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Abstract

Recent analyses of human genome sequences have given rise to impressive advances in identifying non-synonymous single
nucleotide polymorphisms (nsSNPs). By contrast, the annotation of nsSNPs and their links to diseases are progressing at a
much slower pace. Many of the current approaches to analysing disease-associated nsSNPs use primarily sequence and
evolutionary information, while structural information is relatively less exploited. In order to explore the potential of such
information, we developed a structure-based approach, Bongo (Bonds ON Graph), to predict structural effects of nsSNPs.
Bongo considers protein structures as residue–residue interaction networks and applies graph theoretical measures to
identify the residues that are critical for maintaining structural stability by assessing the consequences on the interaction
network of single point mutations. Our results show that Bongo is able to identify mutations that cause both local and
global structural effects, with a remarkably low false positive rate. Application of the Bongo method to the prediction of 506
disease-associated nsSNPs resulted in a performance (positive predictive value, PPV, 78.5%) similar to that of PolyPhen (PPV,
77.2%) and PANTHER (PPV, 72.2%). As the Bongo method is solely structure-based, our results indicate that the structural
changes resulting from nsSNPs are closely associated to their pathological consequences.
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Introduction

The introduction of large-scale genome sequencing technologies

has dramatically increased the number of single nucleotide

polymorphisms (SNPs) in public databases. For example, the NCBI

(National Center for Biotechnology Information) dbSNP database

[1], which is a major repository of human SNPs, contained data

about ten thousand unique human SNPs as of Build 106 in 2002. By

October 2007, there were about six and half million validated

unique human SNPs, as of Build 128. Although the progress of

collecting SNP data has been impressive, the pace at which disease-

related SNPs are annotated is much slower. So far, only a few

thousand SNPs have been associated with a human genetic disorder

in the OMIM (Online Mendelian Inheritance in Man) database [2].

Further efforts are thus required to identify disease-associated SNPs

in order to understand their effects on human health.

Genetic variations, such as SNPs, are likely to contribute to

susceptibility to complex diseases such as cancer [3]. Single

nucleotide variations in the coding regions that lead to amino acid

substitutions, the so-called non-synonymous SNPs (nsSNPs), may

be associated with a modulation of protein function. For example,

extensive studies on point mutations in P-glycoprotein have shown

that amino acid variations regulate its substrate specificity and lead

to a variation of drug disposition among individuals [4]. As a

consequence, attention has been focused on the study of the

relation between nsSNPs and disease as well as predicting their

phenotypic effects. Some early approaches exploited position-

specific evolutionary information contained in multiple sequence

alignments [5,6]. Others have used predictive features of sequence

and structure [7,8], or machine learning algorithms [9–11] to

classify SNPs. In addition, there are approaches that annotate

nsSNPs at a genomic scale, such as LS-SNP [12]. Previous

analyses have shown that methods that apply only sequence

information may suffer significant reductions in accuracy when

fewer than ten homologous sequences are available for the target

protein [8]. Sunyaev et al. [13] have shown that disease-causing

mutations often affect intrinsic structural features of proteins, while

in an important study Wang and Moult [14] have demonstrated

that most disease-associated mutations appear to affect protein

stability rather than interfere directly with protein interactions.

Following these results, others have focused on comparing the

structures of wild-type and mutant-type proteins [14,15] or have

estimated the change of protein stability by using environment-

specific amino acid substitution matrices that are derived from the

three-dimensional structures of homologous proteins [16].

For analyzing structural effects of nsSNPs, we have developed

an approach, Bongo (Bonds ON Graph, http://www-cryst.bioc.

cam.ac.uk/,tammy/Bongo), which uses graph theoretic measures

to annotate nsSNPs. Graph theory has found many applications in

the study of protein structures during the past two decades. For

example, Ahmed and Gohlke used graphs to identify rigid clusters

for modelling macromolecular conformational changes [17];
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Canutescu and colleagues have predicted side-chain conforma-

tions by partitioning graphs in which vertices represent residues

[18]; Vendruscolo and colleagues applied small-world networks to

identify key residues that are important for protein folding [19];

Jacobs, Thorpe and their colleagues used graphs to describe bond-

bending networks between atoms, so identifying the rigid and

flexible regions in the proteins [20,21]; Kannan [22]; and Brinda

and Vishveshwara [23] used the graph spectral method to identify

side chain clusters that are important for protein folding and

oligomerisation ; Sol and colleagues used graphs to identify key

residues for allosteric communication and modular connection by

the edge betweenness algorithm [24,25]. Bongo uses graphs to

represent residue-residue interaction networks within proteins and

to assign key residues that are important for maintaining the

networks. The novelty lies in the application of a graph theory

concept, vertex cover, by which key residues are identified for

analyzing structural effects of single point mutations.

