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We investigate the binary phase diagram of helium and iron using first-principles calculations.
We find that helium, which is a noble gas and inert at ambient conditions, forms stable crystalline
compounds with iron at terapascal pressures. A FeHe compound becomes stable above 4 TPa, and
a FeHe2 compound above 12 TPa. Melting is investigated using molecular dynamics simulations,
and a superionic phase with sublattice melting of the helium atoms is predicted. We discuss the
implications of our predicted helium-iron phase diagram for interiors of giant (exo)planets and white
dwarf stars.

Matter under extreme compression exhibits rich and
unexpected behaviour, such as unconventional chem-
istry [1, 2], structure [3], and phases [4]. Inside planets
and stars, electrons and nuclei are subject to extreme
conditions of pressure and temperature, and the explo-
ration of new physics and chemistry under these condi-
tions is necessary for the study of astrophysical processes
within the interior of the Earth [5–7], other planets [8, 9],
or stars [10–12].

Static experiments using diamond anvil cells have
reached pressures of 1 terapascal (TPa, 1 TPa = 107

atmospheres) [13], well above those at the center of the
Earth but smaller than those found at the cores of gi-
ant gas planets such as Jupiter and Saturn [14]. Higher
pressures can be explored with dynamic compression ex-
periments, as exemplified by the recent report from a
team in the US National Ignition Facility that subjected
diamond to pressures of 5 TPa [15, 16]. With high pres-
sure experiments starting to investigate the realm of ter-
apascal physics and chemistry, theoretical predictions are
starting to emerge that reveal unexpected behaviour and
complexity under these conditions.

In this context, we use quantum mechanical calcula-
tions to explore the phase diagram of helium and iron,
two of the most abundant elements in the Universe.

Helium nuclei formed in the early Universe during Big
Bang nucleosynthesis, and the primordial 25% mass frac-
tion of helium makes it the second most abundant ele-
ment after hydrogen. In addition, thermonuclear reac-
tions within the interiors of stars fuse hydrogen to form
helium. Therefore, helium is found inside many astro-
physical objects, from planets, to stars, to white dwarf
stars, and it plays a central role in their behaviour. For
example, recent experimental and theoretical work has
shown that helium metallises at TPa pressures [10–12],
which is higher than previously anticipated. As a con-

sequence it has been suggested that the cooling rate of
white dwarf stars is slowed by their helium-rich atmo-
spheres, and therefore current estimates of their ages
need to be revised.

Helium has two electrons in the closed-shell 1s state,
and is chemically inert under ambient conditions. The
only known helium compounds are either metastable, in-
volving ionised species such as HeH+

2 [17]; or are formed
by weak van der Waals interactions, such as helium in-
side C60 [18]. Recently, a helium-sodium compound has
been reported above pressures of about 0.1 TPa [19].

Iron has one of the highest binding energies per nu-
cleon (the highest is 62Ni) and is therefore also very abun-
dant [20]. It accounts for about 80% of the Earth’s core
mass [7], where it is found at pressures up to 0.35 TPa,
and it is responsible for the magnetic field surrounding
the planet [21]. Iron is not expected to exhibit mag-
netic order at TPa pressures, and it is predicted to occur
in a series of closed-packed non-magnetic crystal struc-
tures [22]. Iron compounds with hydrogen, carbon, oxy-
gen, silicon, and sulfur have been investigated at pres-
sures of about 0.35 TPa due to their importance for the
composition of the Earth’s core [23].

In this work we investigate the possibility that, un-
der extreme compression, helium might form stable com-
pounds with iron. The high abundances of helium and
iron make it crucial to understand the helium-iron phase
diagram for astrophysical modelling of the interiors of
giant planets, including the increasing number of exo-
planets being discovered [24], and iron-core white dwarf
stars [25].

