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Abstract

During an infectious disease outbreak people will often change their behaviour to reduce their risk of infection.
Furthermore, in a given population, the level of perceived risk of infection will vary greatly amongst individuals. The
difference in perception could be due to a variety of factors including varying levels of information regarding the pathogen,
quality of local healthcare, availability of preventative measures, etc. In this work we argue that we can split a social
network, representing a population, into interacting communities with varying levels of awareness of the disease. We
construct a theoretical population and study which such communities suffer most of the burden of the disease and how
their awareness affects the spread of infection. We aim to gain a better understanding of the effects that community-
structured networks and variations in awareness, or risk perception, have on the disease dynamics and to promote more
community-resolved modelling in epidemiology.
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Introduction

Historically, epidemic models have largely overlooked the

impact that changes in human behaviour can have on the

transmission of an infectious disease [1]. In an attempt to reduce

their risk of infection, however, individuals may change their

behaviour considerably. A recent example of the occurrence of

such changes in behaviour is the 2009 H1N1 pandemic: a study on

the psychological responses to the 2009 H1N1 virus, found in [2],

reported a large reduction in the use of public transport, a high

number of flight cancellations and a considerable amount of

investment in preventative goods (e.g. masks). Individuals under-

taking such precautionary measures may succeed in reducing their

susceptibility to the disease and thus potentially reduce the size of

an epidemic outbreak. For this reason ignoring changes in human

behaviour can have a substantial impact on the accuracy of many

models of disease dynamics.

Classical epidemic models represent a population as randomly

mixing individuals, assigned to a pre-defined set of compartments

according to their disease status [3,4], e.g. (Susceptible, Exposed,

Infected, Recovered). Another approach to epidemic modelling is

to use the concept of metapopulations by dividing the population

of potential hosts for the disease into a system of spatially

separated, heterogeneous populations (a.k.a. patches) [5]. This

separation allows the examination of the persistence of the disease

as it spreads within and across the sub-populations [6,7]. An

increasingly popular approach is to model the underlying popu-

lation as a contact network: a graph in which the nodes represent

individuals and the edges represent any contact or interaction that

is sufficient for the spread of the disease. The number of contacts

of a node are referred to as the degree (or connectivity) of that

node. Many types of contact network structures have been studied

extensively, including random, lattice and small-world networks

[8], because they provide a very different environment for the

transmission of the pathogen. For example, it has been noted that

epidemic spread is rapid and difficult to contain on networks with

small-world [9] and scale-free [10] structural properties. The use

of contact networks is an individual-based approach which takes

into account the underlying social structure, creating a more

intuitive and accurate framework for studying disease spread in

large heterogeneous populations [11].

The availability and quality of data today, combined with

increased computer power, has led to the creation of very detailed

models. The agent-based EpiSims simulation tool, introduced by

Eubank et al. [12], uses realistic population mobility data to define

a set of locations that people visit, as a part of their daily activities,

where exposure to the disease may occur. The EpiSimdemics

algorithm [13] is capable of simulating epidemics with very good

performance on even larger realistic social networks, while the

Simdemics environment [14] utilises a ‘synthetic population’

whose demographics are statistically indistinguishable from the

census data used to construct it. The authors incorporate aspects of

human behaviour which depend on factors such as household size,

income, daily activities and reactions to interventions. Other

approaches using census data were also adopted in [15] to study

the impact of the timing of social distancing interventions on the

disease attack rates; and in [16] to examine the impact of other

interventions on the disease dynamics. Wu, Riley, Fraser and

Leung [17] have also considered another aspect of human

behaviour: compliance with suggested interventions, mentioning

that the compliance of individuals may be closely related to various

demographics and those levels of compliance may vary over the
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course of the disease outbreak. Some authors have also modelled

aspects of human behaviour without applying high-resolution

population data. For example, in [18], the authors examine the

role of health care workers in spreading infection by considering

three groups: general practitioners, health care workers and rest of

the population. The impact of the human population’s mobility on

the disease dynamics has also been considered, both for long (based

on airline traffic data) and short distance travel [19]. All of the above

models use real world data to attempt to capture the complexity and

heterogeneity of human populations and interactions.

Keeling and Eames [8] emphasise that we are often limited by

either time or resources in our ability to construct a social network

to represent the population. The size of the population may also be

an obstacle as more data and computational power would be

required for simulating the infectious outbreak. A comparison

between the simulation results of an agent-based model and a

structured metapopulation model in [20] has demonstrated that

they are in good agreement, with the agent-based model giving

more detailed information at the expense of requiring larger and

more elaborate data sets for the population. Because of the

potential difficulty of obtaining such data, a range of theoretical

computer-generated networks have been studied in order to gain a

better understanding of the link between their structure and

the disease dynamics [8]. In this work we aim to study such a

computer-generated network: one consisting of communities of

varying size and connectivity, as well as different levels of risk

aversion to becoming infected. The existing literature has gene-

rally overlooked the concept of community structure in social

networks, potentially due to the fact that community structure is

still an active area of research in physics and computer science. We

intend to make the case for more community-resolved modelling

in epidemiology by exploring the disease transmission process on a

community-structured network. We demonstrate that this type of

modelling can allow us to detect how and when an infection is

introduced in a community and what role each community plays

in the persistence and spread of the pathogen. Such additional

information may not be easily obtainable via existing methodol-

ogies which do not consider the communities present in a social

network separately. The communities considered in this work have

no risk perception initially and, hence, take no precautions to

reduce their risk of infection. By introducing risk perception we

contrast how changes in behaviour could affect the disease

dynamics and how the disease spreads between communities with

varying levels of awareness. Our results show that modelling a

population in terms of communities could help identifying which

groups of people are highly at risk of infection and in studying the

different prevalence of the disease in a range of social groups. We

also introduce a mean field model to estimate mathematically both

the transmissions within and between communities.

In the next section we introduce in detail our definitions of

community structure and risk perception. The Methods section

describes our algorithm for generating communities that are

heterogeneous in terms of size and connectivity and introduces

some of the model’s concepts and the simulation approach. Our

approach to generating communities is novel, although based on an

existing algorithm for generating homogeneous communities. The

Results section contains our findings and the Discussion section

contains comments on potential applications of this type of

modelling. In the final section we provide an overview and sug-

gestions for future work.

Background
Community structure. In network theory a community is

defined as a sub-network within which there is a larger density of

edges between nodes (i.e. internal connections) than there is to any

node belonging to a different sub-network (i.e. external con-

nections) [21]. The main focus in community structure research

has been designing algorithms for their detection [22]; as a result

community structure in contact networks has been widely ignored

in the study of the spread of infectious diseases. Girvan and

Newman [23] first introduced the community detection algorithm

of ‘edge betweenness’ and applied it on many existing networks,

demonstrating that identifying community structures can help split

both social and biological networks into meaningful clusters.

Studies of real world social networks have further revealed that the

detected communities are representative of groups of people with

highly similar demographics [22].

