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The identification of cell cycle–related genes is still a difficult task, even for organisms with relatively few genes such as
the fission yeast. Several gene expression studies have been published on S. pombe showing similarities but also
discrepancies in their results. We introduce a network in which the weight of each link is a function of the phase
difference between the expression peaks of two genes. The analysis of the stability of the clustering through the
computation of an entropy parameter reveals a structure made of four clusters, the first one corresponding to a
robustly connected M–G1 component, the second to genes in the S phase, and the third and fourth to two G2
components. They are separated by bottleneck structures that appear to correspond to cell cycle checkpoints. We
identify a number of genes that are located on these bottlenecks. They represent a novel group of cell cycle regulatory
genes. They all show interesting functions, and they are supposed to be involved in the regulation of the transition
from one phase to the next. We therefore present a comparison of the available studies on the fission yeast cell cycle
and a general statistical bioinformatics methodology to find bottlenecks and gene community structures based on
recent developments in network theory.
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Introduction

The cell cycle is a highly controlled ordered set of events,
culminating in cell division into two daughter cells. The cell
division requires doubling of the genome (DNA) during the
synthesis phase (S phase) and halving of that genome during
mitosis (M phase). The period between M and S is called G1;
that between S and M is G2. Microarray technologies have
been used to identify cell cycle genes in several organisms
(human, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and
Arabidopsis thaliana) [1,2]. Datasets are generated using differ-
ent synchronization conditions and time measurements [3].
Among them, centrifugal elutriation produces a homoge-
neous population of small cells early in their cell cycle, while
temperature-sensitive mutants show arrest in specific cell
cycle stages at a restrictive temperature. The mRNA is
extracted at a number of time points following synchroniza-
tion. After measuring the expression level for all genes, those
expressed in a periodic manner are identified using several
different methods, such as Fourier analysis [4,5]. The result is
the assignment of a cell cycle phase to each gene that has
been detected as periodically regulated.

The cell cycle of the fission yeast S. pombe lasts approx-
imately 3 h. Its structure is the same as in all other eukaryotes.
However, S. pombe is the only yeast that divides by fission, a
symmetrical process in which the old cell grows until it
divides, with the formation of a central mitotic spindle, into
two equal new cells. As a consequence, it is characterized by a
very long G2 phase of overall increase of the cell mass that
covers 70% of the cell cycle. The M phase is marked by
chromosome condensation and segregation to opposite ends
of the cell. Then the cell goes rapidly through the G1 phase
with the synthesis and accumulation of active proteins
required for DNA replication. Therefore, by the time

cytokinesis occurs, the S phase is completed and an entire
complement of chromosomal DNA is synthesized.
Recently, three independent studies have made available

gene expression data on the cell cycle of fission yeast [6–8].
They measured gene expression as a function of time in both
wild-type elutriation and cdc25 block-and-release experi-
ments, and they identified different datasets (Table 1). A total
number of almost 1,400 genes are found to oscillate in the
three studies. About 10% of these genes are identified as
periodically regulated in all the three studies and less than
30% in at least two of them. The definition of cell cycle–
regulated genes is far from being rigorous. The identity and
the numbers of genes in the periodic datasets strongly
depend on the approach and on how conservative one wants
to be. Instead of looking at the single gene, we define a
periodic cell cycle network and study its cluster structure to
find universal properties that are stable despite differences in
the datasets. Both Rustici et al. [6] and Peng et al. [7]
identified four clusters of periodic genes, corresponding
roughly to the four main phases of the cell cycle, while Oliva
et al. [8] proposed eight different clusters. Nevertheless, the
distribution of the phases only reveals two clear expression
waves. We consider the periodic cell cycle network corre-
sponding to the intersection of the three datasets, and we
study the clustering and its stability [9,10]. At first, two main
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components appear. The first one groups all genes in the M,
G1, and S phases, and the second corresponds to the entire
G2 phase. They fit the pattern shown in the distribution of
the phases. Further search for hierarchical substructures of
these two clusters shows that the M and G1 phases form a
robustly connected single component, while the G2 phase can
be divided into two clusters, and the S phase forms a
separated component of its own. The stability measure
indicates that a structure made of four clusters represents
the more reliable pattern of the distribution of the periodic
genes on the cell cycle. These clusters are separated by
bottleneck structures corresponding to cell cycle check-
points. We will discuss a set of genes located on these
bottlenecks.