Our strategy is to search for high-pressure compounds
of helium and iron using first-principles quantum me-
chanical density functional theory (DFT) methods as im-
plemented in the castep code [26], and the ab initio
random structure searching (AIRSS) method [27]. The
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FIG. 1. Pressure-composition phase diagram of the helium-
iron system at the static lattice level. For FeHe, the Cmcm
structure is stable between 4 and 50 TPa, and the Fm3m
structure above 50 TPa. For FeHe2, the Cmmm structure is
stable between 12 and 47 TPa, and above that pressure the
stable structure is I41/amd. The formation energy per atom,
calculated using ∆Gs = (Gs−(GHeNHe+GFeNFe))/(NHe+NFe)
as described in the text, is indicated by the gradients and
approaches −4 eV/atom for both stoichiometries at 100 TPa.

stability of a compound s with respect to the constituent
elements can be evaluated by calculating the Gibbs free
energy of formation per atom ∆Gs = (Gs − (GHeNHe +
GFeNFe))/(NHe + NFe), where Gs is the Gibbs free en-
ergy of the compound s, GA is the Gibbs free energy per
atom of A, and NA is the number of A atoms in com-
pound s. The Gibbs free energy has contributions from
the electrons, which we calculate using DFT, and from
the quantum and thermal nuclear motion, which we cal-
culate using DFT within the harmonic approximation to-
gether with the recently proposed nondiagonal supercell
approach [28] which greatly reduces the computational
cost.

We show the static lattice phase diagram of the helium-
iron system in the pressure range 1–100 TPa in Fig. 1.
Helium is predicted to adopt the hexagonal closed-packed
(hcp) crystal structure at TPa pressures [11]. Iron ex-
hibits a sequence of phase transitions at TPa pressures,
starting with the hcp structure which transforms to the
face-centered cubic (fcc) structure in the range 7–22 TPa,
then it transforms back to the hcp structure up to pres-
sures of 35 TPa, above which it transforms into the body-
centered tetragonal (bct) structure, which approaches
the body-centered cubic (bcc) structure with increasing
pressure [22, 29].

The structure searches find several compounds of he-
lium and iron that are energetically competitive in the
TPa pressure range, and the most stable have stoichiome-
tries FeHe and FeHe2 (see Fig. 1). The FeHe stoichiom-
etry first forms at 4 TPa in a structure of orthorhombic
space group Cmcm containing 8 atoms in the primitive
cell, and at 50 TPa it transforms to a Fm3m structure
(rock-salt structure). The FeHe2 stoichiometry appears

(a) FeHe. (b) FeHe2.

FIG. 2. Crystal structures of Cmcm FeHe and Cmmm FeHe2
at 10 TPa. Helium atoms are represented in blue, and iron
atoms in grey.

in three distinct structures which have similar energies.
The first is an orthorhombic structure of space group
Cmmm with nine atoms in the primitive cell, which
forms around 12 TPa. The second has a space group
of I41/amd symmetry with six atoms in the primitive
cell, and becomes the most stable FeHe2 structure above
47 TPa. The third has P6/mmm space group and three
atoms in the primitive cell, but is not thermodynam-
ically stable. Structure files for all of the helium-iron
compounds are provided as Supplemental Material.

The helium-iron compounds that form at the lowest
pressures have the FeHe Cmcm and the FeHe2 Cmmm
structures shown in Fig. 2. The iron atoms form open
channels containing helium chains in the FeHe Cmcm
structure (Fig. 2a). At 10 TPa, the minimum He-He
distance is 0.98 Å, the He-Fe distance is 1.16 Å, and
the Fe-Fe distance is 1.47 Å. The volume per formula
unit in FeHe is 2.76 Å3, compared to 0.50 Å3 in hcp
helium and 2.27 Å3 in both hcp and fcc iron, which add
to a combined volume of 2.77 Å3 per formula unit. In
the FeHe2 Cmmm structure (Fig. 2b), the helium atoms
form hexagonal layers incorporated inside iron channels
that are wider than those present in FeHe. The minimum
He-He distance is 0.89 Å at 10 TPa, the He-Fe distance
is 1.19 Å, and the Fe-Fe distance is larger at 1.54 Å. The
volume per formula unit in FeHe2 is 3.24 Å3, which is
smaller than that of the elements (total of 3.27 Å3). The
smaller volumes of the compounds favour their formation
under pressure via the enthalpy term in the Gibbs free
energy.

We next investigate the effects of temperature on the
formation of helium-iron compounds upon increasing
pressure. If the effects of nuclear motion are neglected,
FeHe forms at pressures above 4.1 TPa, and the inclu-
sion of quantum and thermal nuclear motion lowers this
pressure to 2.7 TPa at 10, 000 K. FeHe2 only forms at
a higher pressure of about 12 TPa, and therefore we fo-
cus on the FeHe compound to study the formation of
helium-iron compounds under pressure.