Here we begin by describing the use of interaction graphs to

represent protein structures. We then introduce the ‘key residues’

that Bongo uses to evaluate structural impacts of point mutations,

and explain their roles in terms of stabilising protein structures. We

further describe the algorithm of Bongo, where a graph concept vertex

cover was adapted to identify key residues, and we calibrate Bongo

over eight single point mutations that result in a range of different

structural changes in the p53 core domain. We evaluate the false

positive rate of Bongo for 113 mutations where wild-type and

mutant-type crystal structures have been demonstrated to have

negligible differences in backbone conformation. Eventually, we

evaluate the performance of Bongo by testing its ability to distinguish

disease- and non-disease-associated nsSNPs in protein structures in

the PDB (Protein Data Bank) [26]. Based on the benchmark results,

we also analyse the percentage of disease-associated nsSNPs that are

likely to cause structural effects in proteins.

Results/Discussion

Bongo Considers the Long-Distance Structural Impact of
a Point Mutation

A point mutation in a protein may often give rise only to a

rearrangement of amino acid side chains near the mutation site,

although sometimes a more substantial movement of polypeptide

backbone locally or globally results. The former changes can be

analysed by looking at the inter-residue interactions that a

mutation creates or abolishes between its neighbouring residues.

However the same approach may not be applicable to the latter,

since simply paying attention to interactions immediately around a

mutation site is not sufficient to predict structural effects on a

larger scale.

In order to understand structural changes at a longer distance,

we represent a protein as a residue-residue interaction graph, in

which vertices represent residues and edges represent interactions

between residues (Figure 1) (see more details in Methods). Of

course, molecular dynamics calculations provide a powerful tool

for identifying the impact of point mutations on the stability of the

native states of proteins. However, these simulations are often

time-consuming and require large computer power. Thus we have

developed Bongo to provide an alternative approach by operating

on interaction graphs, which are computationally more conve-

nient. In our model, residue-residue interactions occur either

through direct connection or through indirect links that involve

intermediate residues. Such connectivity is based on ‘key residues’

that are important in maintaining the overall topology of the

network, and thus the stability of the folded structure. These key

residues eventually serve as reference points to evaluate whether a

mutation can induce structural changes in a protein away from the

mutation site.

Bongo Measures the Structural Impacts by Comparing
the Key Residues in the Interaction Graphs

Bongo measures the impact of a mutation according to its effects

on key residues; it formulates the structural changes in a protein as

changes of the key residues in a corresponding interaction graph.

Here we adapt a variant of the vertex cover, defined in graph theory

as a minimum set of vertices (residues) that are crucial to forming

all the edges (interactions), to represent the key residues.

In Figure 2, we illustrate the notion of key residues and introduce

the use of the difference between the vertex cover of wild and mutant

type interaction graphs as a measure of the effects of a mutation. The

example here is residue Y35 of protein 1BPI, a key residue forming

several relatively strong interactions including pi-cation interactions

with residues R20 and N44 and a hydrophobic interaction with

residue A40 (Figure 2A and 2B). The mutation Y35G removes this

amino acid from the set of key residues in the graph (Figure 2C) as its

original interactions with other secondary structure elements no

longer exist. Hence, residue 35 is no longer a key residue in the

mutant interaction network. Therefore, this mutation is considered

structurally damaging by Bongo; we discuss the exact criteria under

which a mutation is deemed damaging below.