The concept of metapopulations, described earlier, consists

of dividing the population that we are attempting to model

geographically, into interacting patches. A similar concept is

discussed in [24], where the authors study a small population and

propose that larger populations, such as a city, can be modelled as

a set of communities that are ‘‘in contact through interactions in

the work environment or through random interactions in shops or

other settings’’. We could also choose to divide a target population

based on various sociological factors. In our case, we aim to divide

the population into communities with different levels of awareness

to the risk of becoming infected. For example, access to better

healthcare might allow individuals to seek treatment earlier and

avoid infecting others. Another example is income: better-off

individuals are more likely to invest in preventative measures, thus

reducing their risk of infection. Other factors that may cause a

higher level of perceived risk of infection could be extensive media

coverage, government awareness campaigns, etc. An example of

different levels of risk perception is observed in the survey carried

out by Goodwyn et al. [2]. In the results the authors observe

that Malaysians display more anxiety towards ‘‘swine flu’’ than

Europeans and are more likely to take preventative measures. The

authors note that the survey results also suggest that people

generally perceive pig farmers to be at high risk of infection.

Individuals are likely to avoid contact with such ‘high risk’ groups

regardless of whether the danger is real or simply prejudice. These

and other behavioural observations might be helpful in determin-

ing how anxious various individuals are to becoming infected.

When considering the common background of the individuals that

make up a community, we may be able to use such information to

assign the community a level of awareness to the disease using the

risk perception framework described below.

In very recent work Gargiulo and Huet [25] have studied

opinion dynamics on a community structured network, providing

an argument similar to ours: that the population can be split into

communities of people of varying opinions. The work demon-

strates the benefits of using community structured social networks

in modelling the population; however the authors consider opinion

dynamics, instead of disease spread, and are mainly concerned

with how the network evolves as a response to changes in indi-

vidual opinions. In this work the network is static: the connections

amongst individuals do not vary with time; and we are instead

concerned with the impact of risk perception in preventing the

spread of infection. We examine randomly generated communi-

ties, which are commonly used as a benchmark in the investigation

of community structure [22].

Risk Perception. We define an individual’s risk perception

as awareness of the disease based on which he acts to reduce the

probability of becoming infected. We model this perception using

the framework introduced by Bagnoli, Liò and Sguanci [26,27].

In this framework, as a result of alertness to the disease, the

probability of an individual becoming infected t is multiplied by a
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factor of

A(s,k)~ exp { HzJ
s

k

� �h i
ð1Þ

where s is the number of the individual’s infected connections and

k is the connectivity (or degree) of the individual. The parameters J

and H represent the individual’s awareness. J represents individual

perception: it determines how strongly the individual reacts to

observing the infection in his close contacts. The community

awareness parameter H determines the awareness that an

individual has gained from external factors: media broadcasts,

knowledge of adequate precautions, etc. In this study we apply the

risk perception approach as a simple framework to represent

variations in behaviour between communities.

Studies on risk perception in the social sciences, regarding

various hazards, have shown that individuals estimate risk

differently depending on the target that is at risk from the hazard.

According to empirical observations an individual’s perceived

estimate of risk tends to be lower when the target is themselves or

their families, compared to when the risk target is the rest of the

population [28]. The estimates of perceived personal or family risk

are likely to increase if the hazard is proximate to the individual.

To demonstrate how the model of risk perception above can be

representative of real life observations we summarise the results of

a recent survey, conducted in Arizona, which examines the risk

perception during the 2009 H1N1 pandemic [29] (cited with

authors’ permission). Analysing the survey results, the authors

show that individuals who followed news regarding the pandemic

had higher perceived risk of infection, regardless of the risk target.

In the framework above this attitude would translate in such

individuals having higher H parameter than others that do not

keep track of news regarding the hazard. Additionally, the authors

note that individuals aware of H1N1 cases in their neighbourhood

had a higher level of perceived personal or family risk, a

phenomenon that could be modelled using the J parameter to

account for such cases in the individual’s vicinity. An interesting

finding in this survey is the fact that Hispanic individuals had a

higher risk perception than non-Hispanics, which further supports

the idea of different levels of risk perception between communities

introduced earlier. In fact, if we assume that Hispanic individuals

have more Hispanic than non-Hispanic contacts, in this case the

sample population can be divided into at least two communities: a

non-Hispanic and a Hispanic one, with the latter having higher

risk perception. This assumption is not unreasonable considering

the homophily (i.e. ‘birds of a feather stick together’) property of

real-word social networks, as well as the fact that some of the

Hispanic individuals surveyed in [29] spoke only Spanish.

Some recent epidemiology research has revealed increased

interest in how awareness of the disease incites people to take

measures to reduce their susceptibility. Barrett et al. [14] state in

their conclusion the importance of studying the spread of fear or

information in response to the epidemic. Funk, Gilad, Watkins and

Jansen [30] have already taken a step in this direction by studying

two networks simultaneously: one on which the disease spreads

and a second one on which information regarding the disease is

propagated. Economists have also called for the incorporation of

human awareness in existing epidemiological models and have

suggested that people’s responses are likely to be influenced both

by public (in this framework H) and private (J) information [31]. A

risk perception approach has already been applied to the problem

of studying individual decisions on getting vaccinated during an

epidemic outbreak [32]. An examination of the different effects of

risk perception on a scale-free network without any group

structure is available in [33].

Methods

In this study we consider a static network of N individuals,

which can be completely described by five parameters:

N C is the number of communities.

N n(X ) is the size of community X, given as number of nodes.

N H(X ) is the awareness of the disease in community X.

N pi(X ) is the probability that a node in community X has a

connection with another node in the community X.

N pe(X ) is the probability that a node in community X has

a connection to another node that belongs to any other

community.

In addition we use z to denote the set of all communities in

the network. Four of the parameters above are necessary for

the construction of a network consisting of heterogeneous ran-

dom communities, as they allow for varying sizes and levels of

connectivity. The H(X) parameter is necessary only when the

communities modelled also have varying levels of risk per-

ception. The commonly used planted l-partition model [34],

unlike this method, constructs equally sized homogeneous

communities.

The large number of parameters makes conducting a detailed

study difficult. For this reason we have chosen to keep the number

of communities constant, C = 5. Using a set of five communities we

are able to study a good range of combinations of the remaining

four parameters and examine their general effect on the disease

spread within and across the communities. In the Results section

we also examine how the exposure to disease of a single

community is affected by variations in these parameters.

Network Generation
A common approach to generating networks for testing com-

munity detection algorithms is to use the planted l-partition model

[22,34]. The algorithm divides a set of N nodes into l equally sized

groups. Two probabilities are defined:

N pin: the probability of a node having a connection to another

node in the same group.

N pout: the probability of a node having a connection to another

node from a different group.

Links are generated between all pairs of nodes according to

these two probabilities and the result is an Erdös-Rényi-like

random network of l communities, provided that pinwpout. The

shortcomings of this method are that the l groups are equally sized

and that the number of internal and external connections is

roughly equal for all individuals in the network. Our approach,

described below, generates a network of communities in which the

communities do not have to be equally sized and the connectivity

of individuals is similar for members of the same community but

varies widely between communities.

The generation process is as follows, using the parameters

specified earlier:

1. We assign each node to a single community, according to the

communities’ sizes.

2. For each community X:

1. For every node a[X :2.1.
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N For all other nodes b[X : create a directed link from a to b

with probability pi(X ).

N For all nodes c=[X : create a directed link from a to c with

probability pe(X ).

3. For all pairs of nodes a and b:

1. If there exists a directed link both from a to b and from b to

a then do nothing. Otherwise delete any directed links

between a and b.

We can use the adjacency matrix M to denote the weight of the

connections between all individuals in the population. Since we

are already considering a large number of parameters in this paper

we have chosen to keep the connection unweighted. In other words:

Mij~
0

1

if there is no connection between i and j

otherwise

�

and Mij~Mji. A sample set of parameters is given in Table 1 and

the resulting network is shown in Figure 1.

