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Abstract. Recent works have stressed the important role that random mutations

have in the development of cancer phenotype. We challenge this current view by

means of bioinformatic data analysis and computational modelling approaches. Not

all the mutations are equally important for the development of metastasis. The survival

of cancer cells from the primary tumour site to the secondary seeding sites depends

on the occurrence of very few driver mutations promoting oncogenic cell behaviours

and on the order with which these mutations occur. We introduce a model in the

framework of Cellular Automata to investigate the effects of metabolic mutations and

mutation order on cancer stemness and tumour cell migration in bone metastasised

breast cancers. The metabolism of the cancer cell is a key factor in its proliferation

rate. Bioinformatics analysis on a cancer mutation database shows that metabolism-

modifying alterations constitute an important class of key cancer mutations. Our

approach models three types of mutations: drivers, the order of which is relevant for

the dynamics, metabolic which support cancer growth and are estimated from existing

databases, and non–driver mutations. Our results provide a quantitative basis of how

the order of driver mutations and the metabolic mutations in different cancer clones

could impact proliferation of therapy-resistant clonal populations and patient survival.

Further mathematical modelling of the order of mutations is presented in terms of

operators. We believe our work is novel because it quantifies two important factors in

cancer spreading models: the order of driver mutations and the effects of metabolic

mutations.
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1. Introduction

The development of tumours and the formation of metastasis are caused by cells

which due to mutations are incapable of correctly sensing the external signalling of the

environment and the surrounding cells so to adjust their metabolic and mitotic cycle

activities. The purpose of exchange of signals between the cell and the environment

is limiting their proliferation which, in the case of development of the cancer disease,

becomes uncontrolled. There are different ways the single cells and organisms can

defend against the development of tumour, for example, DNA self-repair mechanisms,

signals inducing apoptosis in case of mechanical and biochemical instabilities of a cell

and a prompt immune response which is capable of recognizing cancer cells. Mutations

are accumulated by cells during their life and passed as inheritance along different

progenies. In absence of external causes of mutations such as the exposition to radiations

or chemicals, errors in the DNA replication and crossing over during the mitotic cycle

are the major sources of mutations. Nowak proposed a model of cancer originating from

propagation and accumulation of mutations occurring since early age [1]. Nevertheless,

cancer is an ageing related disease as its development before the age of 30 years is rare.

Mutations may generate disruptions of cell cycle proliferation checkpoints, generate

cytoskeleton instabilities inducing cell death or metabolic pathway deregulations

increasing the cell proliferation, variation in the antigens and receptors on the membrane

which transduce external signals (for example avoiding the immune response). These

mechanisms produce the spreading of the sub–populations of cells (clones) with

accumulated mutations. The populations of cancer cells in the primary and secondary

sites are characterized by a large number of genes with altered gene expression due to

mutations. The tumour heterogeneity results in genotypic and phenotypic (for example

drug resistance) variance in the neoplastic cell populations. The heterogeneity increases

during time as a consequence of new mutations acquired by cells during subsequent

proliferations. Comparing gene expressions among cells in the primary site with those

in the metastatic sites, one can observe the heterogeneities between different sites are

not identical in variance, as well as, in the type of mutations accumulated; furthermore,

looking at overlapping subsets of mutations between different tumour sites, it is possible

to derive the time a secondary site originated, and if it is due to an offspring from the

primary site or a nearby secondary metastasis. If we consider cancer as an evolving

disease in competition for oxygen and energetic resources with other healthy cells,

mutational heterogeneity represents a strategy initiated by an early small number of

cancer stem cells. Therefore, the increase of heterogeneity can be seen as a diffusion

process with a drift in the multidimensional space of the cell state belonging to {0, 1}N
where N is the dimension of the space and represents the maximum number of genes

affected by the disease during all its evolution. We believe that in order to relate

cancer evolution with patient’s survival we need to take into account the characteristics

of cancer stem cells, the classes of mutations and for some classes, also the order of

mutations.
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The work is structured in the following way. In the next subsections, we discuss the

role of cancer stemness, and we define the type of mutations modelled and their effects

on cells. In the model section, we introduce the concept of order of driver mutations, and

we present the corresponding mathematical formulation. After which, we describe the

set of rules driving the model dynamics from which we derive the master equations in the

physical time. We model the effects of metabolic mutations on the cell cycle in terms of

waiting time distributions and compute the final form of the master equation depending

on the transition rates. The definition of the functional form of the transition rates

in terms of the cancer stemness follows. Further discussion on the order of mutations

in terms of ladder operators and the mathematical derivation of the effective driver

mutations is addressed in the last method subsection. In the results section, we present

how simulations are carried out and the analysis of data supporting both the metabolic

and driver mutations followed by the discussion and comparison of the three cases of

interest numerically simulated.

1.1. The role of Cancer Stemness

Stem cells are capable of both self-renewing and differentiating [2]; this means

they preserve themselves during proliferation without undergoing extinction due to

differentiation, and they are a source for more committed cells [3]. The process

of cell differentiation is mainly caused by epigenetic changes, and it results in the

appearance of new cell phenotypes. These changes in the cell state are induced by

external signalling or by internal variations of the cell dynamics like methylation or

segregation of factors during mitosis. Not all the signals and changes involved in the

differentiations are persistent or permanent. The loss of the new acquired phenotype is

called de-differentiation. Nevertheless, the restoration of the external niche preserving

the stemness or the circulation of factors inducing the cell stem state might not suffice

to re-establish the stem condition in differentiated cells or in cells proliferating in a

stem-like favourable condition [4]. Therefore, differentiated cells tendentiously do not

de-differentiate.

The renewal condition is met when a cell will always undergo asymmetric division

or undifferentiated symmetric proliferation. Stem cells are considered renewal at the

level of single cells, meaning after proliferating a stem cell produces at least a daughter

equal to itself. On the other hand, the hypotheses advanced by Knoblich and Morrison

in [5, 6] imply that stem cells might symmetrically proliferate differentiated cells when

the pool of (neighbour) stem cells do not risk extinction or has reached the maximum

number the niche can sustain in a stem state. This last statement makes the definition

of stem cell very close to the concept of population of cells which is in a state of high

fitness given that such state is the one with more undifferentiated characteristics when

compared with its progenies. The stemness of a cell is a behaviour which is not only

present or absent, but there are different degrees of stemness actuation. A cell can

lose its stemness when it cannot produce a more differentiated progeny or it cannot
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indefinitely proliferate; vice versa, a cell can increase its stemness by de-differentiation.