Methods

Datasets and Quality Assessment
Genome-wide microarray expression data as well as a list of

periodically regulated genes from each study are available
online, along with phase and amplitude values assigned to
each gene [11,12]. We considered data obtained from
elutriation experiments in the three studies [4].

We analyzed the distribution of the phases and amplitudes
in each periodic set. We then considered the distribution of
phase differences as a more reliable comparative parameter
among the three studies. After having studied the histograms,
we made use of kernel density plots to remove insignificant
bumps and reveal real peaks. Histograms strongly depend on
the choice of the bin grid and on the starting point. Kernel
density estimators are smoother than histograms and
converge faster to the true density [13–15]. The choice of a
proper bandwidth is still an important issue, and it should
represent a compromise between smoothing enough and not
smoothing too much to smear real peaks away. We computed
the histograms averaging over a large number of shifts of
starting points and considering very small bins with data-
dependent bandwidth. Changes in the bandwidth do not
affect our qualitative analysis.
The three periodic datasets show differences in size.

Searching for an explanation for this discrepancy, we
computed the cyclic Fourier component obtained by the
time series of each gene in the genome. We then compared it
with the one obtained from randomly reshuffled expression
data to generate a p-value for the periodicity of the
corresponding gene. This indicator represents the probability
that the observed oscillation occurs by chance. The smallest p-
values correspond to the most cyclic genes. The amplitude of
the oscillation also contributes to the p-value in such a way
that genes with greater amplitude have a smaller p-value. We
studied the normalized distribution P(p) of the p-values for
the three studies.

Clustering and Entropy Measure
We defined a network represented by a complete graph

(each node is connected to all other nodes in the graph)
where each node corresponds to a gene whose expression was
identified as periodically regulated during the cell cycle in the
corresponding study. In all datasets, a gene is assigned a phase
ui and an amplitude Ai at the expression peak. The most
useful parameter for comparison is the phase difference, a
measure of the expression peaks distance between genes in
the cell cycle. The link between node i and node j is thus
assigned a weight xij given by the expression

xij ¼ ebcosðui�ujÞ

where ui is the phase of node i and b is a tuning parameter.
We studied the degree distribution and clustering coefficient

Table 1. Number of Wild-Type Elutriation and cdc25 Block-and-Release Experiments and Number of Genes Identified as Periodically
Regulated in the Three Studies and in Their Intersection

Experiments/Gene Oliva et al. [8] Peng et al. [7] Rustici et al. [6] Intersection

Wild-type elutriation experiments 2 1 3

cdc25 block-and-release experiments 1 1 4

Number of periodic genes 750 747 407 156

M 202 200 73 28

G1 86 140 70 51

S 67 80 44 23

G2 336 367 133 46

Not assigned — 40 43 8

The number of genes assigned to each phase of the cell cycle is specified in the table.
doi:10.1371/journal.pcbi.0030103.t001

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1030969

Author Summary

Because of the diversity in technological and analytical approaches,
published microarray studies on a given organism show similarities
as well as differences. While a great amount of data is now available,
there is a general need for comprehensive methodologies that
would allow us to analyze and compare all these data. We propose a
general statistical bioinformatics approach based on recent develop-
ments in network theory, and we present an application to three
different cell cycle–regulated genes datasets on the fission yeast. We
introduce the periodic cell cycle network built upon microarray data
on gene expression, and we study the properties and the stability of
its community structure. We show that the periodic cell cycle
network of the fission yeast is characterized by four clusters
separated by bottleneck structures corresponding to cell cycle
checkpoints. We identify a set of genes located on these bottle-
necks, and we propose them as potential new cell cycle regulators
involved in the control of the transition from one phase to the next.
Our approach can be applied to other similar complementary
datasets or to any gene expression datasets to reveal the
community structure of the corresponding network and to isolate
genes potentially involved in cell cycle regulation.

Cell Cycle Network of S. pombe



of the resulting network. As we are dealing with a complete,
weighted graph, we considered appropriate definitions of the
weighted degree (strength) and of the weighted clustering coefficient
[16]. We also considered the binary network obtained by
fixing a threshold t and keeping only links with xij � t. We
studied the degree distribution and the correlation between
the degree and the phase for each gene.