The communities resulting from the above algorithm are Erdös-

Rényi random graphs and hence have the small-world property:

any two nodes within a community are likely to be connected via a

small number of intermediate acquaintances. This property also

holds across separate communities, although the average number

of intermediate nodes is likely to be larger, due to the lower density

of edges between communities. More realistic networks would also

exhibit clustering, which could also be included in this model by

taking into account that if node a is connected to both nodes b and

c, then it is more likely that nodes b and c are also connected to

each other. Although such considerations could help in creating a

more realistic computer-generated population model, they would

substantially complicate both the generation process and the rules

presented below.

In the above description of the generation process we have

assumed that every node has been already assigned a community

in Step 1 and have not discussed any mechanism for determining

each community’s size. A given community size would be

acceptable provided that, together with the community’s internal

and external connectivities, the definition of a community is not

violated. Note that even in the case where all the communities are

of equal size the internal and external connection probabilities

may still vary between communities, as long as the resulting

community still has a higher density of internal than external

connections. Below we provide a quantitative definition of a

community, linked to the parameters used in this paper, so as to

provide a set of rules to adhere to when choosing each com-

munity’s size and connection probabilities. In [35] two definitions

of a community are given. A subset of nodes V is a community in

the weak sense if

X
i[V

kin
i (V )w

X
i[V

kout
i (V )

where kin
i is the number of edges connecting node i to other

members of the subset V, and kout
i is the number of edges

connecting node i to nodes belonging to the rest of the network.

Similarly, a subset of nodes V is a community in the strong sense if

kin
i (V )wkout

i (V ),Vi[V :

In our case the connectivity k depends on the size of the community

as well as its probabilities of internal and external contact. With the

parameters, given in Table 1, our algorithm will produce a

community in the weak sense if, for community V[z , the following

holds:

pi(V )2(n(V ){1)w
X

X[z,X=V

pe(V )pe(X )n(X ) ð2Þ

Inequality (2) ensures that the average internal connectivity of any

node will be higher than its external connectivity, thus generating

community structure.

For a community, generated by our algorithm, to be in the

strong sense it is necessary that

pi(V )2(n(V ){1)wpe(V )(N{n(V )) ð3Þ

In equation (3) every single node in the community will always

have a higher internal than external connectivity, even in the case

where, for some other community X, the external connectivity

pe(X ) takes the maximum value of 1. All the communities in

Table 1 are communities in the strong sense, except for the weak

community B. To ensure that a community structure is obtained,

the left hand side of either inequality (2) or (3) should always be

sufficiently larger than the right hand side. Otherwise, due to the

stochasticity of the generation process, the network may not have

the required structure on some realisations of the algorithm. Even

a small difference is sufficient to ensure that a correct network

topology is generated.

The parameters for external and internal connectivity in Table 1

are suitable for fairly small networks. In large networks these

parameters may cause some nodes to have exceptionally large

degrees. This occurrence is due to the number of nodes both

within and outside the community being very large, resulting in

many connections being formed. For the transmission of most

diseases close contact is necessary and people tend to have only a

limited number of such close contacts per day. To account for the

limited number of contacts we chose parameters pi and pe, using

equations (2) and (3), such that the connectivity of the nodes in

Table 1. An example of five heterogeneous communities and their parameters.

Community A B C D E

Number of nodes n (given here as % of total population) 30 20 25 10 15

Community Awareness H 0 4 2 3 1

Probability of internal contact pi 0.7 0.6 0.6 0.8 0.5

Probability of external contact pe 0.1 0.25 0.1 0.05 0.03

doi:10.1371/journal.pone.0022220.t001

3.1.
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each community does not exceed a reasonable upper bound. The

communities examined in this paper match the parameters of

Table 1, with the probabilities scaled to allow for large size

networks.

Boundary Nodes
Studying the effects of boundary nodes (i.e. nodes within a

community with at least one external connection) is a common

procedure when examining community structure in networks [22].

In this work boundary nodes represent the only means by which

infection can travel between communities.

We can estimate the average number of boundary nodes for the

individuals within a community mathematically. In our model, the

probability of two nodes, members of communities V and X

respectively, being connected is pe(V )pe(X ). The probability of

a node in V not having a connection to any node from community

X is 1{pe(V )pe(X )½ �n(X )
. By considering all other communities

in z and subtracting from one, we obtain the expected number of

boundary nodes for community V:

BV~n(V ) 1{ P
X[z,X=V

1{pe(V )pe(X )½ �n(X )

� �
ð4Þ

The above result is used below in creating a mean field model

approximation, as well as in studying the behaviour of a single

community.

Single Community
In order to examine how the parameters of a community affect

its exposure to disease from the outside, we set up a susceptible

community connected to a completely infected outside world.

Running the network generation algorithm for different values of

external connectivity pe and community size n, we obtain the

average number of transmissions entering the community per unit

time. Parameter values that do not generate a community in at

least the weak sense (see equation (2)) are ignored. We repeat this

procedure for different values of H. Note that, since all individuals

in the community are susceptible and the outside world is

completely infected, we are not concerned with the value of pi: we

only observe how infection is introduced from outside the

community.

The expected number of infections could also be estimated by

calculating the expected number of boundary nodes that would

become infected: in a community of susceptible individuals all

initial infections would have to be introduced from the outside.

The expected number of infections that would occur in this

situation is given by

l(s,k)B

where B is the number of boundary nodes that the community has,

estimated using equation (4). In this experiment only neighbours

outside the community are infected, which means we can reduce

l(s,k) to

1{ 1{e{H t
� ��kkout

ð5Þ

where �kkout is the average number of external connections

pe(V )
P

X pe(X )n(X ). Using the mathematical approximation

we obtain estimates for the average number of infections entering

the community, which are in very good agreement with the

simulation results, presented in the Results section.

Figure 1. Sample community structure, constructed with the parameters summarised in Table 1.
doi:10.1371/journal.pone.0022220.g001
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Simulation
In this investigation we implement both the Susceptible-Infected-

Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) models.

In the SIS model, upon recovery from the disease each individual

becomes susceptible to infection again. An infectious individual

becomes susceptible again with a probability c, kept constant

throughout this study (c = 0.2, expected recovery of five time steps).

In the SIR model, on the other hand, an individual does not become

susceptible following infection, but rather recovers with a pro-

bability c, and can no longer infect other individuals or become

infected itself. In general, changing the transmission model is not

difficult, and considerations such as asymptomatic infections,

occasionally used in modelling influenza, can also be implemented,

see the end of this section for a brief outline.

The reason we have chosen to consider the SIS model is that, as

susceptibles are reintroduced into the population, the disease may

become persistent. As a result, simulating the SIS model would

show the prevalence of the disease within a community over long

periods of time as individuals become re-infected and the model

reaches endemic equilibrium. Using an SIS model also allows the

disease to be reintroduced in a community where the infection has

previously become extinct and the frequency of these reintroduc-

tions can be considered. Furthermore, the overall burden of the

disease on each community over a long period of time can be

estimated. Despite allowing us to easily examine these phenomena,

the SIS model may not be the most realistic one to apply, given

our definition of risk perception.

The risk perception framework, defined in (1), is suitable for

considering the awareness of the population to an epidemic

disease, but it may be unsuitable for considering an endemic

disease. If a disease is in endemic steady state then the awareness

to the disease is likely to also be dependent on the time period for

which the disease has been circulating. For a persistent disease,

awareness may actually increase with the time since the disease

was first introduced. The risk perception framework does not take

such timing into account, and is concerned only with the num-

ber of infected individuals, which would be suitable for short

epidemics. Since the risk perception framework is based on

background material that examines mainly pandemic influenza,

the more appropriate SIR model is also considered in this paper.