In an elevated mutational rate condition, changes in the DNA interfere or compete

with the cell differentiation process, and it may become the predominant source of

stemness variations [3]. Cancer stem cells are capable of producing a heterogeneous

population which presents different phenotypes. The mutations will change the internal

state of the cell affecting the transcription and translation processes. Cancer cells which

will become more unstable and less fit will disappear. Cancer cells with a high fitness

phenotype will survive if they proliferate asymmetrically or they do not acquire too

many degrading mutations. Cancer stemness is the behaviour of cancer cells to preserve

their phenotype and generate a heterogeneous population, part of which can show more

stem-like behaviours [7].

1.2. Classes of mutations

Cancer mutations have been distinguished in drivers and non–drivers (or passengers).

The accumulation of evidences of clonal heterogeneity and the observation of the arise

of drug resistance in clonal sub–populations, suggest that mutations usually classified

as non–drivers may have an important role in the fitness of the cancer cell and in the

evolution and physiopathology of cancer. Similarly, mutations that alter the metabolism

may modify the fitness of the cancer cell. The evolution of cancer clones in the context

of the driver and non–driver mutations has been visualized as a braided river, with the

capacity to diverge and converge [8].

Recently 122 potential immune response drivers–genetic regions in which mutations

correlate with the presence or absence of immune cells infiltrating the tumours, have

been reported. Current research into how tumours hide focuses on the over-expression

of so-called checkpoint inhibitors in cancer cells [9, 10].

There are multiple levels of heterogeneity: inter-patient, intra-patient and intra-

tumour. Inter-patient heterogeneity exists at the level where even within cancer of the

same type, patients exhibit differences in terms of both biology and prognosis. In breast

cancer, based on gene expression, patients can be classified into at least four broad

subtypes, namely basal (triple negative breast cancer (TNBC)), HER2+, and luminal

A and B subtypes. Luminal A and B are estrogen positive cancers, with luminal A

having the best prognosis; HER2+ has overexpression of the HER2 growth-enhancing

gene. These are slow growing tumours that respond well to treatment. The Basal or

TNBC subtype is triple negative for estrogen, progestin receptors and HER2. This is

the most aggressive subtype and is unresponsive to treatment. Extending on this, intra-

patient heterogeneity is defined by the differences in the primary and the metastatic

tumour sites; these include morphological and genetic differences, and differences in

terms of tumour aggressiveness and proliferation. Intratumour heterogeneity is then

explained by differences between regions within the same tumour mass [11–17].

The probing of the mutational space represents an advantage that cancer cell clonal

populations have adopted. Also, the temporal aspect of mutations is of great importance
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in the evolution of the disease [18,19].

In this work, we group the mutations in three main categories: driver mutations,

metabolic mutations and non–driver mutations.

The driver mutations are mutations of specific genes responsible for the deregulation

of pathways involved in the production of cytomembrane proteins which induce new

pro-oncogenic behaviours; they increase the capability of cancer cells to self-renewal.

Therefore, the driver mutations increase the fitness of cancer cells in a tissue and

their capability of creating a progeny carrying all the driver and non–driver mutations

accumulated. Hence, according to the definition in [20], driver mutations increase the

cancer cell stemness, even though it is not possible to explicitly say a cell with a higher

number of driver mutations corresponds to less uncommitted cell phenotype as in the

case of healthy stem cells. A relevant aspect in the evolution of the disease is that the

most important driver mutationss are very few. Works from A. Trumpp [21] show a

number between 4 and 5 drivers mutations may be responsible for high correlation with

survival. Recent works have provided evidence, at least in one cancer type, the order of

the driver mutations affects the cancer clone trajectories and the patient survival [18,19].

The role of non–driver mutations in cancer development and evolution has been

modelled in [22]. The authors consider two cases: 1) the neutral non–driver mutations

which do not affect the survival of cells and 2) the deleterious non–driver mutations as

opposing to the proliferative effects resulting from the pro-oncogenic driver mutations,

and consequently, causing a possible melting down of the cancer cell sub–populations.

The non–driver mutations are those mutations which do not promote the formation of

cancer stem cells and do not provide new oncogenic behaviours for the cells. Non–

driver mutations generally affect the genes which are not related to the pathways

promoting proliferation, migration, resistance to immune response and the formation

of colonies. Cancer cells acquiring non–driver mutations become more unstable both in

the cytoskeletric structure and in their fitness.

The metabolic mutations include all the set of mutations relative to the cell

energetic needs and the controls of cell proliferation [23]. We consider that cells with

accumulated metabolic mutations have an accelerated proliferation cycle because there

is a sustained availability of ATP, a reduced sensitivity to cell activity inhibiting signals,

and many of the checking procedures which are present during the various proliferation

phases are not activated. Consequently, a higher number of these mutations further

speed up the cell proliferation by reducing the time necessary to activate all these

processes and the costs in terms of resources and energy.

2. Model

2.1. Modelling the order of driver mutations

Although the effects of mutations on cancer heterogeneity and phenotypic plasticity of

cancer evolution has led to interesting pure theoretical models (see for instance [24]),
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and it has also been addressed by combining theoretical modelling, bioinformatics and

experimental data (see for instance [25–28] among others), there is a paucity of models

that take into account the effects of the order of mutations. In [29], mutations are

accumulated in a predefined sequence, and all the cells, sooner or later, will follow the

same trajectory if they are not eliminated, or do not die along the way. In other cases,

the gene expression of a sample of cancer cells are analysed at different times [30,31], or

in various sites [32] in order to identify the order in which the mutations occurred [33–35].

The fate of a cell is strongly related to the environment it is surrounded by. In our case,

we consider that the order of mutations is given only by the environment, and it is not

related to the dynamic, or evolution of the cancer cells. Indeed, the mutation order does

not represent a tight preferential order of occurrence of mutations. On the contrary, the

mutation order does not induce any constraint or bias on the occurrence of mutations

which is instead random. The driver mutations affect the fitness of a tumoural mutated

cell in a given compartment. In this work, the order among the driver mutations is given

by the maximization of the survival of cancer cells which travel through a sequence of

compartments from primary tumour site to secondary cancer site. We define a path as

the sequence of tissues a hypothetical cancer cell will visit during its migrations before

forming a metastasis. Different cancer cells can traverse different organs or tissues

defining different paths. All the paths begin at the primary tumour site, and each of

them ends in a site where cancer cells can form a secondary colony. Nevertheless, due

to multiple metastasization sites, the final point of the paths can differ. Generally, a

path has a different probability of being traversed than others. This means that among

the total amount of cells forming the primary tumour only a portion will travel through

a specific path, and some of the paths will be more common than others.