Rationale for Identifying Key Residues through the Vertex
Cover

Bongo derives the interaction graph of a protein by considering

each residue as a vertex and each residue-residue interaction,

including hydrogen bonds, p–p, p–cation, and hydrophobic

interactions, as an edge. The weight on each edge differs

according to the total number of cross-secondary structure

interactions as well as number of interactions with individual

residues. The weighting scheme was calibrated against eight

disease-associated mutations in the p53 core domain analysed by

Fersht and co-workers [27,28], as shown in Table 1. The

optimised weighting of inter-secondary structure interactions is

0.8, 0.8, 0.8, 2.0 and 2.0 for H-bonds, p–p, p–cation, hydrophobic

interaction, and hydrophobic core respectively. For internal

Author Summary

Non-synonymous single nucleotide polymorphisms
(nsSNPs) are single base differences between individual
genomes that lead to amino acid changes in protein
sequences. They may influence an individual’s susceptibility
to disease or response to drugs through their impacts on a
protein’s structure and hence cause functional changes. In
this paper, we present a new methodology to estimate the
impact of nsSNPs on disease susceptibility. This is made
possible by characterising the protein structure and the
change of structural stability due to nsSNPs. We show that
our computer program Bongo, which describes protein
structures as interlinked amino acids, can identify confor-
mational changes resulting from nsSNPs that are closely
associated with pathological consequences. Bongo requires
only structural information to analyze nsSNPs and thus is
complementary to methods that use evolutionary informa-
tion. Bongo helps us investigate the suggestion that most
disease-causing mutations disturb structural features of
proteins, thus affecting their stability. We anticipate that
making Bongo available to the community will facilitate a
better understanding of disease-associated nsSNPs and
thus benefit personal medicine in the future.

Bongo: Graph Theoretic Analysis of nsSNPs
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interactions, H-bonds, p–p, p–cation interactions were given a

weight of 0.6 and hydrophobic interaction a weight of 0.8. This

distinction between inter and intra secondary structure interac-

tions is used to reflect concerted movement of structural motifs

within proteins. Thus, a single interaction loss among two densely

interacting structures is less significant than one among two

sparsely interacting ones.

Based on the above weighting scheme, Bongo defines the key

residues as the minimum weighted vertex cover (see the definition of

vertex cover in Methods), which represents the minimum

necessary residues to establish the interaction network. However,

finding the minimum vertex cover is known to be NP-complete

and hence efficient algorithms only exist for approximate solutions

[29]. Therefore, we use a selection scheme which adopts an

approximation algorithm based on the greedy principle to identify

the key residues. The approximation algorithm is known to give

vertex covers that cost no more than H(|V|), where |V| denotes

the size of a vertex set, times than the optimum solution where

H(n) is the nth harmonic number. Compared to other graph

theoretic constructs such as dominating sets [29], the vertex cover

gives an intuitive notion of vertex importance. In fact, we have

used more advanced techniques such as spectral decomposition

[29] to identify structural information that is related to protein

stability change, DDG. However, the results were not better than

those obtained by applying the vertex cover approach (data not

shown). Indeed, we have observed in some cases (Figure 3) that the

change of vertex cover after mutation correlates well with

structural data. Therefore, we believe that the vertex cover can

serve as a useful approach to estimating protein structural changes.

The Structural Role of Key Residues
The key residues maintain the interaction networks in a protein,

and each is assigned a priority value that measures its importance

in determining the overall topology of the network (see Methods).

When a point mutation is introduced into a protein, Bongo

quantifies its structural effects according to the priorities of key

residues affected. Thus we expect key residues, especially those

with high priorities, to have important roles in stabilising folded

protein structures. In order to check if the priority of key residues

reflects their roles in forming structures, we calculated the

correlation between the priority and the stability change (Each

key residue was mutated to 19 other amino acids and the stability

changes were calculated by I-mutant2.0 [30] (http://gpcr2.

biocomp.unibo.it/,emidio/I-Mutant2.0/I-Mutant2.0_Details.

html), which has accuracy around 80% for predicting stability

changes resulting from mutations when the three-dimensional

protein structure is known. We consider only mutations that cause

|DDG|,3kcal/mol since they affect the stability without totally

abolishing the overall structure of the protein. The median

number of |DDG|,3kcal/mol is used to calculate the correlation

with the priority of key residues in order to avoid data skewness.),

DDG, of key residues identified from the p53 core domain (PDB:

1TSR). When we considered the top half of the key residues

ranked by their priorities, DDG relates to the priority of key

Figure 1. The graph model of Bongo. (A) A graph that represents the residue-residue interaction network in the p53 core domain. Each vertex in
the graph represents a residue: the pink ones are in a-helices; the yellow are in b-strands and the white are in loops. The edges with different colors
represent different interactions: blue for hydrogen bonds; cyan for p–p interactions; purple for p-cation interactions; green for hydrophobic
interactions; black for backbones. The grey patches indicate segments of secondary structures, patches that are too close to each other can not be
separated in the graph. (B) Residue I195 in p53 core domain has non-polar interactions with residues A159, V216, Y234, and Y236, and these local
hydrophobic interactions are transformed into graph (A), where I195 is shown as a red vertex and A159, V216, Y234, and Y236 are shown as green
vertices. (C) The overall structure of p53 core domain, where the location of I195 is shown in red.
doi:10.1371/journal.pcbi.1000135.g001