Unlike the SIS model, we cannot examine the fraction of the

population infected over a long period of time because the disease

is transient, so instead we consider the final size of the epidemic:

the total number of individuals infected before the disease becomes

extinct.

In the individual-based simulations we assume that the probability

of the infection transmitting along a contact link is proportional to

the weight of the link Mij, although multiplied by a factor that

represents the individual’s risk perception (equation (1), reproduced):

A(s,k)~ exp { HzJ
s

k

� �h i
The probability that any susceptible individual becomes infected

from one of his infected neighbours is

l(s,k)~1{ 1{A(s,k)t½ �s ð6Þ

where t is the probability of infecting one of the individual’s contacts

and is representative of the infectivity of the disease. If the individual

is recovered then l(s,k)~0 so that re-infection is impossible. To

model the fact that, despite belonging to the same community, the

awareness may vary somewhat between individuals we also

introduce some white noise sN to H. The white noise represents

quenched disorder, as it does not evolve over time, and is used to model

the slightly different magnitude of risk perception that an individual

may have regarding the disease. The parameter’s mean is 0 and it

has a variance of 0.1. Those values were chosen so as to affect the

individual’s personal awareness without overly deviating from the

community-wide H value.

The probability that an infectious individual infects an

acquaintance, t, can be linked to the basic reproduction number

R0: the average number of people infected by a single infectious

individual in a completely susceptible population. The basic

reproduction number is an important metric in epidemiology due

to its threshold property: if R0w1 the disease will be able to spread

through the population, otherwise the disease will become extinct

without causing a large epidemic. The value of R0 is a com-

bination of the infectivity of the disease and the contact patterns of

the individuals in the network. Gross et al. [36] suggest that for

random networks

R0~
tSkT

c
ð7Þ

where SkT denotes the mean connectivity of the entire population .

To obtain our results, we run a large number of simulations,

infecting a small fraction of the population at random at the start

of each run. At every time step each node with infected neighbours

can become infected with probability l(s,k) and infected

individuals recover with probability c. We construct a new

network for every simulation, to obtain data for different network

topologies, and average the results. For both the SIS and SIR

models we examine the number of transmissions originating from

each community. We initially consider the case of no risk

perception and identify which of these transmissions are external,

i.e. the infection is transmitted to individuals outside the infector’s

community. We then repeat the study for both models with risk

perception introduced, allowing us to examine the role of each

community in transmitting the infection and to determine how

these roles change in the presence of risk perception. Additionally,

the effect of changing the value of the disease infectivity t on the

number of transmissions per community is also examined for both

models. As mentioned previously, for the SIS model, we also study

the prevalence of the disease in each community and the amount

of time spent sick per community (which can be used to quantify

the burden of the disease on the community) to provide an

overview of the disease dynamics over a long period of time.

Finally, to demonstrate applications of the model we provide two

examples: one treating the risk perception as being the result of

mitigation strategies aiming to reduce the impact of the epidemic

and a second example examining the time taken for an outbreak in

one community to reach the rest of the network.

Mean Field Analysis
A mean field model aims to reduce the dynamics of a complex

system to a mathematical representation of its effective behaviour.

In the case of disease spread it is common to reduce the dynamics

to a set of ordinary differential equations (ODEs) that describe the

system’s evolution with time. Constructing a mean-field model of

our system allows us to examine and summarise its expected

behaviour, and to compare the results with the individual-based

simulations. This comparison can be used to confirm the cor-

rectness of our implemented simulations. Furthermore, the mean

field can be used to estimate the epidemic dynamics, without the

need of executing the individual-based model.

The SIS Model. Consider the individuals of a community as

being divided into two groups: boundary nodes, as determined by
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equation (4), and the rest of the nodes having no external

connections. The non-boundary nodes can only acquire infection

from individuals in the same community, whereas boundary nodes

can acquire infection from either their own community or the

external nodes that they are connected to. The force of infection

experienced by any susceptible individual can be defined as

y(k,i)~
Xk

s~0

k

s

	 

l(s,�kkX )is(1{i)k{s

where i is the fraction of infective individuals, and �kkX is the mean

connectivity of a node in community X:

�kkX ~�kkin
X z�kkout

X

�kkin
X ~pi(X )2(n(X ){1)

�kkout
X ~

X
C[z,C=X

pe(X )pe(C)n(C)

and �kkin
X and �kkout

X are the node’s internal and external only

connectivities respectively. Note that we use �kkX in the definition of

y(k,i) above, so that a correct estimate in the risk perception

function in equation (6) is obtained. If there is no awareness and

both H = 0 and J = 0 then l(s,k)~1{ 1{t½ �s and function y(k,i)
reduces to that of the standard SIS model [37].

Next we define the fraction of infected individuals both within

and outside a community X. The fraction of infected individuals

inside a community is simply

iin
X ~

IX

n(X )

where IX denotes the number of infected individuals in

community X. The expected fraction of infected external

acquaintances of community X is given by

iout
X ~

pe(X )
�kkout

X

X
Y[z,Y=X

pe(Y )IY :

Using these definitions we can write expressions for the force of

infection experienced by both boundary and non-boundary nodes.

If SX is the number of susceptible individuals in community X,

then there are

N 1{
BX

n(X )

	 

SX susceptible non-boundary nodes, experiencing

a force of infection of y(�kkin
X ,iin

X )

N BX

n(X )
SX susceptible boundary nodes which can acquire infec-

tion from either outside or inside the community, experiencing

a force of infection of y(�kkin
X ,iin

X )zy(�kkout
X ,iout

X ){y(�kkin
X ,iin

X )
�

y(�kkout
X ,iout

X )�

Thus our model, for a community X, can be described using the

following ODEs:

dIX

dt
~SX y(�kkin

X ,iin
X )z

BX

n(X )
SX y(�kkout

X ,iout
X )

�
{y(�kkin

X ,iin
X )y(�kkout

X ,iout
X )
�
{cIX

dSX

dt
~{

dIX

dt

ð8Þ

The SIR Model. The SIR model is similar to the one

described in (8), with the exception that following infection

individuals recover and do not re-join the susceptible class. Thus,

although the equation for dIX

dt
is the same as before now we have an

additional recovered class, and the system is described by:

dIX

dt
~SX y(�kkin

X ,iin
X )z

BX

n(X )
SX y(�kkout

X ,iout
X )

�
{y(�kkin

X ,iin
X )y(�kkout

X ,iout
X )
�
{cIX

dSX

dt
~{ SX y(�kkin

X ,iin
X )z

"
BX

n(X )
SX y(�kkout

X ,iout
X )

�

{y(�kkin
X ,iin

X )y(�kkout
X ,iout

X )
� #

dRX

dt
~cIX

ð9Þ

In order to compare the mean field approximations against the

simulation results we examine the effect of increasing parameter J

per community, since it also influences risk perception. We remind

the reader that J is the personal awareness of an individual: it

modulates the amount by which an individual’s awareness

increases from observing disease symptoms in any close contacts.