Let us define the set of m compartments C = {c1, c2, . . . , cm} where, for convenience,

c1 represents the primary site and the last s compartments {cm−s+1, . . . , cm} are

the secondary sites. Let us also introduce the transition probability Tij from the

compartment ci to another compartment cj for those cells which already have all possible

useful mutations to pass through all the compartments. The transition matrix T is such

that
∑

j Tij = 1, and all the elements on the diagonal are one for all the secondary sites

and zero otherwise. For each compartment cj, we define the cell density ρj(n) after n

transitions. If σ(i) is a permutation of the m compartments C visited by the cells, then

we say a path of length l is given by

PC(σ) = {σ(1), σ(2), . . . , σ(l)}

and, after n ≤ l transitions, the population which has followed the PC(σ) path is:

ρσ(n) =
n−1∏
i=1

Tσ(i),σ(i+1)ρσ(1).

If at the beginning all the cells are in c1 so that ρj(n = 0) = δj,1, then we must impose

that a path’ s initial point is σ(1) = 1. Furthermore, a path ends when it reaches for
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the first time one of the absorption points meaning that, after l steps, cσ(l) corresponds

to one of the secondary sites (σ(l) > m − s). Many paths will have a final population

density ρ(l) = 0 because the transition Tij = 0 before reaching the end of the path.

If PC is the set of paths obtained by all possible permutations of the compartments,

then PC = maxρ(l)(PC) are the most probable paths. For the sake of simplicity, from

here on, we restrict ourselves to the case PC contains only one element representing

the path with higher probability of being traversed. Nevertheless, there are no extra

difficulties in considering multiple paths one at a time, and then studying the jointly

resultant dynamics. Hence, the order we consider is given by the order of the tissues

(compartments) the cancer cell will visit during its migration from the primary tumour

site towards the secondary metastatic sites. The reason for introducing this type of

order is related to the fact that a cancer cell migrating into a different compartment is

a rare event which is almost impossible if the cell does not develop the right behaviours

due to the occurrence of proper mutations.

A similar explanation is valid in the case of the survival (fitness landscape) of a

cell while it remains for a period of time in a compartment. In different tissues, the

cells need different membrane proteins to separate from the other surrounding cells, to

migrate, to access or exit a specific compartment and to be recognized by the immune

system as self. All these behaviours are not necessary at the same time, and in all

the compartments, but only a few of them at a time are required during the travel

through a compartment or in the transitions between compartments. As a consequence

of the concomitant facts that a tumour cell needs specific driver mutations and that

mutations can not be counterbalanced, the originating site and preferential way for a

cell to reach the secondary sites determine the right order of accumulation of driver

mutations. Therefore, if we order the compartments in the sequential order the cancer

cells will traverse them, then we can establish the proper order of driver mutations for

a high fitness and a short permanence during the development of metastases.

After we have specified the path P , let us introduce the index k ∈ N identifying

the compartments in the order given by the path. In the case the cells need only one

driver mutation during each migratory transition between two compartments the index

k can also be associated to the required driver mutations necessary to continue the

travel along the path. If dk is the driver mutation needed to go from compartment k to

compartment k+1, then the cell which follows the specific path defined as an increasing

value of k at each migratory transition till compartment k = l, will also generate the

sequence D = {d1, d2, . . . , dl} which defines the right mutation order.

We can extend the previous case to situations where the number of driver mutations

for each compartment is more than one. Hence, if C = {c1, . . . , cl} is the sequence of

compartment in the order visited by the cancer cells, and, for any k, Sk is the set of

driver mutations necessary in the compartment ck to improve the fitness landscape or

to increase the probability of migrating in a different compartment, then we can define
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two sequences of sets as follow:

S ′k =
k⋃
j=1

Sj, 1 ≤ k ≤ l (1)

S ′′k = S ′k \ Sk−1, 1 ≤ k ≤ l (2)

S ′′0 = ∅. (3)

The k-th element in the sequence S ′ = {S ′1, . . . , S ′l} in (1) is the cumulated mutations

of cells following the right order of mutations which have just entered in the ck+1

compartment, while the k-th element in the sequence S ′′ = {S ′′1 , . . . , S ′′l } in (2) describes

all the mutations for a cell following the right order of mutations that has just entered in

the ck compartment necessary in order to pass in the k+1-th compartment. If Si∩Sj = ∅
for any 1 ≤ i, j ≤ l, then S ′′k = Sk, but in general mutations in a set S = {S1, . . . , Sl}
can be necessary in other compartments. The right order of mutations, hence, also

represents the most fit and the fastest path in the mutation space. Any deviation from

the right order of mutations reduces to an increased cancer cells apoptosis rate and a

longer period of time for cells in a given compartment.

The order of mutations determines many aspects of the life of a cancer stem cell. In

general, it is safe to say that the mutational selection is a filter dynamically influenced by

the order of appearance of driver mutations. During the loss of stemness and acquisition

of different phenotypes, a cancer cell experiences different environments, and in each of

them, it has a different value of fitness depending on the presence of specific mutations.

These particular mutations may have already occurred in the history of the cancer clone

so to assure the survival. We believe that the fitness of a cancer cell is a complex function

that is modified by environmental factors such as immune system, drugs and therapies.

The introduction of the order of driver mutations does not completely constraint the

evolution of the system; indeed, in terms of single cells, the presence of this order does

not at all affect the appearance of a mutation and is absolutely not perceived by the

cells meaning that cells cannot use the right order of mutations to make any present

choice or forecast any future state of the system. Therefore, single cells will continue

to acquire mutations randomly. The cells and their progenies will explore the mutation

space following different trajectories not limited by a unique mutation order. Eventually,

the trajectory will feel the effects of the mutation order in terms of dynamics.

The interactions between a cell and the surrounding environment is what determines

the dynamics of the cell itself [2]. As approximation, in average, a compartment

is uniform and ready to interact with those cells which present the right membrane

proteins. On the other hand, the cells, most of the time, are neutral to the environment

interactions similar to a neutral molecule in an electric field.