Bongo: Graph Theoretic Analysis of nsSNPs
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residues with a Pearson correlation r = 0.61 and a significantly

small p-value less than 0.001 (Figure 4A). This indicates that the

correlation is statistically significant and also shows a good contrast

to the low relation (r = 20.04) between assumptive priority (Since

the non-key residues do not have priority values, they are assigned

values according to those of the key residues that are nearest in the

same secondary structures. If a non-key residue is flanked by two

key residues, its assumed priority is the average of the priority

values of its two neighbours.) and DDG of non-key residues

(Figure 4B).

We noticed that the correlation is weaker (r = 0.36) when the

lower half of key residues, ranked by their priorities, is included.

This is likely due to uncertainties in the definitions of key residues

that are ranked with lower priorities: Since Bongo stops selecting key

residues only when no edges are left in a graph, the key residues that

have lower priorities may not have structural meaning but are

simply chosen in order to complete the selection process (covering

all the edges/interactions in the graph). In an attempt to exclude the

uncertain key residues, we analysed how far the correlation is valid

by gradually including key residues that have priorities in the lower

half, in order of decreasing priorities. There is an acceptable

correlation r = 0.52 when we consider up to three fourths of overall

key residues, which suggests that the bottom one quarter key

residues are not reliable indicators of structural effects. Thus Bongo

does not consider the bottom quarter key residues so that their

uncertainty does not affect the prediction results.

The distribution of key residues according to their location in

secondary structures (Figure 4A) shows that the key residues in b-

strands tend to have larger DDGs and priority values compared to

those in loops, whereas such differences are less clear for the case of

non-key residues (Figure 4B). This suggests that, in general, protein

stability should be more vulnerable to mutations in b-strands than

those in loops, consistent with the observation that the b-strands in

the p53 core domain are the major contributors to the core region of

the protein. It also indicates that priority values and DDG of key

residues have consistent meanings in terms of protein structure.

Bongo Evaluates the Structural Impact through the
Resulting Changes in the Key Residues

Since the structures of the mutant proteins are not often

available for nsSNPs, Bongo first uses Andante [31] to model the

mutant-type protein structure by rearranging the side chain

around the mutation site. The structural effects of a mutation are

then analysed by comparing the wild-type and mutant-type key

residues, denoted as Kwt and Kmt, respectively. If a key residue in

Kwt is not found in Kmt, then it is considered to be affected by the

mutation. Consequently the overall impact (I) of a mutation is

calculated according to the key residues affected by the mutation,

i.e.

I~

P
Kj

N
ð1Þ

where I is the total impact value, Kj is the priority of each key

Figure 2. An example showing local structural changes
between wild-type and mutant-type proteins. (A) Local environ-
ment around residue Y35 in protein 1BPI. (B) Wild-type local interaction
graph around residue Y35. The interactions with residue R20, N44, and
A40 are marked in the same colours as in (A). (C) Mutant-type local
interaction graph around position 35.
doi:10.1371/journal.pcbi.1000135.g002

Table 1. Prediction of nsSNPs in the core domain of p53 (PDB: 1TSR) by Bongo

Mutant categories nsSNP DDGa (kcal/mol) Crystal structure Prediction of Bongo Prediction of PolyPhen

No structural effects R273H 0.09 [28] 2BIM Benign Probably damaging

Weakly/locally destabilising G245S 1.22 [34] –b Damaging Probably damaging

R249S 1.69 [34] 2BIO Damaging Probably damaging

R248A 1–2 [28] – Damaging Probably damaging

Highly destabilising/global
unfolding

C242S .2 [28] – Damaging Probably damaging

H168R 2.75 [34] 2BIN Damaging Probably damaging

V143A 3.34 [34] – Damaging Benign

I195T .2 [28] – Damaging Probably damaging

aThe free energy difference (destabilisation) compared to wild-type p53 core domain.
b‘‘–’’ means no mutant crystal structure available.
doi:10.1371/journal.pcbi.1000135.t001

Bongo: Graph Theoretic Analysis of nsSNPs
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residue that is in Kwt but not in Kmt. N is the total number of key

residues in Kwt, which normalise the size of proteins.