We applied the Markov clustering algorithm (MCL) [17,18]
to study the cluster structure of the periodic cell cycle
network. Unlike most clustering algorithms, the MCL does
not require the number of expected clusters to be specified
beforehand (this condition can be very limiting and time-
consuming when there is no specific a priori information
regarding the network structure), and it can easily identify
possible hierarchies of substructures. Note that the MCL has
been used in approaching several bioinformatics classifica-
tion problems [19–22]. The basic idea underlying the
algorithm is that dense clusters correspond to regions with
a larger number of paths. A random walk has a higher
probability to stay inside the cluster than to leave it soon. The
crucial point lies in deliberately boosting this effect by an
iterative alternation of expansion and inflation steps. The
algorithm iterates three steps. Given a network with n
vertexes, it takes the corresponding n 3 n adjacency matrix
A and normalizes each column to obtain a stochastic matrix
M. It takes the kth power Mk of this matrix (expansion) and
then the rth power mij

r of every element (inflation).
In the case of a weighted graph, such as the periodic cell

cycle network, the probability of the random walk is propor-
tional to the weight of the link. In our analysis, the expansion

parameter k is always taken equal to 2, while the granularity
of the clustering is controlled by tuning the inflation
parameter r. In addition to the parameter r, we also
introduced a control parameter b. This parameter allows us
to speed up the process. In a first analysis with b ¼ 1, the
algorithm needed high values of r to identify the first two
clusters and then went on very slowly. This behavior can be
explained by the fact that our periodic cell cycle network is a
complete graph. In what follows we will always consider b ¼
10.
To study the robustness of the results given by the MCL, we

considered the stability of the clustering as related to the
identification of unstable nodes [23]. A node is unstable if it
typically lies at the borders of different clusters, so that the
algorithm has some difficulty in assigning it to either of its
basins of attraction. To measure the stability of the clustering
patterns, we added random noise on the weights of all links in
the network and studied the clustering after many realiza-
tions. Let Pij denote the probability that the link between
node i and node j connects two nodes inside the same cluster
(P is equal to 1 for a link that is always kept and 0 for a link
that is always cut by the algorithm). By fixing a threshold h
(typically h¼ 0.8) and eliminating all the links with Pij � h, we
obtain a certain number (greater than or equal to the number
of original clusters) of disconnected components. Nodes
belonging to small components that cannot be identified with
any of the original clusters can be defined as unstable. Figure
1 shows a very simple network with a cluster structure made
of three components. Through different random noise
realizations, the green node is alternatively assigned to either
of its basins of attraction. The resulting probabilities Pij of the
two links that connect the node to the rest of the network are
� 0.8. The node is thus identified as a single component that
does not correspond to any cluster, and it is defined as
unstable. In the case of the periodic cell cycle network, the
weights on the links are modified as xij (1þ Dij) where Dij are
Gaussian deviates with 0 mean and standard deviation 0.5.
Results do not change if we increase the noise strength.
Using the probabilities Pij, we introduce the average

clustering entropy per edge:

S ¼ � 1
L

X

ij

½Pijlog2Pij þ ð1� PijÞlog2Pij�

The sum is over all edges, and the entropy is normalized by
the total number of edges L. If the network is totally unstable
(Pij ¼½ for all edges), then S ¼ 1; if the network is perfectly
stable (Pij¼ 1 or 0 for all edges), then S¼ 0. In the case of the
MCL algorithm (and of any other clustering algorithm
defined through a parameter), we can either consider single
values of the function S at fixed values of r, or we can study
the landscape of the clustering entropy as a function of the
clustering parameter.

Overlap and Agreement
To compare the results given by the different studies and to

analyze the structure of the cell cycle given by a more reliable
core of periodic genes, we studied the intersection of the
three datasets.
We observed that even if a gene is identified as periodically

regulated by the three studies, the assigned phase values ui

can be substantially different. We considered a distance
matrix A whose elements aij are given by the phase difference

Figure 1. Simple Graph Made of Three Components

The MCL is able to identify the three clusters. The analysis of the
instability of the clustering described in Clustering and Entropy Measure
identifies the node coloured in green as unstable.
doi:10.1371/journal.pcbi.0030103.g001
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ui � uj between the expression peaks of genes i and j (a
symmetric matrix with all zeros on the diagonal). Having
three distance matrices, one for each dataset (only genes in
the intersection of the three experiments are considered, in
order to obtain three matrices of the same size), we applied
the Mantel test, which computes a correlation between two n
3 n distance or similarity matrices. It is based on the
normalized cross-product:

cAB ¼
1

n� 1

Xn

i¼1

Xn

j¼1

ðaij � �aÞ
sa

ðbij � �bÞ
sb

where aij and bij are the generic elements of the two matrices
A and B we want to compare, �a and �b are the corresponding
mean values, and sa and sb the standard deviations. The null
hypothesis (NH) is that the observed correlation between the
two distance matrices could have been obtained by any
random arrangement. The significance is evaluated via
permutation procedures. The rows and columns of one of
the two matrices are randomly rearranged, and the resulting
correlation is compared with the observed one.