Initially we run the mean field approximation assuming the

communities are isolated, i.e. without accounting for the effect of

boundary nodes. Removing the effect of external infectious

individuals can be achieved by setting iout
X ~0 (and hence

y(�kkout
X ,iout

X )~0) which reduces the rate of change in the number

of infective individuals in equations (8) and (9) to

dIX

dt
~SX y(�kkin

X ,iin
X ){cIX ð10Þ

and changing
dSX

dt
in both models accordingly. We then introduce

boundary nodes by applying the original equations (8) and (9)

instead and observe the differences in the estimates. We have

chosen to approximate only internal transmissions initially as

doing so would allow us to evaluate the effect of the boundary

nodes on the disease dynamics. We compare the mean field results

of both models to the dynamics observed in the simulations.

Potential Alternative Transmission Models
In the study we use the SIS and SIR models. The SIS model

allows us to examine how the infection spreads (and is potentially

reintroduced) over time, whereas the SIR model is more

applicable to the disease awareness framework that the paper

implements. Applying a different transmission model to our

framework is also possible. For example, if we wished to

implement a Susceptible-Exposed-Infected-Recovered (SEIR)

model we could easily do so by defining the mean period of time

/ for the Exposed period, so that at every time step an individual

in the exposed state becomes infected with probability 1//.

An important consideration might be to allow for the modelling

of diseases with asymptomatic infectious cases, such as for example

Influenza [17]. Here we only briefly describe how such a

transmission model can be implemented, as an example for an

extension to our framework. Asymptomatic individuals may still be

infectious, although potentially less so than symptomatic cases. To
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model this we introduce a constant 0ƒaƒ1, such that if a~0
asymptomatic cases are non-infectious and if a~1 asymptomatic

and symptomatic individuals are equally infectious. All other

values imply a reduced transmission rate for asymptomatic

infections. We need to define the fraction of individuals that will

never develop symptoms; for example, in the case of Influenza 1/

3rd of cases may be asymptomatic [17]. We also split the number

of infected neighbours s , so that s~sAzsS , where sA is the

number of asymptomatic infected neighbours and sS is the

number of neighbours who are visibly infected. In this case, the

probability of an individual becoming infected (6) is

l(sS,sA,k)~1{ 1{A(sS,k)tð ÞsS 1{aA(sS,k)tð ÞsA½ �

In the presence of asymptomatic infections with aw0 an

interesting case for risk perception occurs. An individual may

become infected from any of his contacts, regardless of whether

their symptoms are visible or not. However, an individual can only

be aware of the infection if he observes the symptoms and, thus,

his risk perception will only be based on his number of

symptomatic contacts sS . In the presence of asymptomatic cases

sSvs, meaning that individuals will underestimate the disease’s

prevalence in their vicinity and the risk perception level is below

optimal. This inefficiency could have a significant effect on the

system: if the number of asymptomatic cases is very high then the

personal awareness value J may have little to no effect in reducing

transmissions.

Results

This section summarises the results obtained from the

experiments described in the Methods section. Examination and

interpretation of the results can be found in the Discussion.

Single Community
Setting up and running the single community simulations

described previously we discover that, in general, very large

communities (n~0:95N or higher) or those with very low pe

experience the least exposure to infection from the outside. This

result can be seen in Figure 2 and is consistent for all values of H.

In Figure 2 we can also see that, as we increase H, the parameters

of the most highly exposed community shift. In the case of no risk

perception we observe the most infections in large communities

with medium to high pe. As H increases the highest number of

infections is instead observed in medium sized communities with

high connectivity.

The above study only examined the process of an infection

entering a community from the outside, and not its subsequent

spread within the community. An isolated community in our case

is simply an Erdös-Rényi random graph, and the spread of disease

within these graphs has already been studied in detail [8]. Note

that, since we are estimating the number of infections entering a

completely susceptible community, the result is equivalent for both

the SIS and SIR epidemic models.

Mean Field Analysis
In the following results we have used higher values of t than in

the rest of the Results section, so that the disease prevalence would

also be noticeably high in the communities with high levels of

awareness.

The SIS Model. In Figure 3 we plot the average prevalence

of the disease in each community (averaged over a large period of

time), which is representative of the per-community endemic

steady state, over increasing values of J. Figure 3 (a) shows the

average results of the individual-based simulations of the SIS

model. Note that the different communities have a different level

of infection even in the case where J = 0, due to their different

levels of community awareness H to the disease. Figure 3 (b) shows

the mean field estimates for the isolated community case,

calculated as described earlier. Results from both the simulations

and these mean field estimates are in close agreement, with the

exception of community B. Differences between simulation results

and the mean field model are to be expected to some extent,

because the mean field is only an approximation which does not

take into account an underlying network structure. A small

amount of difference can also be attributed to sN : the white noise

parameter introduced earlier to model varying awareness levels

between members of the same community. This white noise affects

the simulations but has a mean of 0 and is therefore not taken into

account by the mean field model.

The results of using mean field equation (8), which takes into

account the external force of infection, are shown in Figure 3 (c).

We note that most communities’ levels of infection are largely

unaffected: a difference is only visible for community B; with very

small differences also notable for community D.

Figure 2. Average number of infections entering a single community for varying community size and connectivity. White areas
represent parameter combinations that do not produce a community structure. Community size n represents fraction of total population size N.
Replicated for three values of H.
doi:10.1371/journal.pone.0022220.g002
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The SIR Model. Figure 4 shows the results for the SIR

model, plotting the final size of the epidemic over parameter J.

When the external transmissions are introduced we observe a large

increase in the final size of the epidemic in community B, similar

to the results of the SIS model. However, unlike the SIS model, we

also observe a noticeable effect in communities C, D and (although

to a lesser extent) E (Figure 4 (b) and (c)). In these communities an

epidemic occurs for larger values of J than in the case where the

communities are isolated, and as a result the mean field estimates

are closer to the results obtained from the simulations (Figure 4 (a))

than the mean field estimates of the isolated case. The size of the

epidemic seems to remain identical in Community A in both mean

field approximations. Due to the community’s low awareness an

infection spreads quickly through its population and any effect of

infection being transmitted from the outside is negligible. As

observed in the next section, community A is also the origin of

the largest number of external transmissions than any other

community.

Model Simulations
Intra- and Inter-community Transmissions: Commu-

nities without risk perception. Considering the simple case

of no awareness on the network, we study the number of

transmissions occurring in each community, identifying which of

these transmissions occur between communities, or, in other

words, how often transmissions arrive from external groups. The

results are shown, by origin of the transmission, in Figure 5 (non-

shaded bars). Without any risk perception on the network, the

disease spreads with even probability on all edges and the number

of total transmissions is roughly proportionally divided between all

communities according to their population size. In addition, by

examining the results in (b), we see that the number of external

infections originating at each community is also roughly pro-

portional to the pe of the community.

Intra- and Inter-community Transmissions: Commu-

nities with varying levels of risk perception. Risk

perception is introduced in the network by setting the H value

for each community as specified in Table 1. We run the same

experiment as before, with the results displayed in the shaded

bars of Figure 5. In this set of results the role of the high-

awareness communities B and D in spreading the disease

decreases dramatically, while A’s contribution increases to over

80%. The low external connectivity and high awareness of D

have isolated the community from the disease: D has very few

external and internal transmissions, suggesting that the

community is mostly healthy. Surprisingly, despite its low pi, pe

and n values, community E still accounts for over 5% of total

transmissions.