Thus each mutation is systematically quantified by its impact

value I (an overview scheme of Bongo is shown in Figure 5). On

deriving the impact value, Bongo considers mutations with I.1 to

cause structural effects, which is the criterion calibrated over

mutations in the p53 core domain.

In Figure 3, we give an example, the mutation Y35G in protein

1BPI, of how a mutation can have significant impact value. In

addition to residue Y35, Bongo also predicts residues R42 to be

affected by the mutation (Figure 3A). These two are at the ends of

b strands and also in long loops linked to them. These regions

undergo conformational changes when the mutation Y35G is

introduced into the protein, where the biggest movement (4.2 Å)

occurs between the wild-type and mutant-type Ca atom of residue

G36 (The movement is measured when the wild-type (1BPI) and

the mutant-type (8PTI) are superimposed by their Ca atoms.).

Since the impact score calculated on the basis of these residues is

greater than one, Bongo considers the mutation Y35G to cause

structural effects in 1BPI, which corresponds to the experimental

result.

In order to assess the errors due to the difference of a crystal

structure of the mutant and a simulated one, we also compared the

key residues of the two structures. It turns out that the differences

of key residues between the modelled and the crystal structures are

mostly located in the loop region, where structural changes occur

when the mutation is introduced into the protein (Figure 3B). The

overall distribution of the key residues that are specific for the

modelled structure is similar to that of the key residues specific for

the crystal structure. This suggests that the structural change at a

longer distance can be captured in the interaction graphs by

simply modelling a point mutation as rearrangement of side chains

neighbouring to the mutation site.

Calibration of Bongo by Mutations in the p53 Core
Domain

In order to calibrate Bongo, we have used experimental data on

the tumour suppressor p53 core domain, which is responsible for

about 50% of mutations that lead to human cancers [32]. Owing

to its importance, the wild-type and many mutant protein crystal

structures have been determined. Several studies have been

carried out for these point mutations within the domain, and thus

make it a good calibration system for predicting structural effects

of mutations. Furthermore, the structure of the p53 core domain is

inherently unstable with a melting temperature of ,42–44uC [33].

As a consequence, point mutations that cause either subtle

structural changes or more dramatic effects are available for

comparison.

For our study we identified eight nsSNPs (Figure 6) analysed

experimentally by Fersht and co-workers [27,28]. These mutations

involve several different levels of structural change in the p53 core

domain: (i) R273H has only a minor effect on the overall structure,

with root mean square deviation (RMSD) #0.21Å in Ca positions

between wild type and mutant type crystal structures; (ii) G245S,

R249S, and R248A destabilise the p53 core domain by 1–2 kcal/

mol and lead to local structural changes; (iii) C242S, H168R,

V143A, and I195T destabilise the structure .2 kcal/mol and lead

to global unfolding of the protein at body temperature. When the

structure 1TSR in PDB was used as a calibration model, Bongo

identified all mutations except R273H as causing structural effects

in the p53 core domain (Table 1), which corresponds well with

experimental data described in the literature.

For comparison we also used PolyPhen [5] to predict the effects of

the same mutations. We consider PolyPhen as it uses multi-source

data including three-dimensional structures, sequence alignments

and SWISS-PROT annotations. Compared to other methods

which either focus on protein structure or sequence information, it

Figure 3. nsSNP Y35G in protein 1BPI. (A) Key residues (in blue) whose interactions are changed when the mutation Y35G is introduced into
protein 1BPI. The key residue Y35 (upper) has a pi-cation interaction with residue N44 in the wild-type structure (shown in grey) and the interaction is
abolished when the mutation happens (the mutant-type structure is shown in yellow). The key residue R42 (lower) has a p–cation interaction with
residue F4 in the wild-type structure and the interaction is abolished when the mutation happens (the corresponding position of R42 in the mutant
structure is shown with a yellow side chain). (B) Key residues that are specific in the modelled mutant-type structure are shown in blue, while those
are specific in the crystal structure are shown in green. The wild-type structure of 1BPI is shown in grey, while the region that under conformational
change due to the mutation Y35G is shown in yellow.
doi:10.1371/journal.pcbi.1000135.g003

Bongo: Graph Theoretic Analysis of nsSNPs
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provides more comprehensive results. Of course, there are other

methods that include even more information—for example, LS-

SNP [12] also considers functional pathways, domain–domain

interfaces, ligand–protein binding—but our purpose is to under-

stand the usefulness of structural information by comparing it with

a standard approach that mainly uses sequence and structural

information. The results in Table 1 show that PolyPhen predicts all

mutations except V143A to be probably damaging. PolyPhen’s

success in predicting R273H to be damaging is probably a

consequence of the fact that R273 is functionally important for

binding DNA and thus conserved in sequence for reasons that are

not evident from consideration of the structure alone, whereas

PolyPhen predicts V143A to be benign, probably as a result of

comparatively weaker emphasis on structural information.