We also computed a general error on the phase values as
the distance between two successive points of the time series,
assuming that inside the interval between them it is
impossible to precisely assign the phase value. According to
this error, we studied the agreement on the phase values.

After this preliminary analysis on the agreement of the
three datasets, we considered the network corresponding to
the intersection. We studied the clustering and its stability.
The computation of the strength of the nodes (the sum of the
weights of all links of a node) allows us to identify genes that
are located at the borders of the clusters [16]. Their strength
is significantly smaller than the mean value of the network.

Results

Exploratory Data Analysis
As a preliminary comparative study of the different

datasets, we analyzed the distributions of the phase and
amplitude of the periodic genes in the three datasets. The

amplitude distribution is very similar across the studies and
well fitted by a bell-shaped distribution. It does not give
further information on data. The phase distribution is more
interesting (Figure 2, left). The overall behavior is universal,
with two main peaks separated by low-expression regions.
The first one corresponds to the transition from phase S to
phase G2 and the second from phase G2 to phase M. We also
introduced the phase distribution of the set of ;800 genes
identified as periodic in the budding yeast S. cerevisiae [24] for
comparison. It shows a single expression wave corresponding
to the S and G1 phases of the cell cycle. Discrepancies can be
observed in the position and extension of the two peaks
across the three studies on S. pombe. Differences in the
synchronization technology and phase assignment method
are probably at the origin of these deviations. We thus
consider the phase difference Du as a more reliable
parameter for comparison. The corresponding distributions
are much more similar (Figure 2, right). The common
minimum corresponds to the low expression regions between
the two peaks in the phase distributions. Slight deviations in
the head of the distribution are a consequence of normal-
ization over datasets of different size. Differences in the tail
depend on a lack of uniformity in the abundance of genes
across the four phases of the cell cycle (Table 1).
The number of genes identified as periodic in the three

studies are quite different. Rustici et al. [6] propose 407
periodically regulated genes, while Peng et al. [7] and Oliva et
al. [8] indicate bigger sets with ;750 genes each (Table 1). The
correct number of periodic genes is still unknown, and
whether it is better to focus on a small number or to consider
all the results as equally meaningful is an open question. In
Figure 3 we show the normalized distributions of p-values
relative to the cyclic spectral component for all genes from
the different studies (time series with two or more consec-
utive missing data points have been ignored). They depend on
time series properties, such as the number of points and
intervals that differ from one study to the other. Nevertheless,
in all of the three studies, they show inverse power-law
behavior. This result tells us that if we consider exclusively the

Figure 2. Phase Distributions (Left) and Phase Difference Distributions (Right) for Periodic Genes from the Three Independent Studies on S. pombe and

from the Study on S. cerevisiae by Spellman et al. [24]

On the x-axis, the phase values are given in radians between 0 and 2p and the phase differences in radians between 0 and p. The y-axis always shows
the corresponding frequency distribution.
doi:10.1371/journal.pcbi.0030103.g002
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information contained in the time series, there is no
characteristic threshold that can be used to separate periodic
from nonperiodic genes. In the experiments, the choice of
the proper periodic dataset strongly depends on the false
discovery rate and on the visual doublecheck of the time
series. Some degree of arbitrariness remains in the choice of
the cut, and it is co-responsible for the discrepancies between
the three studies. The fact that Peng et al. [7] and Oliva et al.
[8] presented similar datasets in size is not significant. In their
study, Oliva et al. [8] concluded that there is no way to
distinguish between periodic and nonperiodic genes. They
ranked more than 2,000 genes according to their periodicity
indicator, and they finally focused on a set of 750 to establish

reasonable comparisons with the other already published
datasets on the budding and fission yeasts.