Figure 3. The prevalence of the disease within a community, plotted as a function of J. (a) - results of the individual based simulations, (b)
- the isolated mean field approximation, (c) - mean field approximation including boundary node effects. t = 1, N = 250 000.
doi:10.1371/journal.pone.0022220.g003
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Figure 4. The final size of the epidemic as a fraction of community population, plotted as a function of J. (a) - results of the individual
based simulations, (b) - the isolated mean field approximation, (c) - mean field approximation including boundary node effects. t = 0.5, N = 250 000.
doi:10.1371/journal.pone.0022220.g004

Figure 5. Percentage of transmissions by originating community. (a) shows all transmissions, (b) shows only inter-community transmissions.
Non-shaded bars correspond to the case where H = 0 across all communities, shaded bars correspond to H set to the value suggested in Table 1.
t = 0.1, N = 250 000.
doi:10.1371/journal.pone.0022220.g005
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Following the introduction of awareness, the vast majority of

transmissions originating in community B are external. Because of

the high awareness within B the disease does not transmit within

the community, but can still reach groups of lower risk perception,

in particular community A (where H is still 0). The results shown in

Figure 5 were consistent for both the SIS and SIR model, for

t = 0.1.

Sensitivity to disease infectivity. To assess the sensitivity of

the above results to changes in the disease infectivity t, we examine

the number of transmissions originating from each community as a

function of t for both the SIS and SIR models. We take into

account both the cases of no awareness and per-community risk

perception as defined in Table 1.

When examining the share of the total number of transmissions

for each community in the SIS model (in Figure 6 (a) and (c)) we

observe that no significant changes occur for values of tw0:4,

because for larger t the disease is quickly introduced to the whole

network. As a result the role of the boundary nodes decreases and

the number of external transmissions in the no awareness case (b)

decays rapidly with increasing t. This decay is not seen in Figure 6

(d), because the high risk perception levels of some communities

guarantee that there will be enough susceptibles in each com-

munity for external transmissions to occur. In the case of no

awareness, (a), the percentage of transmissions for each commu-

nity is roughly proportional to the community size, as seen

previously. This result is only subject to change for very low t,

when community E’s number of transmissions is less than D’s: as

infectivity increases E overtakes D due to its greater size, despite its

lower connectivity.

The percentage of all transmissions originating from each

community and their relationship to t, in both the no awareness

and the varying per-community awareness cases (shown in Figure 7

(a) and (c) respectively), is nearly identical for the SIR and SIS

models. A notable difference can be seen, however, in the

percentage of external transmissions and their dynamics in relation

to t. In the no awareness case (Figure 7 (b)) we no longer see the

decay in the number of external transmissions originating from

communities A and B that was observed for the SIS model. At

t&0:3 the number of external transmissions originating from

community B exceed those of A, although at higher t values the

external transmissions of A are once again higher than B’s.

Another difference between the transmission models is that, for the

SIR model, we observe an increase in the number of external

infections originating from community A as t increases, unlike the

SIS model where the number of external transmissions is

decreasing with t.

Disease Prevalence. To examine the prevalence of the

disease in each community, for simplicity, we look at a time

window of 500 time steps, shown in Figure 8. Since the trans-

mission model is SIS and the disease is endemic, the number of

infected individuals in each community tends to oscillate around a

value which is representative of the level of infection in that

community. We can immediately see from the results that the high

awareness communities B and D have very low disease prevalence,

with the infection even becoming temporarily extinct on several

occasions. The level of infection for community A is very high, as

expected due to the lack of awareness. Figure 8 also demonstrates

the point raised in the Methods section that the current risk

perception framework may be unsuitable for an endemic disease:

in particular, it is difficult to assume that community A, with a

prevalence of &80%, has no awareness whatsoever of the

infectious agent. Although the SIS model allows us to examine

Figure 6. Percentage of transmissions as a function of ??? for each community for the SIS model. (a): Total transmissions, no awareness.
(b): External transmissions only, no awareness. (c) and (d) Total and external transmissions respectively, with awareness as specified in Table 1.
N = 250 000.
doi:10.1371/journal.pone.0022220.g006
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the endemic steady state of the disease in a network of individuals

of various awareness levels, in a realistic setting this risk perception

framework may be an unsuitable representation of the actual

awareness to an endemic disease.

In addition to the time series window we also examine the

average time spent infected for each of the communities and the

population as a whole. We also introduce the J parameter to

confirm the effect of connectivity on risk perception. As we

increase J we notice that the impact on community E is much

greater than on C, supporting the theory that incorporating risk

perception has a greater effect on less connected networks. The

inter-quartile range for the box plots in Figure 9 is very low,

suggesting that the simulation results were in close agreement: over

long simulations the average time spent ill for the community

converges to a similar value, due to the disease being in endemic

steady state. The differences between network topologies are also

not that substantial because Erdös-Rényi random graphs have

little variation in connectivity between nodes. Figure 9, for the case

J = 0, supports the results gathered so far in terms of the

prevalence in each community.

Figure 8. Fraction of infected individuals per community over a window of 500 steps. t = 0.1, N = 500 000.
doi:10.1371/journal.pone.0022220.g008

Figure 7. Percentage of transmissions as a function of ??? for each community for the SIR model. (a): Total transmissions, no awareness.
(b): External transmissions only, no awareness. (c) and (d) Total and external transmissions respectively, with awareness as specified in Table 1.
N = 250 000.
doi:10.1371/journal.pone.0022220.g007
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Example Applications
Modelling Interventions. In this section we draw attention

to the similarity between the modelling of mitigation strategies

in literature and the risk perception framework. The aim of

interventions is to reduce the disease’s basic reproductive number

R0 to a lower effective reproductive number R [17]. If the effective

reproductive number is less than one then the disease will become

extinct, according to the threshold property stated earlier,

otherwise the infectious agent still has the potential to spread.

We can model the community-wide risk perception as being the

result of the interventions. To demonstrate with an example, we

use the SIR transmission model and introduce a single infective

individual in community A. We change the values of H for the

communities so that

N H = 2 for community B;

N H = 1 for C, D and E; and

N H = 0 for A.

The size of H in this case is used to represent the level of

interventions that a community is subjected to: larger H means

stricter interventions are in place to reduce the disease transmis-

sion. Once a number of cases have been observed in the

population mitigation strategies are imposed which result in an

increase in H by one in the large communities A and C. We

calculate the mean connectivity of our population and use equa-

tion (7) to set R0 to 2 (t&0:05), a value applicable for highly-

transmissible Influenza [38]. The interventions were applied once

50 infectious cases were registered in a single community. We

simulate the disease dynamics both with interventions in place and

without, and ignore any simulations where the introduction of the

disease fails to cause an epidemic. The simulations begin with a

single infectious individual in community A. Averaging the results

of the simulation runs we obtain the time series presented in

Figure 10. The y-axis, representing the number of cases, is in

logarithmic scale, so that even the smaller epidemics appear visible

in the Figure. As expected, the epidemic peak in Community A is

smaller in the case where interventions are present (Figure 10,

bottom) and the duration of the epidemic is longer, which is

consistent with a lower R value [3]. Due to the interventions in

place the epidemic does not spread as effectively to the other

communities, resulting in a smaller epidemic size in each of them,

with community C, which is itself the subject of interventions,

being impacted the most.

Modelling studies have shown that the effectiveness of miti-

gation strategies can be greatly affected by many factors, such as

their timing and duration. There may be little benefit from these

strategies if they are applied too late and they might even fail to

significantly reduce the size of the epidemic [38]. The work

presented here was done simply for illustrative purposes and the

details of mitigation strategies and their applications are beyond

the scope of this paper.