Figure 5. The flowchart of Bongo. Scheme showing how Bongo works (see text for details).
doi:10.1371/journal.pcbi.1000135.g005

Figure 6. The eight nsSNPs that are listed in Table 1. Structure of
p53 core domain is shown in grey at right; DNA is shown in grey at left;
the nsSNPs are shown in black sticks.
doi:10.1371/journal.pcbi.1000135.g006

Figure 4. Correlation between the residue priority and the
stability change DDG in the p53 core domain. (A) Correlation
between the key residue priority and the stability change DDG of key
residues. (B) Correlation between the assumptive priority and the
stability change DDG of non-key residues. Open circle markers
represent key residues in loops, triangle markers represent key residues
in strands, and cross markers represent key residues in helix.
doi:10.1371/journal.pcbi.1000135.g004

Bongo: Graph Theoretic Analysis of nsSNPs
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Bongo Has a Low False Positive Rate in Predicting
Structural Effects

We further tested the application of Bongo to single point

mutations that do not affect protein structure. Our benchmark set

included 113 pairs of wild-type and mutant-type crystal structures

in which each of them has RMSD in their backbone Ca atoms

,0.4Å and the lower resolution of the two structures is #2.2Å

(Dataset S1A). We chose these criteria in order to allow for

experimental errors in the crystallographic solution of the

structures of identical proteins, as suggested in the work of

Hubbard and Blundell [35]. The benchmark result shows that

Bongo predicts three of the single point mutations to cause

structural effects, therefore yields a 2.7% false positive rate.

Although this result may not be generalised to all the cases, it

indeed encourages us to expect a low false positive prediction rate.

Evaluation of Bongo over Disease- and Non-Disease-
Associated nsSNPs

In the previous sections, we have shown that Bongo is able to predict

structural effects of single point mutations with a low false positive

rate. Here we further analyse the performance of Bongo in identifying

disease-associated nsSNPs. Our test-set contains 506 disease-

associated nsSNPs from the OMIM (Online Mendelian Inheritance

in Man) database [2] and 220 non-disease-associated nsSNPs

available in dbSNP database [1] which have no annotations in

OMIM. All the nsSNPs in the test-set can be mapped to structures in

the PDB (Dataset S1B and S1C) since Bongo uses structure as input.

For evaluation of Bongo, we calculated its sensitivity and

specificity (with definitions explained in Table 2). By definition,

if a method always classifies any mutation as ‘disease-associated’, it

would achieve a sensitivity score of 100%. Similarly, a method

could obtain a 100% specificity score by always predicting

mutations as ‘‘non-disease-associated’’. In order to avoid a biased

analysis, we also calculated the PPV (positive predictive value) and

NPV (negative predictive value; with definitions explained in

Table 2); a better PPV or NPV implies a better performance in

predicting positive or negative cases, respectively.

The overall test results (Table 2) show that Bongo has PPV and

NPV of 78.5% and 34.5%, respectively, compared to that of

PolyPhen of 77.2% and 37.6%, respectively. This indicates that

Bongo and PolyPhen have similar accuracy in predicting disease-

associated nsSNPs. Given the fact that PolyPhen also exploits

sequence information that may take account of protein interac-

tions with various substrates, macromolecules and other ligands,

we believe this shows the potential of using interaction networks

which consider structure alone. The similar predictive values

suggest that, although the mechanisms by which nsSNPs induce

diseases are complicated, structural change is an important factor

in most cases. This is consistent with a previous study that shows

most deleterious nsSNPs affect protein stability but not function-

ality [14], which indicates that structural impact is a more

important factor in causing disease. In order to assess the

performance of Bongo, we also compared the use of PANTHER

[36], which is verified to have higher accuracy than PolyPhen by

using Hidden Markov Model (HMM) for sequence scoring. The

result shows that PANTHER has the PPV and NPV values (There

are 48 disease-associated and 22 non-disease-associated nsSNPs

for which PANTHER did not find an HMM model to do

prediction; those nsSNPs are excluded from the calculation of PPV

and NPV values.) comparable to those of PolyPhen and Bongo

(Table 2), which further verifies the evaluation.