We consider that driver mutations become effective only if they are preceded by

other specific driver mutations. In other words, we introduce a unique sequential order

of the driver mutations. If a driver mutation is acquired in a different order from the

one predefined, it remains ineffective until all the driver mutations, which should have

been occurred before according to the sequential order, are activated.
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2.2. Cancer dynamics and evolution

In order to mimic the tumour evolution, we have used an approach based on the

framework of cellular automata. Each cancer cell will evolve following four types of

actions depending on the internal state of the cell and the environment constraints. The

actions are asymmetric proliferation, symmetric proliferation, apoptosis and migration.

These actions can be expressed in reaction form as follow:

C{d,mm,mn,k} → C{d+ui,mm+1,mn,k} + C{d,mm+1,mn,k}, (4a)

C{d,mm,mn,k} → C{d,mm+1,mn+1,k} + C{d,mm+1,mn,k}, (4b)

C{d,mm,mn,k} → C{d+ui,mm+1,mn,k} + C{d+ui,mm+1,mn,k}, (5a)

C{d,mm,mn,k} → C{d,mm+1,mn+1,k} + C{d,mm+1,mn+1,k}, (5b)

C{d,mm,mn,k} → 0, (6)

C{d,mm,mn,k} → C{d,mm,mn,k+1}, (7)

where C{d,mm,mn,k} is the cell having d specific driver mutations, an amount

of mm metabolic mutations, mn non–driver mutations and being located inside the

compartment k. The reactions (4a), (4b), (5a), (5b), (6) and (7) indicate that the cells

C on the left side of → undergo a process which will end with their annihilation and

the creation of new cells specified by the right side of →. The states of the cells are

expressed between the brackets {. . .}.
The vector d has a dimension md and belongs to the space {0, 1}md . Each

component dj of the vector d takes into account the state of the single driver mutation

j ∈ [1,md], and dj = 1 if the mutation is present or dj = 0 otherwise. The set of vectors

ui have all the components equal to zero except the i-th component which is equal to

one. The number of the acquired and unordered metabolic and non–driver mutations

are represented by the integer numbers mm and mn, respectively. In the model proposed,

we impose that each mutation can occur at most one time independently on the type

and severity of the mutation. This persistent accumulation effect on the mutation space

is more explicit for the driver mutations. In fact, the initial state of the driver mutations

for any cells is given by the vector d = 0 having all the components equal to zero, and

after a driver mutation occurs, the corresponding component become equal to one. In

the same way, a further mutation relative to the same gene is excluded, meaning the

component will never switch back to zero, and that gene will never be chosen again

among the possible mutating genes, hence reducing the mutation space. It is worth to

remark the state of the system changes only when there is a mutation corresponding to

a single gene, and its dynamic is sensible only to such mutations. Despite the previous

statements, the model can be easily extended to include a set of genes for each driver

mutation. These sets do not need to be disjoint, but they can share some common genes,

and when a mutation for a specific gene occurs, its state (or counting) is changed in each

set where the gene is included, see section 2.6. Adding the above model extension will

allow us to trace more precisely the diffusion in the metabolic mutation space caused

by each driver mutation and their temporal order.
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The reactions (4a) and (4b) describe the proliferation of cells principally

characterized by stem-like behaviours, hence following an asymmetric mytotic cycle.

The two reactions represent the cases when a driver and a non–driver mutation occurs,

respectively. The reactions (5a) and (5b) show the symmetric proliferation when a driver

and a non–driver mutation occurs, respectively. The reactions (5a) and (5b) are related

to more differentiated cells which show progenitor-like characteristics. The reaction

(6) represents cells undergoing apoptosis. Generally this is the fate followed by cells

with high instabilities or committed cells with low stem-like characteristics, which have

a reduced proliferation activities even when stimulated. The last reaction, (7), takes

into account the migration of cells which have developed mutations allowing them to

move and pass from an environment to another. The migration process depends on the

occurrence of proper driver mutations which need to be developed in the proper order

given by the order of the environments, k → k + 1.

We have assumed driver and non–driver mutations are two disjoint classes of

mutations, but both can be included in the wider class of the metabolic mutations.

Hence, in (4a), (4b), (5a) and (5b) at each occurrence of a driver or non–driver mutation,

there is an increase of one of the number of metabolic mutations. The reasons for this

choice are that, on one side, the metabolic mutations mark the advancing age of the cell

in terms of how many mutations steps it has acquired (see below for connections with

stemness and commitment), and on the other side, the advantages and disadvantages

produced by the mutations can be considered independent from the speed of the cell

metabolic activity. In order to simplify the complex representation of the underlying

biological system, we do not consider reactions which result in the increasing of only

metabolic mutations.

We have six reactions when indeed there are only four distinct actions occurring

in the system. The cause for these over number of reactions is related to the choice

of representing the system as if there where multiple classes of mutations, and each

mutation can be definitely tagged as belonging to one and only one of these classes.

However, from a biological and experimental point of view, probably, not all the

mutations involved can be marked with a distinct colour, but more like if they were

a mix of shades. Indeed, a gene (and the molecules derived from its transcription and

translation) can have a function in a compartment or at a given state and play another

role somewhere else. For the sake of simplicity, we have grouped all the non–driver

mutations in an integer variable with the purpose of counting them and neglecting the

order of their occurrence. First, as we said above, non–driver mutations are not strictly

necessary for the worsening and the progress of the disease, but are mutations bringing

small disadvantages to the cells when compared with the large advantages of the driver

mutations. Second, the order of occurrence of the non-driver mutations in respect to all

the mutations is less important than for the driver mutations, because they are weakly

linked to the driver mutations and to the environment fitness constraints as well as

compartment transition rates.

The rates of the reactions (4a), (4b), (5a), (5b), (6) and (7) are not constant,
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but depend on the cancer stemness. Therefore, each cell has specific probabilities of

proliferating or undergoing apoptosis. If r ∈ [1, 4] ⊂ N is the index addressing one of

the four reactions defined above, then we can define the probability function Pr(s) that

the reaction r occurs as follow:

Pr : s ∈ S → [0, 1], (8)∑
r

Pr(s) = 1 ∀s , (9)

where s is a real positive value in [0, 1] and it represents the cancer stemness of the cell.

The stemness can be generated by a random process.