Timing of Outbreaks. In applying mitigation strategies it is

also important to detect the outbreak as early as possible. In [39],

the authors examine methods for improving the early detection of

outbreaks on a social network and propose a strategy that does not

require extensive knowledge of the network structure. We propose

that community-resolved modelling could similarly be used to

determine where to concentrate detection efforts. By modelling a

population in terms of communities and simulating an infectious

disease outbreak, we may discover that there is a noticeable time

period before an outbreak in a particular community reaches the

rest of the population. We test this on the artificial population we

have studied so far by introducing a single infected in any one of

the communities. The model in this case is SIR, and the H values

of all communities have been set to those specified Table 1. We

also estimate the probability of the infection being seeded outside

the original community, as opposed to becoming extinct.

We observe that a single case in community A takes on average

7 days to infect at least one other community and that the

probability of an infection in A causing an epidemic is very high.

The time period is long enough to provide good warning and the

high probability of an epidemic justifies applying interventions to

prevent the disease spread. On the other hand, most outbreaks in

Figure 9. Boxplots of fraction of time spent infected for the whole population (N) and each community. Replicated for three different J
values. t = 0.1, N = 250 000.
doi:10.1371/journal.pone.0022220.g009
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communities D and E are likely to become extinct. The results in

Table 2 might not be surprising given our study so far, but

modelling other populations could provide interesting case studies.

Another interesting observation in these timings is that, for

example, it takes roughly 3 days before an epidemic starting at C

reaches A, and 13 days before it reaches D. The large difference

between these times suggests that most frequently the infection

may not travel directly from C to D, but rather pass through an

intermediate community, such as A. Such observations may be

interesting to epidemiologists attempting to trace the spread of

disease.

Discussion
The concept of metapopulations, mentioned in the introduc-

tion, has been used extensively in epidemiological studies for

dividing a target population spatially into interacting patches [6].

The community based approach is a similar concept, although the

division does not have to be geographical, but rather based on

frequency of contact. As a result, for example, people working for

the same company are likely to be members of the same

community as the majority of them will be densely connected

from a social network point of view. Furthermore, these

individuals may have a similar level of risk perception to the

Figure 10. Time series of an epidemic outbreak in the five communities. The lower figure represents the case in which the mitigation
strategies, as described in the text, are in place. Light grey lines correspond to results from the separate simulation runs. t = 0.05, N = 250 000.
doi:10.1371/journal.pone.0022220.g010

Table 2. Time and probability of an outbreak in a specific community, following a single infected case in one of the other
communities.

From A B C D E

To B C D E A C D E A B D E A B C E A B C D

Time until first case (days)7.25 5.73 9.77 6.59 3.59 8.37 12.7 9.69 3.41 10.1 12.8 9.45 10.03 16.68 14.07 16.84 10.5 17.2 15.3 19.8

Standard deviation (days) 2.07 1.74 3.56 1.79 2.97 3.67 5.04 3.65 3.23 4.01 4.97 3.84 5.25 6.2 5.66 5.62 6.56 6.74 6.65 7.1

Probability of seeding
infection

0.73 0.73 0.7 0.73 0.36 0.35 0.32 0.34 0.48 0.45 0.42 0.45 0.003 0.003 0.003 0.003 0.06 0.05 0.06 0.05

doi:10.1371/journal.pone.0022220.t002

Community Structure: Applications for Epidemiology

PLoS ONE | www.plosone.org 14 July 2011 | Volume 6 | Issue 7 | e22220



disease, based on word of mouth, company policy, etc. By being

agent-based, our community modelling approach is likely to

provide more fine grained detail about the spread of the disease

from person to person and take into account the particular

topology of each community structure in the population. Using

community-resolved population modelling we can also examine

the metapopulation concepts of persistence, extinction and seeding

of infection as it occurs between the communities. Another

approach for modelling a real-world population would be the

previously mentioned suggestion by Davey and Glass [24]: to

construct large populations as a set of smaller interacting

communities. This suggestion supports a ‘bottom-up’ approach,

where the population is built up by linking the separate

communities. The structure of these communities does not have

to be precise, and can be estimated as long as it approximates the

properties of the population to a reasonable extent. Finally, if a

contact network for a population of any size is available or

estimated, one can run community detection algorithms to identify

the communities present and assign awareness values as necessary.

Our study has concentrated on examining various properties of

community-structured networks, as well as risk perception. The

interpretations of our results are summarised in the following

subsections.

Single Community. The results of the single community

experiment, visualised in Figure 2, showed that the underlying

parameters of the most highly exposed community changed as the

community’s H increased. For all H, communities with n§0:95N
or those with low pe were found to have the least exposure to

external infection. This result is not surprising, because in both

these cases the number of external connections that the

community has is very low: low pe means less connections are

formed, whereas if n is high there are less external nodes available

to connect to. As H increases a notable difference is the shift of

highest exposure away from large communities with medium to

high pe and towards medium sized communities with high external

connectivity instead. This phenomenon is caused by the effect of

increasing H on the probability of becoming infected. Increasing H

dampens the infectivity by a factor of e{H and the resulting

reduction in the probability of becoming infected (equation (5)) can

only be offset by an increase in �kkout. In the case of a large and

highly externally connected community there are a large number

of boundary nodes with low degrees (because there are less

external nodes to connect to). As H increases such nodes do not

become infected as often and the emphasis shifts to medium sized

communities instead. These communities have less boundary

nodes which have a much higher degree each, offsetting the

reduced effective infectivity. Thus, overall, with increasing H, the

exposure to infection of a community is influenced less by the

number of boundary nodes and instead influenced by these nodes’

external connectivity. An example from the multi-community

simulations can be observed in the time series of Figure 8, where

the average level of infection suffered by communities C and E is

almost identical, despite C’s awareness being twice higher than

E’s. In this case, community C is more highly connected both

internally and externally than community E, which offsets C’s

higher H parameter.

The role of external and internal connectivity. The mean

field results for both transmission models (Figures 3 and 4) showed

that most communities’ levels of infection are largely unchanged

by the introduction or removal of the external force of infection to

the mean field equations (9). The lack of any considerable change

in infection levels for these communities suggests that external

connectivity plays a lesser role for a disease which is already

established inside a community. A disease spreads more efficiently

within a community than across communities because the number

of connections between individuals inside the community is greater

than the number of external connections. The lower efficiency in

spread across communities is supported by the simulations, which

show a very small number of inter-community transmissions for all

communities both with and without incorporating risk perception

(Figure 5). Thus the main contribution of the external connectivity

is to reintroduce the disease if necessary and to maintain the

infection in communities where its prevalence is low. For high

awareness communities, such as B, the disease is unable to

circulate for a long time within the community, and the infection

has to be continuously re-introduced by the outside population: as

a result the prevalence of the disease in community B increases

substantially when we consider the community’s external

connections.

Internal connectivity also plays a role in a community’s efficiency

in transmitting the infection to the outside world. In Figure 5,

Community A is responsible for the largest number of external

transmissions, despite having similar size and lower or equal

external connectivity in comparison to communities B and C. The

reason behind the large number of external transmissions is that the

community’s higher internal connectivity allows the infection to

reach the boundary nodes faster than in other communities, in

order for the disease to reach the rest of the network. Further

evidence can be seen when examining the number of external

transmissions as t varies. In Figure 7 (b) (i.e. SIR model, no

awareness), for a small range of t values, community B’s external

transmissions exceed those of A, likely due to the former

community’s higher external connectivity. However, for higher t,

due to A’s larger size and higher internal connectivity the disease

propagates to the boundary nodes faster and is able to infect

external nodes before any of the other communities. This effect is

not observed for the SIS model, because nodes do not recover and

hence the disease can continuously spread between the communi-

ties, reducing the importance of community A being the most

efficient spreader. From the above considerations of the disease

dynamics of community A we can conclude that of importance to

the population-wide spread of infection is not only the externally

connectivity of a community, but also the efficiency with which the

disease propagates within it via the internal connections.

