚2)

𝜆(𝑛𝑚) × 𝑃 (
𝑊

𝑐𝑚2)
 

where J is the photocurrent density, λ is the wavelength of the incident light and P is the radiant power density at that 

given wavelength. 
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Electrochemical impedance spectroscopy (EIS) measurements are carried out with the same setup in a 2-electrode 

configuration (without the Ag/AgCl reference electrode) and without any illumination source. 

Results and discussion 

Materials characterization 

Based on previous works that employed the PLD setup to deposit transition metal oxides, the operational parameters of 

the deposition are here optimized to obtain hyperbranched TiO2 nanostructures. This distinctive tree-shaped morphology 

consists of a main stem perpendicular to the sample surface from which several branches develop, themselves having 

their own ramification and thus forming a complex hierarchical structure within a conical envelope of 15-20° with respect 

of the main growth axis, as can be appreciated from the SEM images of a TiO2 sample (Figure 2a). 

 

Figure 2 – Cross-sectional SEM image of the bare TiO2 nano-tree morphology (a) and a close-up of the sensitized TiO2/CdS heterostructure (b). 

High resolution TEM images (Figure 3a and 3b) show well resolved lattice fringes of the TiO2 branches even at their outer 

surface, thus confirming the high crystallinity of the tree-like nanostructure. The TEM diffraction spot pattern (Figure 3a 

Inset) suggests that the branches consist of single-crystalline tetragonal TiO2 in its Anatase phase, growing preferentially 

along the [001] direction. 
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Figure 3 - High resolution TEM images of the TiO2 nano-trees with the CdS layer in the sensitized heterostructure (a, b). The inset shows the Fast Fourier 

Transform of the lattice, where the main spacings are highlighted. 

The preferential growth of the TiO2 branches along the [001] direction (c-axis of the tetragonal crystalline structure of 

Anatase) is highlighted and confirmed by the X-ray diffraction spectra (Figure 4). The intensity ratio of the (004) peak at 

37.8° with respect to the (101) peak at 25.3° has a value of 1.33 for the nanostructured TiO2 and a value of 0.198 for the 

isotropic reference powder, almost a tenfold increase that clearly suggests a strong directionality during crystal 

growth.[24,59] This feature is also shared – with less intensity – by other diffraction peaks related to the growth partially 

along the c-axis, such as the (105) and (116) peaks. The confirmed single-crystal nature of the branches and directional 

growth of the nano-trees can be summarized in the hyperbranched character of the TiO2 scaffold array. 
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Figure 4 - XRD spectra of the 5-μm-thick TiO2 scaffolds with increasing numbers of CdS sensitization cycles. The normalized peak patterns and the peak 

numbers for each reference crystalline phase are superimposed to the experimental data. 

After being sensitized with few nanometers of CdS through a given amount of SILAR cycles, a homogenous coverage of 

the TiO2 scaffold surface is achieved without any compromising effect on the porosity of the supporting nanostructure, 

as can be seen in the SEM and TEM images of a TiO2/CdS sample (Figure 2b, 3a and 3b). Although mainly overshadowed 

by the contribution of the TiO2 peaks, the XRD pattern of the sensitizing material is assigned to the hexagonal phase of 

CdS, the so-called Greenockite phase.[53] The intensity of the (2-10) diffraction peak of CdS – the only peak clearly 

distinguishable – increases with the number of SILAR cycles performed, as the amount of deposited CdS grows and leads 

to an increase in the signal intensity detected. The width of the crystallographic (2-10) peak is extremely broad when 

compared to the width of the TiO2 peaks and is due to the homogeneous broadening caused by the nanometric 

dimensionality of the CdS grains, whose size has been calculated to be around 5 nm with Scherrer’s equation. Both the 

thickness and morphology of CdS film are confirmed by the high resolution TEM images (Figure 3c and 3d), where an 

amorphous layer of CdS with small polycrystalline aggregates of approximately 5 nm in diameter covers homogenously 

the TiO2 surface. The lattice spacing estimated for the CdS falls between 3.0-3.7 Å and their scattering pattern seems to 

indicate the presence of hexagonal or intermediate phases. 
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Figure 5 - Raman spectra of the 5-μm-thick TiO2 scaffolds, both bare and with increasing numbers of CdS sensitization cycles. The colored arrows mark 

the peak for each crystalline phase. 