The cancer stemness does not depend explicitly on the gene expression, but only

on the mutation state. Therefore, on the complete mutational space, the cells proceed

along trajectories of cancer stemness which increases or decreases due to acquisition

of new driver and new non–driver mutations, while the stemmness does not depend

directly on the number of metabolic mutations. Eventually, if cells survive, they will be

attracted toward the asymptotic value given by s(max(me),max(mn)). The amount of

cells per compartment is limited by a carrying capacity which determines the maximum

number of cells that can be stored in a given compartment. The maximum number of

cells depends on the oxygen/energetic needs and it changes in function of the type of

the metabolic activities. The cumulative energetic needs are computed as:

E =
∑
j

e(j)N(j) (10)

where j is the number of driver mutations accumulated, e is the energetic needs

depending on the accumulated driver mutations and N is the total number of cells

in a compartment with given j mutations.

2.3. Master equation of the mutation process

Let us consider the cell state σ = {d,mn,mm, k} with d driver mutations, mn passenger

mutations, mm metabolic mutations and in the compartment k. the index total mm

represents also the age of the trajectory in the natural time of the occurrence of the

events mm = d · d+mn.

The rates of transition involved in each action depends on the cancer cell stemness

which is linked to the internal state of the cell, σ = {d,mn,mm, k}, and to the number

of mutations, md and mn. Also the probabilities of acquiring a driver or a passenger

mutation depend on the number of mutations already accumulated by the cells.

The conditional probability density ρ(d,mn,mm) that a cell starting from the state

σ0 = {0, 0, 0, k} arrives after mm steps to the state σ = {d,mn,mm, k} is:
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ρ(d,mn,mm, k) =[
1

md

md∑
i=1

rasym(md − 1,mn, k)rd(md − 1,mn, k)ρ(d− ui,mn,mm − 1, k)

+ rasym(md,mn − 1, k) rn(md,mn − 1, k) ρ(d,mn − 1,mm − 1, k)

]

+ 2

[
1

md

md∑
i=1

rsym(md − 1,mn, k) rd(md − 1,mn, k) ρ(d− ui,mn,mm

−1, k)+rsym(md,mn−1, k) rn(md,mn−1, k) ρ(d,mn−1,mm−1, k)

]
− rsym(md,mn, k) ρ(d,mn,mm, k)− rapop(md,mn, k)ρ(d,mn,mm, k)

+ [rpass(md,mn, k − 1)ρ(d,mn,mm, k − 1)

− rpass(md,mn, k)ρ(d,mn,mm, k)]

(11)

The first term enclosed in square brackets describes the increase of number of cells in

the state σ = {d,mn,mm, k} due to asymmetric proliferation. The mutation occurring

during the asymmetric proliferation can be driver or passenger; hence rd(σ)+rn(σ) = 1.

The second term enclosed in square brackets takes into account the increase of cells

due to symmetric proliferation, while the third term express the fact that both the

daughter cells equally change their state and there is no self-renewal. The fourth term

is the decreasing of cells due to apoptosis, and the last term is due to the change of

compartment. For the sake of simplicity, from now on, we will represent the rates

without explicit dependence on the cell internal state whenever possible.

To have a description of the dynamics comparable with the biological process, we

need to switch from the natural time of the events, regulated by the internal clock of each

single unit (the cell) advancing only when an event at that scale occurs, to the physical

time when the events actually occur [36], meaning when the time is measured with a

macroscopic clock regularly advancing after a large and in average constant amount of

events happen. To do so, we introduce the conditional probability density ρ(d, n, i+ 1)

that a cell starting a time t = t0 in the state σ0 = {0, 0, 0, k} and exactly at time t the

cell changes for the (i+ 1)-th time its state to be equal to σ = {d,mn,mm, k}:
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ρ(d,mn,mm, k, t)

=

∫ t

0

{
ψ(mm − 1, t− t′)[(

1

md

md∑
i=1

rasym rd ρ(d− ui,mn,mm − 1, k, t′) + rasym rnρ(d,mn − 1,mm − 1, k, t′)

)

+2

(
1

md

md∑
i=1

rsym rd ρ(d−ui,mn,mm−1, k, t′)+rsym rn ρ(d,mn−1,mm−1, k, t′)

)]

+ ψ(mm, t− t′)

[
− rsym ρ(d,mn,mm, k, t

′)− rapop ρ(d,mn,mm, k, t
′)

+

(
rpass ρ(d,mn,mm, k − 1, t′)− rpass ρ(d,mn,mm, k, t

′)

)]}
dt′,

(12)

where ψ(i, t) is the waiting time distribution that after i events, the next event occurs

exactly at time t. The integral means we consider that the event before the last may

have occurred at any possible time t′ between 0 and t. The waiting time depends on

the number i of mutations occurred. The corresponding survival distribution is given

by the relation:

Ψ(i, t) = 1−
∫ t

0

ψ(i, t′) dt′.

If we consider an ensemble of cells, whose genome generates a trajectory in the

mutation state which starts from a common initial state (the healthy state) and evolves

in time. If we let the system run and then freeze it, what we see is a population of cells

which are in different states. Differently from the natural time frame, we observe cells

which have accomplished unequal amounts of jumps; therefore, if i is associated to the

age of the cells, then at any time i in the natural time frame, the system is composed

of cells having the same age, while at any instant in the physical time frame, there are

cells with few mutations together with cells which have accumulated a large number of

mutations.

The total amount of cells with σ = {d,mn,mm, k} mutations observed at time t are

those cells which changed their state to σ (with any possible order of the occurrence of

d and n) at an earlier time t′ without further events between the time t′ and t included

jumping exactly at time t. Hence the probability density p(d,mn,mm, k, t) of finding a

cell in σ is:

(13)

p(d,mn,mm, k, t) =

∫ t

0

ρ(d,mn,mm, k, t
′) Ψ(mm, t− t′) dt′

= δ(d− d0)δ(mn − n0)Ψ(mm, t)

+

∫ t

0

ρ+(d,mn,mm, k, t
′)Ψ(mm, t− t′) dt,
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where we have performed a Riemann-Stieltjes integral over time with a discontinuity of

the conditional probability densities ρ in t = 0 which can be expressed as:

(14)ρ(d,mn,mm, k, t
′) = δ(mn − n0)δ(t− 0+) + ρ+(d,mn,mm, k, t

′).