In addition to the predictive value, Bongo has a low sensitivity

(28.1%) compared to that of PolyPhen (50.7%) and PANTHER

(76.6%), and its specificity (82.4%) is high compared to that of

PolyPhen (65.8%) and PANTHER (31.8%). This suggests that,

although Bongo has a similar predictive value to that of PolyPhen and

PANTHER, Bongo’s high specificity and low sensitivity yields many less

false positive predictions. We can thus be more confident about the

cases that are predicted as disease-associated by Bongo than those

predicted by PolyPhen. Regarding the low sensitivity of Bongo, we

suppose this is due to the fact that Bongo is not able to predict

mutations that only affect the function of proteins, e.g., the mutations

in active or other interaction sites. We may improve Bongo’s ability in

predicting functional site mutations in the future work.

Among the 506 disease-associated nsSNPs in our test-set, Bongo

predicted 142 of them to cause structural effects, which suggests

that about 28% of nsSNPs that are involved in Mendelian diseases

resulting from single protein mutations may cause extensive

structural effects in proteins. However, the figure for nsSNPs

involved in multigenic diseases like diabetes may not be so high as

they exist individually in the population as a whole at high levels,

but contribute only rarely to multigenic diseases when occurring

with several other nsSNPs.

Conclusions
We have developed a method, Bongo, which uses graph theoretic

measures to evaluate the structural impacts of single point

mutations. Our approach has shown that identifying structurally

important key residues in proteins is effective in predicting point

mutations that cause extensive structural effects with a substan-

tially lower false positive rate. Furthermore, our approach gives

clues about the effects of nsSNPs on the structures of proteins, thus

providing information complementary to methods based on

sequence. By comparing our approach with PolyPhen and

PANTHER in analyzing nsSNPs, we have also shown that

structural information can provide results of quality comparable

to those that use sequence and evolutionary information in

predicting disease-associated nsSNPs.

Methods

Generating Residue–Residue Interaction Graphs
In the residue-residue interaction graphs, Bongo considers

structural information including hydrogen bonds, p–p, p–cation,

and hydrophobic interactions, as well as secondary structure

information. (1) Hydrogen bond: we use HBPLUS [37] to calculate

Table 2. Prediction of disease- and non-disease-associated
nsSNPs

Methods
Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%)

Bongo 28.1 82.4 78.5 34.5

PolyPhen 50.7 65.8 77.2 37.6

PANTHER 76.6 31.8 72.2 37.1

The test-set of disease-associated nsSNPs contains 506 nsSNPs that are covered
in the OMIM database and can be mapped onto crystal structures in the PDB;
the test-set of non-disease-associated nsSNPs contains 220 nsSNPs that are not
covered in the OMIM database and can be mapped on crystal structures in the
PDB. Sensitivity is defined as TP/(TP+FN); specificity is defined as TN/(TN+FP);
PPV (positive predictive value) is defined as TP/(TP+FP); NPV (negative
predictive value) is defined as TN/(TN+FN), where TP means the number of true
positive predictions; FP means the number of false positive predictions; TN
means the number of true negative predictions; FN means the number of false
negative predictions.
doi:10.1371/journal.pcbi.1000135.t002
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hydrogen bonds, using its default settings for positioning hydrogen

and minimum angles formed by the donor and acceptor at the

hydrogen. (2) p–p interaction: aromatic side chains are considered

to have p–p interaction if they have less than 6 Å between any

atoms. We note that more accurate criteria could be applied at the

expense of the calculation speed with similar results. (3) p–cation

interactions are identified on the condition that there is a cation

within 7 Å of any side chain atoms of an aromatic ring such that

the angle between the cation and the normal vector of the

aromatic ring is within 60u. The criterion is only an approximate

one in order to speed up the overall calculation without sacrificing

the accuracy of calibration. (4) Hydrophobic interactions are

weighted according to Voronoi surfaces between non-polar

residues calculated by an in-house program, Provat [38], while

hydrophobic cores are identified when a non-polar residue shares

non-zero Voronoi surfaces with only non-polar residues. (5)

Secondary structure elements are assigned by DSSP [39].