As a further confirmation of the crystalline phases present in the film, Raman spectra of both bare TiO2 and of TiO2/CdS 

films are reported (Figure 5). The presence of TiO2 in its tetragonal Anatase structure (I41/amd space group) is confirmed 

by the presence of the peaks related to its vibration modes, at 145 cm-1 and 635 cm-1 for the Eg state, at 398 cm-1 for the 

B1g state and at 516 cm-1 for the B1g and A2g states.[21,61] Superimposed on the strong signal of the crystalline TiO2 

scaffold there is the contribution of the CdS sensitizer in its hexagonal Greenockite structure (P63mc space group), with 

the peaks related to the longitudinal optical (LO) phonon mode around 300 cm -1 for the fundamental first-order, around 

600 cm-1 for the second-order overtone and around 900 cm-1 for the third-order overtone.[62–64] The intensity of the 

overtone peaks decreases by one order of magnitude each time, when compared to the first-order tone.  Overall, the 

intensity of the three CdS peaks increases with the number of sensitization cycles, as more material is present in the 

scattering volume probed. The first-order LO phonon mode is present throughout all the sensitized samples, while the 

second-order peak starts as a shoulder of the well-defined 653 cm-1 Anatase peak and develops as the number of cycle 

increases. The third-order peak around 900 cm-1 is barely present in the spectrum of the 16-cycles sample, since the low 

yield of a third-order overtone can be faintly measured only with the highest amount of CdS scattering material. 
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Figure 6 - Absorptance spectra of the 5-μm-thick TiO2 scaffolds, both bare and with increasing numbers of CdS sensitization cycles. The spectra are 

shown without the absorptance contribution of the glass plus FTO substrate, which is also reported.  

The optical properties of the deposited samples are assessed through UV-Vis spectrophotometry, shown in the form of 

absorptance (100-T-R) spectra for both the bare and sensitized samples (Figure 6). Since the optical measurements are 

performed by shining light on the glass side of the devices, the contribution of the TiO2 or TiO2/CdS film alone is obtained 

by subtracting the spectrum of a clean glass plus FTO from the experimental data. The bare TiO2 scaffold presents an 

absorption value of 70% located in the near-UV region up to approximately 390 nm, in agreement with the Anatase bang-

gap energy of 3.2 eV. On the other hand, sensitized samples show an absorption value of 80% in an extended range up 

to 510 nm, due to the CdS band-gap energy of approximately 2.4-2.5 eV. The value of the CdS band-gap energy - and thus 

the wavelength of the absorption cut-off - undergoes a red-shift in relation to the number of sensitization cycles, due to 

the quantum confinement effect related to the thickness of the sensitization layer. As the number of sensitization cycles 

increases, so does the thickness of the deposited CdS layer, reducing the quantum confinement on the optical band-gap 

and finally reaching its bulk-like value for the 1 cycles samples. The exact values of the optical band-gap for each sensitized 

sample have been extrapolated from Tauc plots using the linear fitting procedure for direct band-gap semiconductors. 

(Table 1). A significant tail towards the infrared range – after the absorption edge of the considered materials – is 

observed for all samples and it is mainly due to the scattering properties of the TiO2 scaffold. Although this feature is 

useful to increase the light path length through the device and thus the overall absorption, also results in some light lost 

during the optical measurements due to the enhanced back and lateral scattering. 
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# of CdS cycles Estimated band-gap 

4 2.54 ± 0.01 eV 

8 2.47 ± 0.05 eV 

12 2.45 ± 0.04 eV 

16 2.43 ± 0.05 eV 

Table 1 - Energy band-gap as a function of the number of CdS sensitization cycles, estimated from the Tauc plots of the absorptance spectra.  

Photoelectrochemical characterization 

Electrochemical performances of the samples are assessed through linear sweep voltammetry (LSV) curves and incident 

photon to current efficiency (IPCE), that corresponds to the external quantum efficiency (EQE) in the field of 

photovoltaics. The analysis is performed by varying both the amount of the CdS sensitization cycles and the thickness of 

the TiO2 scaffold, in order to find the best performing device. LSV curves for TiO2 scaffolds – sharing a common thickness 

of 5 μm – with increasing numbers of sensitization cycles (Figure 7 left) show a maximum photocurrent value of 3.8 

mA·cm-2 for the 8-cycles sample, a better slope efficiency in the low-voltage range for the 4-cycles sample and a general 

degradation of performances for the more sensitized samples. This experimental trend can be explained by the 

concomitant effects arising from the thickness growth of the CdS layer. Thin films of CdS present a strong quantum 

confinement effect that broadens the optical band-gap of the material, thus providing a narrower range of absorption. 