The time derivative of the previous equation give:

d

dt
p(d,mn,mm, k, t) = ρ+(d,mn,mm, k, t)

−
∫ t

0

ρ+(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′ − δ(d− d0)ψ(mm, t)

(15)

where the flux of particle exiting the σ state is:

(16)
j(d,mn,mm, k, t) =

∫ t

0

ρ(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′

=

∫ t

0

ρ+(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′ + δ(d)− d0)ψ(mm, t).

Therefore, the master equation in terms of incoming and outgoing fluxes are:

(17)
d

dt
p(d,mn,mm, k, t) = ρ+(d,mn,mm, k, t)− j(d,mn,mm, k, t).

Using (14), we can write the incoming flux in terms of the outgoing flux defined in

(16). The explicit result for the specific set of reaction is:

(18)

ρ+(d,mn,mm, k, t)

=

{
[

1

md

md∑
i=1

rasym rd j(d− ui,mn,mm, k, t) + rasym rnj(d,mn − 1,mm, k, t)

]

+2

[
1

md

md∑
i=1

rsym rd j(d− ui,mm, k, t) + rsym rn j(d,mn − 1,mm, k, t)

]
− rsym j(d,mn,mm, k, t)− rapop j(d,mn,mm, k, t)

+ [rpass j(d,mn,mm, k − 1, t)− rpass j(d,mn,mm, k, t)]

}
.

In order to express the master equation only in terms of the probability density

(see the derivation in [37] for more general case), we can Laplace transform both (13)

and (16):

L{p(d,mn,mm, k, t)} = p̃(d,mn,mm, k, s) = L{ρ(d,mn,mm, k, t)} L{Ψ(mm, t)},

L{j(d,mn,mm, k, t)} = j̃(d,mn,mm, k, s) = L{ρ(d,mn,mm, k, t)} L{ψ(mm, t)},
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from which it is easy to derive the relation between the transformed probability density

p̃ and the transformed influx of cells j̃ in terms of the transformed memory kernel K̃:

j̃(d,mn,mm, k, s) = p̃(d,mn,mm, k, s)
ψ̃(mm, s)

Ψ̃(mm, s)
, (19)

and

K̃(mm, s) =
ψ̃(mm, s)

Ψ̃(mm, s)
. (20)

The previous results allow us to rewrite the master equation in terms only of the

Laplace transform of the probability density:

L
{

d

dt
p(d,mn,mm, k, t)

}
= s p̃(d,mn,mm, k, s)− p(d,mn,mm, k, 0)

= K̃(mm − 1, s){[
1

md

md∑
i=1

rasym rd p̃(d− ui,mn,mm − 1, k, s) + rasym rn p̃(d,mn,mm − 1, k, s)

]

+ 2

[
1

md

mm∑
i=1

rsym rd p̃(d− ui,mn,mm − 1, k, s) + rsym rn p̃(d,mn,mm − 1, k, s)

]}

+ K̃(mm, s)

{
− rsym p̃(d,mn,mm, k, s)− rapop p̃(d,mn,mm, k, s)

+

[
rpass p̃(d,mn,mm, k − 1, s)− rpass p̃(d,mn,mm, k, s)

]}
.

(21)

The master equation can be directly anti-Laplace transformed resulting in integro-

differential equations with memory kernel K(mm, t). Nevertheless, explicitly introducing

the functional form of the waiting time distributions may result in further simplifications.

2.4. Metabolic waiting time distributions

In order to take into account the effect of acceleration due to metabolic mutations,

we introduce an exponential waiting time which depends on the number of metabolic

mutations mm:
(22)ψ(mm, t) = α(r +mm)e−αrt e−αmmt,

where 1
αr

is the cell cycle mean time of cells with no mutations, and α is the increase

of the cell cycle rate caused by each metabolic mutation. With this choice, the Laplace

transform of the memory kernel is K̃(mm, s) = α(r + mm). Substituting the previous

result in the Laplace transform of (21) and anti-Laplace transforming, we obtain the
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final form of the master equation:

d

dt
p(d,mn,mm, k, t)

= α(r +mm − 1){[
1

md

md∑
i=1

rasym rd p(d− ui,mn,mm − 1, k, t) + rasym rn p(d,mn,mm − 1, k, t)

]

+ 2

[
1

md

mm∑
i=1

rsym rd p(d− ui,mn,mm − 1, k, t) + rsym rn p(d,mn,mm − 1, k, t)

]}

+ α(r +mm)

{
− rsym p(d,mn,mm, k, s)− rapop p(d,mn,mm, k, t)

+

[
rpass p(d,mn,mm, k − 1, t)− rpass p(d,mn,mm, k, t)

]}
.

(23)

2.5. Equations and range of parameters

To completely describe the evolution of cancer cells’ probability densities given in

section 23, we need to define the transition rates for each type of action which depend on

the mutational state of the cells in such a way to mimic the effects of the cancer stemness

and the order of driver mutations. Therefore, we introduce a sufficiently generic form

valid for all 4 type of actions described in (4a), (4b), (5a), (5b), (6) and (7) which includes

an explicit dependency on the cancer stemness s and on the amount of effective driver

mutations me:

(24)ract =
1

N
Aact χact(s) kact(me, k).

The rates are given by the product of a constant rate amplitude Aact modulated by

a support function χact(s) depending only on the stemness of a cell multiplied by a filter

function kact(me, k) which is a function of the number of effective driver mutations and

the compartment k divide by the normalization factor N . Each of the terms in the rate

are action type dependent. The amplitude Aact determines how much more recurrent

is the specific action in a given compartment. The support function χact ∈ [0, 1] has

the purpose of determining which actions are active for a specific value of the stemness

s . The filter kact ∈ {0, 1} selects the subgroup of cell states which present specific

properties to perform an action. For each cell state, the normalization factor is defined

as:

N =
∑
act

ract.

Because the cancer stemness plays a role in the survival and proliferation capability

of the cells and is less important in the transition from one tissue to another, we consider

χpass = 1. Vice versa the effective driver mutations are mainly relevant for the migration

of cells from one compartment to another, hence kasym = ksym = kapop = 1. For
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the remaining modulating functions, if the actions are allowed only for one contiguous

compact interval of the cancer stemness s , then a valid choice for the support is:

χact(s) = Θ(s − w/2 + cact) Θ(w/2− s −+cact),

where Θ is a step function, and w is the extension of the support centred around cact.