The role of boundary nodes in the SIS and SIR

transmission models. The difference between the role of the

boundary nodes in the SIS and SIR models is that in the former

boundary nodes can transmit the disease repeatedly, since they

become susceptible again following infection. In contrast, in the

SIR model, upon recovery a boundary node can no longer export

or import the infection. The argument presented in the previous

subsection was that the boundary nodes serve the minor role of

introducing the disease inside the community after which the

disease spreads more efficiently over the more numerous internal

links. In the SIR model however each node is only infectious once,

after which it recovers permanently, meaning that the number of

infections that may occur inside a community is bounded. As a

consequence, once the disease has infected a community, the

number of internal transmissions does not grow unboundedly to

vastly outstrip the number of external ones and the difference

between the total number of internal and external transmissions is

reduced. Thus, in the SIR model without risk perception (Figure 7

(b)), we no longer observe the aforementioned decaying effect in

the number of communities A and B’s external transmissions for

increasing t, due to these communities’ high external exposure.

This effect, a rapid decrease in the number of external

transmissions with increasing t, was initially observed in the SIS

model without risk perception presented in Figure 6 (b).
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In the equivalent risk perception simulations we note a further

difference between the external transmissions of community A in

the SIR (Figure 7 (d)) and the SIS models (Figure 6 (d)). Namely,

we observe that the number of external transmissions for A

increase with t in the SIR model, whereas they are seen to

increase initially and then slowly decay for the SIS model. If the

boundary nodes do not become susceptible again following

infection, for increasing t, community A is able to spread the

disease to other communities at a high rate. These communities

will, in turn, have a reduced probability of transmitting the disease

to external acquaintances as the no-awareness community A’s

boundary nodes would be recovered. Thus, due to becoming

immune to the disease after infection, the boundary nodes prevent

the disease from re-entering their community.

The above comparison of the SIS and SIR model, provided by

the results in Figures 6 and 7, demonstrates that boundary nodes

have a greater impact on the spread of infection in the SIR than in

the SIS model. Such a conclusion is also supported by the overall

impact of introducing the external force of infection to the mean

field of both transmission models (Figures 3 and 4): the SIR results

displayed a greater increase in infection levels following the

introduction.
The role of Community A in the presence of risk

perception. The high internal and external numbers of

transmissions observed in A (cf. Figure 5) imply that people who

take no precautions to reduce their susceptibility are a danger not

only to themselves, but also to other groups of higher risk

perception as well. A’s inter-community transmissions represent

the largest amount compared to all other groups and the difference

becomes even more expressed when awareness is introduced.

When all inter-community links are removed, so that the

communities are isolated, the disease becomes extinct in all

communities except A, demonstrating A’s vital role in maintaining

the infection. In a real world context this result supports the idea

that concentrating on ‘high risk’ groups when providing vaccines

and other preventative measures will be of great benefit to the rest

of the population as well. From an economic perspective, the

external transmissions originating from community A can be

described as a significant cost to the whole population [31].

When examining the prevalence of the disease in each

community (Figure 8) or the fraction of time members of each

community spend in the infected state (see Figure 9), we also note

that averaging across the whole population does not provide a

representative measure of the disease prevalence or the time spent

sick in each community: e.g. all communities except A spent less

time sick than the average for the population. This illustrates how

dividing the population into communities can help in identifying

the social groups which suffer most of the burden of the disease.

In addition to the above results, in this manuscript we have

given examples of applications of community-resolved modelling,

including using the awareness framework to model interventions

and to approximate the timing of outbreaks as the disease spreads

through the communities that form the population of interest.

Despite being based on a synthetic network, rather than on real-

world data, the work presented in this manuscript could still

contribute to the existing literature on epidemiological modelling

by introducing community-structured networks as a potential

contact network model and describing some of the benefits of

modelling a target population as a set of interacting heterogeneous

groups.

Conclusion. In this paper we examined the process of disease

transmission on a theoretical population consisting of hetero-

geneous communities. The spread of infectious disease has not

been studied and characterised on idealised community-structured

graphs, as it has been on lattices or networks with small-world and

scale-free properties [8]. By considering a theoretical model we

have demonstrated how the differences between the communities’

properties could affect the disease dynamics. In particular we have

examined how often infections can reach certain communities and

the role of boundary nodes in the transmission process. We have

provided mathematical approximations in addition to the agent-

based model. While observing the results we noticed that the

communities’ properties also determine whether the disease will

persist locally or become extinct and how the infection is seeded

between communities. The approach we used to generate our

theoretical population is also novel, although based on the existing

l-planted partition algorithm [34].

By introducing our concept of risk perception into our model we

allowed to further differentiate between the communities and take

into account how varying levels of risk averseness to infection can

reduce the size of the outbreak in some communities. Doing so

allowed us to demonstrate that communities with little or no

awareness to the disease can still play a vital role in maintaining

the infection even in the case where all other communities act,

based on their perceived risk, to reduce their exposure to the

disease.

The model presented here is purely theoretical, although we do

provide a discussion of potential applications and implementa-

tions. We have discussed possible methods for modelling a real

population using both real data and approximations on the

community level and examined how the risk perception frame-

work could be used to generalise the level of intervention present

in a community. By considering the time it takes for an infection in

a community to spread to the rest of the population, we also

suggest that outbreak detection can be concentrated on a

particular community.

The work presented demonstrates some of the advantages of

using a community resolved approach to modelling in epidemi-

ology. One possible direction for future work is to consider

the concept of overlapping communities [22], where a single

individual is a member of multiple communities. To represent

social distancing and similar measures taken to prevent exposure

to infection, we can also consider dynamic networks, in which the

edges between individuals vary with time. Any further work should

aim to expand our knowledge of the effect of community structure

on the spread of disease. Applying this approach to real world data

would also allow us to better evaluate its practical uses.
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33. Kitchovitch S, Liò P (2010) Risk perception and disease spread on social

networks. in ICCS 2010 International Conference on Computational Science.

Amsterdam, pp 2339–2348.

34. Condon A, Karp RM (2001) Algorithms for Graph Partitioning on the Planted

Partition Model. Random Struct. Algorithms 18: 116–140.

35. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and
identifying communities in networks. Proc Natl Acad Sci 101: 2658–2663.

36. Gross T, D’Lima CJD, Blasius B (2006) Epidemic Dynamics on an Adaptive

Network. Phys Rev Lett 96: 208701.

37. Piccardi C, Casagrandi R (2008) Inefficient epidemic spreading on scale-free

networks. Phys Rev E 77: 026113.

38. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, et al. (2006)
Strategies for mitigating an influenza pandemic. Nature 442: 448–452.

39. Christakis NA, Fowler JH (2010) Social Network Sensors for Early Detection of

Contagious Outbreaks. PLoS ONE 5: e12948.

Community Structure: Applications for Epidemiology

PLoS ONE | www.plosone.org 17 July 2011 | Volume 6 | Issue 7 | e22220