The weighting of the interactions were optimised by using the

Least-Squares Optimisation Tool in MATLAB (http://www.

mathworks.com/products/matlab/), where the best solution was

chosen on the basis of the best calibration result over the eight

mutations listed in Table 1. Although calibration was carried out

against only eight mutations, the performance of Bongo on the 506

disease-associated nsSNPs, which are distributed in proteins from

many different families, is comparable to that of PolyPhen (Table 2).

Since the mutant-type structures are not usually available, we

generate them computationally using Andante [31]. Andante

predicts the structure by using evolutionary information to define

rotamers in clusters of side chains that are structurally compatible,

so rearranging the local structure around the mutation site. It

should be noted that Bongo does not benefit from sequence

information by using Andante, since the rearrangement of local side

chains modelled by Andante simply introduces a local rearrange-

ment to the residue-residue interaction network of a protein, which

does not affect the overall structure of the interaction graph and is

independent of the process of selecting vertex cover.

All the structural information is transferred into graphs by using

Graphviz (http://www.graphviz.org/), which is an open source

graph visualization project from AT&T Research.

The Graph Model of Bongo
Bongo derives the interaction graph of a protein by considering

each residue as a vertex and each residue-residue interaction as an

edge. More formally, an interaction graph G = (V,E) is a graph

such that V is the set of residues and E is a set of edges. An edge

(u,v) is defined between residue u and v if they exhibit one of the

following interactions: backbone bonding, hydrogen bonds (H-

bonds), p–p, p–cation, and hydrophobic interactions. Each edge is

initially given a weight of 1. We then normalise interactions

between two secondary structures by dividing the weight with the

total number of cross-secondary structure interactions. Intra-

secondary structure interactions are normalised in the same way.

For interactions involving a group of residues, namely hydropho-

bic interactions, we normalise them by the Vonoroi surface area of

each residues.

Key Residues Provide an Approximation of the Vertex
Cover with Minimal Weight

Since the key residues capture the vertices that are essential to

maintain the interactions, we model them through the vertex

cover set of the graph [29]. A vertex cover set S of a graph

G = (V,E) is the set of vertices such that for every edge (u,v), either u

or v is included in S. In the interaction graph terms, this amounts

to picking a set of residues that covers every interaction in the

graph. In Bongo, since the interactions are weighted, we consider

the vertex cover problem G = (V,E,c) where c: V R R+ is the

function that assigns weight to each vertex. A vertex cover set is

said to be minimum if it contains the set of vertices that covers all

interactions with smallest possible weight.

Selection Scheme That Identifies the Key Residues
The algorithm used to select key residues captures the concept

of pulling out one piece each time in a tower of wooden pieces,

with the difference that in our case the pieces pulled out are key

pieces but not redundant ones (Figure 7):

(1) Given a graph G = (V,E), pick the residue with highest

weighting, if more than one residue has the same weighting,

pick them all. That is, pick the set U = {v: c(v)#c(u) ; u,v M V}.

(2) Remove all key residues and the edges connected to it. That

is, replace the graph with G = (W, F) where W = V\U and

F = E\{(v,w) M E: v M U ~w M U}.

(3) Repeat (1) and (2) until no edge is left in the graph, i.e., F is

empty.

The algorithm reflects the importance of key residues in order of

selection: key residues selected in an earlier time are more

important, in terms of having higher priorities in maintaining the

interaction network, than others that are identified later. Since

there is a specific order of choosing vertices, the approximate

vertex cover chosen by Bongo for a specific graph will be the same

when Bongo repeats the selection process again. Taking advantage

of the priorities assigned to each key residue, Bongo eventually

quantifies the effect of a point mutation by considering the priority

of key residues affected.

Figure 7. Scheme showing the algorithm that Bongo uses to identify key residues. In step 1, vertex 3 is identified as the first key residue
since it has the greatest weight (4.5) of edges connected to it. In step 2, vertex 3 and all the edges connected to it are eliminated from the graph, and
the next key residue is vertex 4 since it has the greatest weight (4) in the remaining graph. In step 3, there is no edge left in the graph thus the
process of identifying key residues is terminated (if there are any edges left in the graph, the process of step 2 is repeated until no edge is left).
Therefore, the key residues in this example are {3, 4}, and residue 3 is more important than residue 4 in terms of forming the graph.
doi:10.1371/journal.pcbi.1000135.g007
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Supporting Information

Dataset S1 The 113 mutations that have negligible structural

effects.

Found at: doi:10.1371/journal.pcbi.1000135.s001 (0.02 MB PDF)
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