On the other hand, the broadening of the CdS band-gap raises its conduction band with respect to the TiO2 conduction 

band, thus providing more driving force to inject electrons in the supporting scaffold. Thin films present low optical 

densities and thus lack the ability to saturate the absorption near the band-edge. However, a low film thickness provides 

a lower rate of electron-hole recombination caused by defects as the photogenerated charges has to travel less through 

the material. Overall, increasing the CdS film thickness causes a deterioration in charge transport and charge injection, 

whereas it promotes an improvement in optical absorption and charge generation. In terms of photoelectrochemical 

performances, these opposing factors balance out in the optimal value of 8 sensitization cycles, where the photocurrent 

density is maximized. The 4-cycle sample exhibits a better fill-factor despite the lower saturation photocurrent, as the 

thin CdS layer efficiently inject the photogenerated charges in the supporting scaffold, but suffer from a reduced optical 

density. The dramatic decrease in performance shown by the 16-cycles sample is further explained with the complete 

clogging of the TiO2 scaffold porosity caused by the thick CdS film deposited. The IPCE curves of these samples (Figure 7 

right) further confirm the physical explanation previously reported concerning the quantum confinement effect on the 

optical band-gap. The 4-cycle sample with a thin CdS layer achieve IPCE values as high as 57%, but it can absorb just up 

to 490 nm due to its broadened band-gap, whereas the 16-cycles sample with a thick CdS layer absorbs light up to the 

quasi-bulk value of 504 nm, but has a maximum IPCE value of 32%. The integral of the IPCE curves over the wavelength 

range is equal to the photocurrent density values at 0.2 VRHE (corresponding to the bias applied during the IPCE 

measurements) and the presented results are in good accordance with those provided by the LSV curves.  
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Figure 7 - LSV curves (left) and IPCE spectra collected at 0.2 VRHE (right) of the 5-μm-thick TiO2 scaffolds with increasing numbers of CdS sensitization 

cycles. 

Electrochemical measurements are thence performed on samples with an increasing thickness of the TiO2 scaffold, 

keeping the amount of sensitization to the optimal value of 8 cycles. The samples measured range from a scaffold 

thickness of 1 μm to 20 μm, including a 10 μm sample made of TiO2 nanoparticle paste employed as a reference. As the 

thickness of the nano-trees grows, the effective surface area of the scaffold increases, thus allowing for a higher amount 

of CdS sensitizer to be deposited. In this way it is possible to improve the optical density of the whole device while keeping 

the thickness of the sensitization layer fixed at its optimized value, avoiding the detrimental effect of high charge 

recombination in thick films of CdS. In fact, the photocurrent values shown in the LSV curves (Figure 8 left) increase as 

the scaffold thickness grows, reaching a maximum of 6.6 mA·cm-2 for the 20 μm sample, with the effect of increased 

optical density already saturating the absorption for the 15-μm-thick sample. As a benchmark for performances, the 

reference TiO2 nanoparticle paste sample provides photocurrent values consistently lower than its PLD-deposited 

counterpart of the same thickness. This result is attributed to the high amount of grain boundaries between nanoparticles 

and to the high defectivity of the nanocrystals that result in a strong increase of the electron-hole recombination rates. 

On the other hand, the quasi-1D hyperbranched morphology obtained with the optimized PLD technique benefits from 

strong directional growth and high degrees of crystallinity, which provide efficient transport pathways and low 

recombination rates for the photogenerated charges. The IPCE curves (Figure 8 right) on those samples reflect the 

performance trend highlighted by the LSV measurements, with the external conversion efficiency increasing with scaffold 

thickness and reaching a maximum value of 67% for the 20-µm sample. 

Page 11 of 20 AUTHOR SUBMITTED MANUSCRIPT - NANO-116988.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

Figure 8 - LSV curves (left) and IPCE spectra collected at 0.2 VRHE (right) of TiO2 scaffolds with increasing thickness with 8 CdS sensitization cycles. 