Cluster Structure of the Periodic Cell Cycle Network
In Figure 4 we give a graphical representation of the

periodic cell cycle network in the three studies. The relevant
structure of this kind of network is given by links with higher
weight. These links connect genes that are expressed (and
probably regulated) at the same time on the cell cycle. Figure
4 shows the binary networks obtained by keeping only links
with xij , t (in the present case we fixed t ¼ 18,000; lower
thresholds only affect the thickness of the circular graph).
They reflect the time progression of the cell cycle, with the
correct sequence of phases. The length of each phase does not
correspond to the real extent of the phase in the cell cycle,
but rather reflects the corresponding number of periodic
genes. The diameter of each node represents the amplitude
assigned to the corresponding gene. We observe that in all
experiments high-amplitude genes are mostly concentrated
in the three shorter phases (M, G1, S). We stress that the
threshold t was only introduced for graphical purposes and
that all analysis were made on the complete, weighted
networks.
The weighted degree distribution highlights that most

nodes have high strength, reflecting the completeness and
overall uniformity of the network. The correlation between
the strength and the phase of each node tells us that genes
lying on the low expression regions that separate the two
peaks of the phase distribution correspond to nodes with
strength significantly smaller than the mean value of the
network. Moreover, genes belonging to the M, G1, and S
phases (first peak) have greater strength than those belonging
to the G2 phase (second peak).
The three networks are characterized by a very high

clustering coefficient (C ’ 0.5). Their community structure
appears to be robust, as they all split in a relatively small
number of groups of nodes (,10) for increasing values of the
granularity parameter r (Figure 5, top). The progression of
the clustering is smooth. At first, all networks are separated
into two large clusters (see Figure 4) that the MCL is able to

Figure 4. Networks of the Three Sets of Periodic Genes in S. pombe

Oliva et al. [8] (A), Peng et al. [7] (B), Rustici et al. [6] (C). Different colors identify genes assigned to different phases of the cell cycle. Pink nodes in Rustici
et al. [6] correspond to genes that have been identified as periodic but not assigned to a specific cell cycle phase. The radius of each node has been set
according to the amplitude of the corresponding gene at its expression peak. The black–orange circle provides a visual identification of the two main
clusters (the black one and the orange one). This image has been realized with the graph drawing software Visone [30].
doi:10.1371/journal.pcbi.0030103.g004

Figure 3. Normalized Distributions of p-Values Relative to the Cyclic

Spectral Component for All Genes from Three Different Elutriation

Experiments

Rustici et al. [6] (diamonds), Peng et al. [7] (squares), and Oliva et al. [8]
(circles). The dashed line is an inverse power law with exponent�1. The
p-values have been computed by reshuffling each signal 1010 times. 5%
and 1% confidence levels are emphasized in the plot.
doi:10.1371/journal.pcbi.0030103.g003
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identify at r ’ 1.25. The first one corresponds to the set of
genes belonging to M, G1, and S phases of the cell cycle, while
the second one collects all genes belonging to the G2 phase.
Such clusters reflect the two peaks of the phase distribution
(see Figure 2). In all experiments, they appear to be separated
by bottleneck structures, which correspond to transitions
from one phase to another (more precisely, from phase S to
phase G2 and from phase G2 to phase M) and seem to be
characterized by the presence of a smaller amount of periodic
gene expression (in good agreement with the distribution of
gene phases in Figure 2). By increasing the value of the
granularity parameter r, the two main clusters are respec-
tively split into subclusters, suggesting the presence of a
hierarchical organization.

Stability of Convergence of the MCL
To assess the significance of this scenario, we studied the

stability of the cluster patterns in terms of the presence of
unstable nodes and of the behavior of the clustering entropy
[23]. The cluster structure of the network of periodic genes in
S. pombe is highly stable. We identified no more than two or
three unstable nodes, depending on the granularity of the
clustering. As one might expect, these nodes correspond to
genes lying at the bottleneck structures visible in Figure 4
(i.e., genes belonging to periods of transition between
different phases in the cell cycle).

Furthermore, there is a correspondence between the
number of clusters and the trend of the clustering entropy
S as a function of the parameter r (Figure 5). The jump from a
partitioning level to the following shows up as a peak in the
entropy landscape. In Figure 5 (top) we see that the number
of clusters sometimes remains constant for a large interval of
values of the parameter. In these cases, increasing r from the
first-cut value (actually corresponding to a peak in the
entropy) results in a decrease of the entropy until it reaches a
minimum. This minimum represents a more stable config-

uration of the clustering. This picture holds until the entropy
reaches saturation.