The former condition can be relaxed and more phenomenological derived functional

forms, which do not present discontinuities and are derivable, can be chosen as support

functions. Nevertheless, the product of Heaviside functions makes the problem simpler

and allow us to describe a large variety of relevant cases.

To obtain the effect of asymmetric division for more stem-like cells and apoptotic

tendency for more committed cells, then:

casym < csym < capop < s .

These non-holonomic constraints, do not imply the support functions belong to disjoint

range of the cancer stemness domain. Indeed, they can overlap so to mimic more

realistic biological cases where for the same value of cancer stemness corresponds to

multiple possible actions. On the other hand, for disjoint support functions, the cancer

stemness strictly dictates the cell behaviour.

The filter function kpass(me, k) is a simple step function which is zero if the cell does

not have all the necessary driver mutations Sk defined in (2), and it is 1 if me ≥ Sk. It is

worth to remark that effective driver mutations can be derived from the vector of driver

mutations d by applying ladder operators similar to those used in quantum mechanics

for describing the energetic state of a harmonic oscillator which automatically accounts

for the order of driver mutations (for more details see section 2.6).

The cancer stemness is a positive real value function in [0, s ] defined on the sub-

space of driver and non–driver mutations. As discussed in Sec. section 1.1, the cancer

stemness is related to the population of cancer cells due to their fitness. While the driver

mutations (and the respective gene expressions) are responsible for the production of

proteins and receptors on the surface of the cell membrane, the non–driver mutations

are responsible for the cell instabilities related to the cytoskeleton. Hence a possible

choice for the cancer stemness is s(md,mn) = s md√
1+mn

. The surface produced by s is

a strictly monotonically increasing function of the driver mutations md and a strictly

monotonically decreasing function of the non–driver mutation mn, while it does not

depend on the metabolic mutations mm. The variation of the cancer stemness for each

cell is a random process driven by the acquisition of mutations. If we regard the md

and mn as continuous parameters is it possible to define isocurves of cancer stemness.

Cells whose trajectories remain on the same isocurve while acquiring mutations will

not change their (average) behavior, while cells crossing the isocurves will become more

stem–like if going toward higher levels or more committed if going toward lower levels.
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2.6. Operators

2.6.1. Mutation operator and order of driver mutations If we define the vector

g = {g1, . . . , gmd
} where gi is the i-th gene and the operator Ĥg such that given a

set of genes S, Ĥg(S) returns a vector η = {η1, . . . , ηmd
} with components

ηi =

{
1 if gi ∈ S
0 otherwise

, (25)

then applying Ĥg to each element of the sequence S ′ defined in (1), we obtain

C = Ĥg ◦S ′ = {Ĥg(S
′
1), . . . , Ĥg(S

′
k
)} = {η1, . . . ,ηk}.

C is the matrix in [0, 1]k×md describing which mutated gene is considered necessary

in a given compartment where the rows ηk represent the genes and the columns Cj
identify a gene in the compartments. One or more genes may be important in various

compartments and C may not be a full rank matrix.

Let us define a state vector mj ∈ R2 corresponding to the gene gj in the mutations

representation so that, in the standard basis Bmj
=
{(

1
0

) (
0
1

)}
, we can introduce the

mutation observable as a diagonal matrix operator

M̂j =

(
1 0

0 −1

)

which acts on the respective eigenvectors as follows: M̂j (mj) = λmj
mj. The mutation

operator has two eigenvalues λmj
: 1 and -1 representing the case gene gj is mutated

or not mutated, respectively. The corresponding eigenvectors are equal to the basis

vectors. Generally, there are multiple genes involved in the dysfunction of a cell or in

the appearance of a new oncogenic behaviour. Hence, the vector space of the genes’

multitude can be represented as the direct product of single gene vectors:

m =

md⊗
j=1

mj ∈M ⊆ R(2
md)

,

and, similarly, the mutation operator for multiple genes is given by:

M̂ =

md⊗
j=1

M̂j,

where, formally, the symbol ⊗ can be interpreted as the Kronecker product of the

operators M̂j. The mutations operator applied to an eigenvector of genes returns the

eigenvector times the product of all the genes’ eigenstates:

M̂ (m) =

md∏
j=1

λmj
m = λMm.
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From the mutation operator M̂j and the elements ckj of the matrix C of necessary genes

in a compartment, we derive the operator for a single gene:

D̂kj = Î− 1

2
ckj

(
Î− M̂j

)
=

(
1 0

0 1− ckj

)
which measures the deregulation introduced by a gene in a set of important alterable

genes like those belonging to a genetic pathway. D̂kj is diagonal in the mutations

representation (Bmj
), and the two eigenvalues λDkj

are degenerate with value 1 if the

gene gj is unimportant in compartment k, while they are non degenerate if the gene is

important. In the latter case, λDkj
is 0 when gj mutated and 1 otherwise. As shown

before, we can use the direct product over all the genes to define the deregulated pathway

operator referring to compartment k (or to a genetic pathway) for all the involved genes:

D̂k =

md⊗
j=1

D̂kj.

If the state vector m is an eigenvector of M̂ , it is also an eigenvector of the

deregulated pathway operator:

D̂k (m) =

md∏
j=1

λDkj
m = λDk

m,

and the eigenvalue λDk
∈ {0, 1} determines if all the genes in compartment k are

mutated. In case we want to compare the state of two different cells or the states

of a cell at two different times given by m1 and m2, we define the inner product

〈m2,m1〉 = δm1,m2 so that:〈
m2, D̂k (m1)

〉
= λDk

δm1,m2.

It is straightforward noticing that the deregulated pathway operator allows us to

properly address the problem of inter compartmental unordered cumulated mutations

and the intra-compartmental order of mutation through the index k just by imposing

the orthogonality between elements belonging to different compartments.

In fact, if k1 and k2 are two generic compartments, and mk1 and mk2 are the

mutation vectors referring to the multiple genes in the respective compartments, then:

D̂k1 (mk2) =

{
λDk1

mk1 k1 = k2

0 otherwise
.

To easily deal with the order of mutation among compartments in terms of

operators, we need to extend the notation by defining the level state vector ` ∈ L
where the vector space L is given by the direct sum of k identical M space vector,

which for convenience we rename as Mk, such that:

L =
k⊕
k=1

M =
k⊕
k=1

Mk ⊆ R(2
md)·k

.
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An opportune basis for L is the standard basis where the first 2md basis vectors are a

complete basis for M1, and their linear combinations refer to the mutation states of

all the genes while a cell is in compartment k = 1. The basis vectors having the only

component different from zero at positions going from 2md + 1 to 2md+1 are a complete

basis for M2, and their linear combinations refer to the mutation state of all the genes

while the cell is in compartment k = 2. The partition of the basis vectors of L can be

similarly done for each compartment.