We use ab initio molecular dynamics simulations in
conjunction with the Z-method [30] to estimate the melt-
ing temperature of FeHe. These calculations are per-
formed using the quantum espresso package [31], and
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FIG. 3. Helium-iron phase diagram. The solid lines indicate
formation lines, sublattice melting, and full melting. The
sublattice melting of FeHe occurs at 15, 100 ± 1, 000 K at
5.38 TPa, and at 18, 200 ± 1, 000 K at 10.6 TPa, while the
full melting of FeHe occurs at 17, 600± 1, 000 K at 5.45 TPa,
and at 19, 800 ± 1, 000 K at 10.65 TPa. The melting line of
iron is taken from Ref. [35].

the details are provided in the Supplemental Material.
The melting temperatures of helium and iron differ by
thousands of degrees, suggesting that FeHe might exhibit
superionicity, that is, sublattice melting of the helium
component while the iron atoms oscillate around their
crystallographic positions. Superionicity has been dis-
cussed before [32], for example in a lithium-based con-
ductor at ambient pressure [33], and in the melting of
ice and ammonia at extreme pressures [8]. Indeed, our
molecular dynamics simulations demonstrate that, upon
increasing temperature, the helium chains melt within
the iron channels in FeHe before the iron channels them-
selves melt. Interestingly, metallic superionic compounds
are uncommon [34], and FeHe provides a nice platform
to further investigate their properties.

In Fig. 3 we show the proposed phase diagram for the
formation of helium-iron compounds under pressures up
to 10 TPa. At low pressures, helium and iron do not mix.
Below about 4, 000 K at 1 TPa and 6, 000 K at 3 TPa,
both materials are found in the solid state, but helium
melts above this temperature. Iron only melts at much
higher temperatures, of the order of 15, 000 K [35]. Upon
increasing pressure, helium and iron form a FeHe com-
pound between 2 and 4 TPa, depending on the temper-
ature. FeHe undergoes sublattice melting of the helium
atoms at temperatures between 13, 000 and 18, 000 K, de-
pending on the pressure. The superionic phase is stable
in a wide temperature and pressure range, and melting
is completed at around 17, 000 K at 4 TPa, and above

19, 000 K at 10 TPa.

Our results suggest that the FeHe compound should
form at the pressures accessible to dynamic compres-
sion experiments. Furthermore, the formation pressure of
FeHe is predicted to be within the pressure range found at
the core of Jupiter, with a core-mantle boundary pressure
of 4.2 TPa and temperature of 20, 000 K, and at the high-
est pressures found at the centre of Saturn, with a core-
mantle boundary pressure of 1 TPa [14, 36]. The interiors
of exoplanets with masses similar or larger than that of
Jupiter will also be subject to pressures higher than those
required to form FeHe. This raises the possibility that
helium is captured by iron within the interior of these
planets, and potentially bound to other elements. The
atmosphere of Saturn is indeed depleted of helium [37],
and the capture of helium in compounds in its interior
could contribute to this phenomenon. This could also af-
fect the helium composition of the atmospheres of giant
exoplanets. White dwarf stars are subject to more ex-
treme conditions, with helium-rich atmospheres subject
to tens of terapascals, and the interiors to even higher
pressures. Due to cooling, white dwarf stars exhibit tem-
peratures in the range from only a few thousand Kelvin
to hundreds of thousand of Kelvin [38], raising the pos-
sibility that even the solid FeHe phases appear in these
stars. The formation of helium compounds with other el-
ements could alter the cooling rates of white dwarf stars,
which are largely determined by the atmospheric compo-
sition, and as a consequence affect current estimates of
their ages. Our results indicate that, in contrast to the
inertness of helium at ambient pressure, accurate mod-
els of the composition of planets and stars should treat
helium as a compound-forming element.

In conclusion, we have used first-principles methods
to study the binary phase diagram of helium and iron.
We have found that compounds can form at pressures
of several TPa, suggesting that they might be found in-
side giant (exo)planets and white dwarf stars. We have
also predicted that the most stable FeHe compound ex-
hibits a superionic phase with sublattice melting of the
helium atoms within a wide range of temperatures and
pressures. Overall, our results show that helium can form
compounds at terapascal pressures.
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