Gene Network of the Intersection
In each of the three studies, all genes in the genome were

ranked according to a periodicity indicator. Comparing the
three ranked lists, it is possible to observe that the agreement
between the three datasets is much stronger between top-
ranked genes, which means genes that are found to be more
strongly regulated [8]. It is therefore interesting to study the
minimal list given by the intersection of the three datasets. It
comprises only genes that have been identified as periodic by
all groups and that are thus placed on top of the three ranked
lists.
The intersection is given by a set of 156 genes, that is, about

10% of the entire pool. The Mantel test returns a value cAB ’

0.8, showing a good correlation between the distance matrices
of the three experiments. To assess the statistical significance
of this result, we compared it with the NH. We obtained a p-
value that scales as p(n) ¼ e�n in which n is the number of
pairwise rearrangements of the rows and columns (calculated
over 105 randomizations). This means that the mere reshuf-
fling of 20% of the matrix gives p ; e�10. The actual value is
thus significant against the NH.
The distribution of the number of genes on the four phases

of the cell cycle is now different (Table 1). Less then one-third
of the shared genes belong to the G2 phase, with most genes
belonging to the M–G1–S cluster, and, more precisely, half of
them to the G1 phase. We found that even if a gene is
periodic in more than one group, the corresponding phase
values can be different. The best agreement between the
phase values is for genes in the M–G1–S cluster. Less than
20% of the genes show an agreement of the three phase
values within the error, while ;60% of the genes show good
agreement at least between two values.
The clustering structure of the intersection shows the same

two main clusters as in the separated networks (Figure 6).

Figure 5. Number of Clusters (Top) and Entropy Landscape (Bottom) as a Function of the Clustering Parameter r, always Given on the x-Axis

Top, the y-axis shows the number of clusters identified by the MCL.
Bottom, the y-axis shows the clustering entropy S. A peak in the entropy landscape corresponds to an increase in the number of clusters.
doi:10.1371/journal.pcbi.0030103.g005

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1030973

Cell Cycle Network of S. pombe



Further analysis of the hierarchical substructure reveals that
genes in the M and G1 phases are strongly connected and
cannot be separated, while the S phase forms an independent
component. Moreover, the G2 phase shows at least two
separated subclusters. The resulting four clusters are sepa-
rated by bottleneck structures. Two of them correspond to
the phase transitions already observed in the networks of the
entire datasets. The third one is less evident, and it
corresponds to the transition between the G1 and S phases.
This clustering pattern is very robust. No more than two or
three nodes can be identified as unstable, and they are
located on the G1–S bottleneck. We computed the strength of
the nodes to identify genes that lay at the borders of the
clusters. A list of these genes and their functions is shown in
Table 2.

Discussion

We have carried out an extensive comparative analysis of
the results from three independent groups working on cell
cycle data. The power-law distribution of the p-values (Figure
3) in the three datasets shows that a large number of genes are
above the 1% and 5% confidence levels. There is no apparent
change in the exponent of the power law in these regions.
This implies that the information contained in the time series
is not enough to establish a clear division between strictly
periodic and nonperiodic genes. It is now known that the cell
cycle is central to a large number of subnetworks dedicated to
other cell activities. Disruptions in pathways leading to DNA
repair, signaling, membrane lipid and protein formation, and
protein degradation may affect the survival potentialities of
the daughter cells. This argument suggests that a large
number of genes may be loosely involved in the cell cycle
even if they are not main players of it. The numbers and

Table 2. Genes Located at the Bottlenecks That Separate the Two Main Clusters in the Network of the Intersection of the Three
Datasets (the Term in Brackets in Column 1 Is the Assigned Phase)

Phase Transition Systematic Name Gene Function

G2/M (M) SP CC1919.05 Involved in mRNA catabolism. It has translation repressor activity in yeast and it is part of a system to protect cells

from double-stranded RNA (dsRNA) viruses.

G2/M (G2) SPCC1919.10c Involved in barrier septum formation, establishment, and/or maintenance of cell polarity and microfilament motor

activity.

G2/M (G2) SPBC1A4.03c DNA topoisomerase II involved in DNA unwinding during replication.

G2/M (G2) SPAC1527.03 RNA-binding protein involved in vescicular transport.

G2/M (G2) SPAC14C4.12c Involved in chromatin remodeling, and contains a swirm domain which is predicted to mediate specific protein–

protein interactions in the assembly of chromatin–protein complexes.

S/G2 (S) SPAC13G6.10c Involved in isoprenoid biosynthesis, which is important in a vast array of cellular processes. These processes include

structural composition of the lipid bilayer, electron transport during respiration, protein glycosylation, tRNA

modification, and protein prenylation.

S/G2 (S) SPAC57A10.09c Involved in chromatin remodeling; it functions as positive regulation of transcription from RNA polymerase II promoter.

S/G2 (S) SPBC8D2.04 Involved in chromatin silencing at centromere.