To confirm the claim of improved charge injection properties for thin layers of CdS, electrochemical impedance 

spectroscopy (EIS) is performed on all the samples and the electron lifetime is extracted from the obtained Bode plots 

(Figure S1). The frequency fmax of the characteristic peak in the Bode plots is correlated to electron lifetime τn according 

to the following relation: 

𝜏𝑛 =
1

2𝜋 𝑓𝑚𝑎𝑥

 

For samples with increasing number of sensitization cycles the electron lifetime values shift from approximately 179 µs 

for the 8-cycles sample to 82 µs for the 16-cycles sample. As previously suggested as an explanation to the trend in LSV 

and IPCE curves, thicker CdS films suffer from higher rates of charge recombination caused by the intrinsic defectivity of 

the amorphous sensitizing material. Concurrently, samples with a different thickness of the TiO2 scaffold show similar 

values of electron lifetime. This implies that the charge transport properties of the heterostructure are not hindered by 

the thickness of the TiO2 scaffold, since the main limiting factor is the phenomenon of charge injection at the 

absorber/scaffold interface. 

An important parameter to evaluate the performances of a PEC device is the ratiometric power-saved Φ𝑠𝑎𝑣𝑒𝑑 ,[65] which 

is defined as the advantage of employing an active photoelectrode to drive a given water-splitting half-reaction instead 

of an ideal, non-polarizable, dark electrode. The ratiometric power-saved Φ𝑠𝑎𝑣𝑒𝑑  is calculated as the difference between 

the ideal dark electrode voltage 𝑉𝑑𝑎𝑟𝑘  of 1.23 eV and the sweeping photoelectrode voltage 𝑉𝑝ℎ , multiplied by the 

photocurrent density 𝐽𝑝ℎ  at each given photoelectrode voltage, divided by the incident illumination power density 𝑃𝑠𝑢𝑛. 

Φ𝑠𝑎𝑣𝑒𝑑 =
(𝑉𝑑𝑎𝑟𝑘 − 𝑉𝑝ℎ) ∙ 𝐽𝑝ℎ

𝑃𝑠𝑢𝑛

 

The ratiometric power-saved (Figure S2) show how the peak value – called maximum power point – for each device is 

placed close to the zero potential at approximately around 0.2 VRHE, thanks to the efficient electron injection from CdS 

layer and thanks to the high electron injection mobility within the hyperbranched TiO2 scaffold that allow for high values 
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of photocurrent without the need of additional external driving force. The best performing device – the 20-μm TiO2 

scaffold with 8 cycles of CdS sensitization – achieves a ratiometric power-saved of 6% with an external bias of 0.2 VRHE 

and a value of 5% at 0 VRHE. 

Another important benchmark of the internal charge injection and transport properties of a given device is the absorbed-

photon-to-current efficiency (APCE) – obtained as the ratio between the IPCE and the absorptance of a sample and 

corresponding to the internal quantum efficiency (IQE) in the field of photovoltaics – that describes the internal 

conversion efficiency of the device to turn any absorbed photon into separated charges in the external circuit. The best 

performing device shows APCE values up to 90% within its range of absorption up to values of 500 nm, very close to the 

band-edge cut-off (Figure 9). This performance implies that absorbed photons are converted into photogenerated 

electron-hole pairs in the CdS photoactive layer, separated by the favorable energy level alignment, injected at the 

CdS/TiO2 interface and then transported along the supporting scaffold, all the processes occurring efficiently thanks to 

the low recombination rates within the optimized thickness of the CdS layer and to the enhanced crystallinity and 

directionality of the hyperbranched TiO2. Essentially, this optimized heterostructure nearly converts all the absorbed 

photons into electric charges to be employed in the process of hydrogen production. 

 

Figure 9 - APCE (blue) and IPCE (red) spectra collected at 0.2 VRHE of the record sample, corresponding to the 20-um-thick TiO2 scaffold with 8 CdS 

sensitization cycles. 

To better understand these benchmark parameters, the optimized architecture presented in this work is compared with 

other state-of-the-art TiO2/CdS photoanodes taken from the literature (Table 2). The performance comparison considers 

the photocurrent density under an applied bias of 0 VRHE and the ratiometric power-saved at the maximum power point. 

In the perspective of a tandem PEC architecture, a steep photocurrent profile with an early onset potential plays a much 

more important role than a high saturation photocurrent achieved under strong positive applied biases. A similar 

reasoning can be made for the maximum power point where the ratiometric power-saved is calculated, as it represents 

the applied potential where the device best performs in terms of efficiency. 
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Table 2 - Performances for some of the best-performing TiO2/CdS photoelectrodes for PEC water-splitting present in literature. Important details of the 

experimental conditions are also reported. 