S/G2 (S) SPBC1105.11c Involved in nucleosome assembly.

S/G2 (S) SPAC1834.04 Involved in nucleosome assembly.

S/G2 (G2) SPAC9E9.04 Codes for a transcription factor probably involved in apoptosis.

S/G2 (S) SPCC1494.08c Involved in protein deubiquitination essential for cell cycle progression.

S/G2 (S) SPAPB24D3.09c Drug-efflux pump involved in resistance to multiple drugs.

S/G2 (S) SPAC869.05c Involved in high-affinity uptake of sulfate into the cell. Sulfur amino acid biosynthesis in S. cerevisiae involves a

large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of

organic sulfur metabolites.

S/G2 (S) SPAC10F6.06 Involved in RNA-binding and regulation of mRNA splicing.

doi:10.1371/journal.pcbi.0030103.t002

Figure 6. Network of 156 Genes Identified as Periodically Regulated in

the Three Studies (;10% of the Entire Pool)

The black–orange circle provides a visual identification of the two main
clusters (the black one and the orange one) and of the relative
hierarchical subclusters. This image has been realized with the graph
drawing software Visone [30].
doi:10.1371/journal.pcbi.0030103.g006
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identity of genes in the periodic sets thus strongly depend on
false discovery rate and interpretation of the data [25]. At
first, a statistical method such as Fourier analysis is applied in
a rather blind way. Then, cell cycle profiles are filtered for
minimal amplitude and doublechecked by eye. The visual
inspection of the gene expression profiles has its advantages,
but obviously a different reproducibility from that of a
statistical analysis. Different methods may extract different
types of information and may be difficult to compare. The
network defined in Clustering and Entropy Measure provides
a representation of the entire periodic cell cycle with no need
to focus on the single genes or phase values. Figure 4 shows
that, despite the differences in the datasets, some properties
of the general structure of the network are universal across
the three studies.

Although G2 is the longest phase in the cell cycle, it is not
the most densely populated. It spreads over ;70% of the cell
cycle, but in all studies, it contains no more than a half of the
identified periodic genes (see Table 1). This is not unex-
pected. In S. pombe, cell division occurs at the end of S phase,
implying that the G2 phase represents a long period of mass
increment. Most genes are expressed during the entire
process and thus do not have a defined expression phase.
Some genes, which are probably involved in more specific
tasks, are periodically regulated. We studied the amplitude of
each gene at the expression peak as a function of the
corresponding phase, and we observed that genes are more
strongly regulated during the M, G1, and S phases than in the
G2 phase. The study of the intersection of the three datasets
shows that genes and phase agreement is not so good on the
G2 phase. This suggests that G2-phase genes are more likely
to be false positives and probably represent an overestima-
tion of the number of genes that are truly periodic. Moreover,
in Rustici et al. [6] (dataset with 407 periodic genes) G2-phase
periodic genes represent a little more than one-third of the
entire pool, while in the other experiments (both showing a
much bigger pool of ;750 periodic genes), the G2-phase
genes correspond to about half the dataset (Table 1).

The distributions of the phase differences in the three
datasets are very similar, and they clearly identify two waves
of periodic expression (Figure 2). They are peaked in the M–
G1–S phases and the G2 phase, respectively, and they are
separated by short, quiet periods in which very few periodic
genes are expressed. Nevertheless, both Rustici et al. [6] and
Peng et al. [7] identified four clusters of periodic genes,
roughly corresponding to the four main phases of the cell
cycle, while Oliva et al. [8] proposed eight different clusters.
This clustering is not consistent with the distribution of
periodic genes on the cell cycle. To study the topological
clustering of the cell cycle, we applied the MCL to the
periodic cell cycle network. In all studies, the first hierarch-
ical level of the clustering shows two main clusters, one
corresponding to the M–G1–S phases and the other to the G2
phase, separated by bottleneck structures with very few genes.
This pattern reflects the behavior of the phase distribution.
The study of the lower hierarchical levels reveals that genes in
the M and G1 phase form a strongly connected cluster that
cannot be further divided by the algorithm. On the other
hand, genes in the S phase are grouped in an independent
component, and the G2 phase can be partitioned into at least
two clusters. This pattern is universal across the different
studies, suggesting that the topology of the network contains

information on the biological processes involved in the cell
cycle.
The stability of the clustering shows the robustness of the

structure against the presence of false positives and false
negatives in the datasets. The entropy landscape does not
change much across the experiments. It always reaches
saturation when the network splits into six or seven clusters.
In Figure 5, we see that Peng et al. [7] and Rustici et al. [6]
show a common stable minimum of the entropy at r ’ 2. In
both studies, this minimum corresponds to a separation into
five clusters. A similar result holds for Oliva et al. [8] with a
slightly different value of the clustering parameter (r ’ 2.2).
In the network of the intersection, the entropy landscape
shows a minimum that corresponds to a separation into four
or five clusters. We thus suggest that a basic structure made
up of four clusters (with eventually a fifth one in the G2
phase) could be the most reliable picture of the clustering
pattern. Genes in the M and G1 phases form the first
component, genes in the S phase form the second compo-
nent, and then genes in the G2 phase form the last two
components.
For the sake of comparison, we also applied a different

clustering algorithm to the periodic cell cycle network. In
recent years, several methods have been proposed to reveal
the community structure of very heterogeneous networks.
Among them, only a few can successfully handle a complete
and weighted graph. One possible choice is an algorithm
based on modularity (M) optimization (a measure of the
difference between the number of links inside a given module
and the expected value for a randomized graph of the same
size and degree distribution) [26]. We considered a recent
method based on simulated annealing to obtain clustering by
direct maximization of M [27]. The results are very similar to
the more reliable picture obtained by the MCL (as described
in the previous paragraph). The application to the periodic
cell cycle network in Rustici et al. [6] and Oliva et al. [8]
returns a structure made of four clusters: one corresponding
to the M phase and part of the G1 phase, one corresponding
to the end of the G1 phase and the S phase, and two modules
inside the G2 phase. In the case of Peng et al. [7], a fifth
cluster corresponding to the G2–M phase is identified. The
bottleneck structures identified by the MCL are well
respected. The main difference seems to be the partitioning
of genes in the G1 phase between the two clusters
corresponding, respectively, to the M phase and the S phase.
To explain this behavior, we refer to a recent work on
resolution limits in community detection [28]. The authors
give evidence that modularity optimization may fail to
identify modules smaller than a certain scale, depending on
the total number of links in the network and on the number
of connections between the clusters. More precisely, even a
module whose size is on the order of the size of the entire
network may not be resolved if it has a number of external
links on the order of the number of connections inside the
module itself. In the exploratory data analysis we showed that
only the two main communities of the periodic cell cycle
network are revealed by the phase distribution. However, the
MCL is able to identify a cluster substructure. Our discussion
of the results points out that the module corresponding to
the S phase is the last one isolated by the algorithm, and that
the bottleneck between the G1 and S phases is the less evident
and more unstable one. The number of links connecting this
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module to the M–G1 cluster is on the order of the number of
internal links. According to these arguments, the modularity
algorithm would rather split the big M–G1–S cluster into two
symmetric subclusters than separate the smaller S phase from
the larger M–G1 component.

The analysis of the stability of the clustering in the network
of the intersection reveals its robustness. There are no
unstable nodes on the two main bottlenecks, the G2–M and
the S–G2, and only one or two unstable nodes on the border
between the G1 and S phases and between the two clusters in
the G2 phase. These results confirm the significance of these
structures and their role in the biology of the cell cycle. The
bottlenecks are strongly correlated to cell cycle checkpoints.
These are cellular pathways, induced by DNA damage, that
block cell cycle progression or slow the rate at which the
phase proceeds. According to the cell cycle stages, there are at
least three DNA damage checkpoints: G1–S (G1) checkpoint,
intra–S phase checkpoint, and G2–M checkpoint. We thus
investigated those genes that are located at the borders
between different clusters that correspond to cell cycle
checkpoints. We ranked the nodes according to their
strength, starting from the one with the smallest value, and
we kept those that are on top of the ranking in at least two
datasets. These nodes represent genes that are located on the
bottlenecks corresponding to cell cycle checkpoints. This
means that they are periodically expressed during the
transition from one phase to the next. A list of these genes

and their functions is shown in Table 2. Most of them have
important functions, and we propose them as potential new
cell cycle regulators involved in the control of the transition
from one phase to the next [29].
The approach described in this paper is an example of

comparative analysis and can be applied to other, similar
complementary datasets. Moreover, the periodic cell cycle
network can be built from any gene expression dataset. The
study of the clustering and the stability measure reveal the
more reliable community structure of this network. The
identification of nodes lying at the borders of different
clusters can contribute to the isolation of genes potentially
involved in cell cycle regulation. As a future development, we
will consider applying this method to gene expression data on
the human cell.
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