Regarding the photocurrent yield (Figure S3 left), most of the presented photoanodes achieve a maximum photocurrent 

density around 6 mA·cm-2 that corresponds to an external conversion efficiency around 80% at saturation, considering 

the theoretical Shockley–Queisser limit for a CdS absorbing layer of approximately 7.5 mA·cm-2. An important distinction 

between the compared architectures appears on the photocurrent density achieved under 0 VRHE of external bias, where 

our optimized photoanode achieves a value of 4.06 mA·cm-2, clearly outperforming the other devices. The steep 

photocurrent profile of our photoanode translates into a high ratiometric power-saved value of 6%, obtained at the 

maximum power point of 0.2 VRHE. Once again, these values are better than the reported devices (Figure S3 right) that 

present lower efficiencies and high maximum power point voltages. As thoroughly reported in this section, these 

performances are achieved thanks to the optimized hyperbranched TiO2 scaffold and CdS absorption layer that efficiently 

absorb, inject and transport the photogenerated carriers. 

Conclusions 

The heterostructures comprising quasi 1D-hyperbranched TiO2 nanostructured scaffolds sensitized with thin CdS films 

have proven to be efficient photoanodes for the production of hydrogen via solar energy. The mesoporous nano-tree 

morphology presents an elevated effective area and allows for an effective sensitization of its whole surface with a 

homogeneous layer of photoactive material, reaching high values of optical density even with low CdS thicknesses. 

Furthermore, the high internal scattering of the nano-trees increases the light-harvesting properties of the whole device 

by lengthening the path photons have to travel within the film. Efficient charge generation and injection of CdS film, 

thanks to the nanometric thickness and the resulting low recombination rates, are coupled with the improved charge 

transport properties of the scaffold, granted by the quasi-1D directional growth and the high crystallinity of the 

hyperbranched morphology. Thanks to these features, the best-performing device displays an onset potential of -0.43 

VRHE, a photocurrent density of 4.06 mA·cm-2 at 0 VRHE and a saturation photocurrent density of 6.6 mA·cm-2 at 0.35 VRHE 

with an internal conversion efficiency up to 90%. These figures of merit currently represent the state-of-the-art for 

TiO2/CdS heterostructures for water-spitting applications, especially in the range of low external bias. According to 

Photoelectrode Electrolyte Reference electrode JPH @ 0 VRHE Φsaved @ MPP Ref. 

TiO2 hyperbranched nano-trees + 

CdS conformal coating 
0.25 M Na2S + 0.35 M Na2SO3 

Saturated silver-silver chloride 

(Ag/AgCl/sat. KCl) 
4.06 mA·cm-2 6.0 % @ 0.20 VRHE This work 

TiO2 micro-nanoporous film + CdS 

nanocrystals in the pores 
0.2 M Na2S + 1 M Na2SO3 

Saturated mercury-mercurous 

sulfate (Hg/Hg2SO4/sat. K2SO4) 
1.67 mA·cm-2 5.2 % @ 0.32 VRHE Guo et al.[43] 

TiO2 nanorods + CdS conformal 

coating 
0.25 M Na2S + 0.35 M Na2SO3 

Saturated silver-silver chloride 

(Ag/AgCl/sat. KCl) 
2.80 mA·cm-2 4.8 % @ 0.25 VRHE Luo et al.[47] 

TiO2 nanotubes + CdS quantum-

dots 
1 M Na2S 

Saturated silver-silver chloride 

(Ag/AgCl/sat. KCl) 
3.48 mA·cm-2 4.6 % @ 0.14 VRHE Chen et al.[45]  
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literature, higher performances are only achieved by exploiting chalcogenides with a lower optical band-gap, such as CdTe 

and CdSe, in order to drastically increase photon absorption and charge generation. A possible future development of 

this work could employ a TiO2/CdS/CdSe type-II triple-material heterostructure, combining a better exploitation of the 

solar spectrum provided by the dual absorber with the efficient charge transport properties inherent to the 

nanostructured scaffold, thus theoretically pushing the photocurrent densities in the range of 20 mA·cm-2.[66–69] In 

general, thanks to the fine control over the morphology of the scaffold and to the versatility of the SILAR sensitization 

technique, future works might be focused on the development of a nano-heterostructures comprising hyperbranched 

TiO2 nano-tree scaffold sensitized with a wide range of novel, yet to be investigated, photoactive materials.  
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