Let us call `k the gene state eigenvectors of a cell in compartment k such that

the components from 2md+k + 1 to 2md+k+1 are identical to the respective eigenvectors

mk ∈ Mk in the k-th compartment. In this representation, we can redefine and unify

the set of deregulated pathway operators in a simpler form:

D̂ =


D̂1 0 · · · 0

0 D̂2 · · · 0
...

...
. . . 0

0 0 · · · D̂k

 ,

and D̂ (`k) = λDk
`k.

It is important to stress all the state vectors defined above are all factorizable

because genes and compartments are all considered independent.

2.6.2. Ladder operators and effective driver mutations The deregulated pathways

operator D̂ is diagonal in the representation of the orthonormal level basis B`k =

{`1, `2, . . . , `k}, and it only has two degenerate eigenvalues λD equal to 0 and 1; the null

eigenvalue means not all the required genes involved in the regulation/compensation of

a specific pathway are mutated so as to not result in further oncogenic activity, and

the latter eigenvalue means the pro-oncogenic behavior is present and the cell can use it

when needed. Let us introduce the ladder operators for the level of the path L̂+ and L̂−.

The two operators act on the basis by increasing or decreasing the level respectively.

Therefore, the creation operator gives L̂+ (`k) = `k+1 for any integer 1 ≤ k < k, and

it returns 0 when applied on `k. In the opposite way, the action of the annihilation

operator is L̂− (`k) = `k−1 for any integer 1 < k ≤ k, and it gives 0 when applied on

`1. The ladder operators are the transpose of one another: L̂+ =
(
L̂−
)T

. For extended

discussions on ladder operators and their applications see [38–40],

Coupling the degenerate operator and the ladder operators such that B̂+ = L̂+D̂

and B̂− = D̂L̂− is useful to determine which one of a succession of ordered events in the

cell path represents a barrier. The barrier operators B̂+ and B̂− applied to the elements

of the basis vectors B`k give

B̂+ (`k) = λDk
L̂+ (`k) = λDk

`k+1

and

B̂− (`k) = D̂ (`k−1) = λDk−1
`k−1
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if 1 ≤ k + 1 ≤ k and zero otherwise.

In order to determine the value of the transition rate of each cell to jump from

one compartment to the next, it is necessary to determine how many driver mutations

are effective for the specific cell. In a system with a finite number of levels, meaning a

finite number of compartments, this computation can be achieved by using the effective

ladder operators Ê± = 1

1−B̂±
.

The result of the effective ladder operators on the basis vector `k is:

Ê± (`k) =
∑
j=0

1≤k±j≤k

(
j∏
i=0

λDk±i

)
`k±j

where the factors
(∏j

i=0 λDk±i

)
are different from zero only when all the ordered

sequence of driver mutations previous to (in case of Ê−) and afterwards (in case of

Ê+) the unknown value me in a given compartment k have already been acquired. The

number of effective driver mutations me for a cell in compartment k is finally retrieved

by the square of the norm of Ê− (`k) as follows:〈
`k, Ê

+Ê− (`k)
〉

=
∑
j=0

1≤k±j≤k

(
j∏
i=0

λDk±i

)
= me. (26)

This result can be applied to find the value of rpass of each cell in each compartment

and at each simulation step by knowing the cell mutated genes.

3. Results

3.1. Simulations

The simulations are done in the framework of CA where each unit represents a cancer cell

having a position σ = {d,mn,mm, k} in the cell state space composed by the mutation

space and the tissue space. A simulation consists in a set of cells beginning with specific

initial conditions and evolving together with the advancing of time. At each time,

each cell continues to occupy the same position until an event occurs after which the

corresponding cell moves to a new position in the state space. The evolution of cells, the

creation of new others and their annihilation are given by stochastic events following

the rules in (4a), (4b), (5a), (5b), (6) and (7). There are two types of constraints for

the cells. One is due to the limited extension of the cell state space given by the ranges

{0, 1}md , {0, . . . ,mn}, {0, . . . ,mm} and {1, . . . , k} which are already included in the

master equation. The second constraint is a volume exclusion limit which impose a

maximum capacity of cells having the same number of driver mutations. The update of

the system during the simulations is based on the asynchronous self-clocked time scheme

where each cell has an independent timer. When a cell undergoes a specific action all

the resulting cells from the product of the reaction set their timers to a random period
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given by the waiting time distribution (22) which depends on the cell state. Hence,

the waiting times for the new events are chosen randomly after an event occurs and are

based on the actual new cell state. This interval of time remains constant independently

from other events occurring meanwhile. The type of action performed at the end of a

time period is randomly chosen with probabilities given in (24) which depend only on

the internal state of the cell. Because the state of a cell does not change between events,

we are in a case of non competition between the reactions; therefore the type of action

performed by a cell at the end of the time period can be tossed and decided at the

beginning of the time period. At the end of the time period, the cell checks all the

constraints and if the limits are not reached, the reaction is performed,otherwise it is

put back. Simulations with the same initial conditions and parameters are repeated

multiple times. At each time, the number of cells in the same cell state are averaged

over the ensemble of simulations. Eventually, the mean trajectories and the deviations

from the mean are computed. In some cases the trajectories of the cells are projected

into a sub–space of the entire cell state and then averaged so to reduce the number of

degrees of freedom and highlight the main characteristics of the systems corresponding

to the observables which are experimentally detected. The program for the simulations

has been written using the commercial software Wolfram Mathematica.

3.2. Data analysis supporting metabolism-related mutations

The Cosmic (http://cancer.sanger.ac.uk/) is the world’s largest and most comprehensive

database resource for exploring the impact of somatic mutations. Other valuable

databases include The Gene Expression Omnibus (GEO, www.ncpi.nlm.nih.gov/gds)

among others. We have developed a R program that performs statistical analysis on

the Cosmic database, identifies and evaluates the functional impact of each mutation

by using a combination of pathways and gene ontology approaches. The functional

annotation and enrichment analysis allows to classify large lists of genes into metabolism

related groups. We have then extracted useful statistical estimators that allows to

quantify the role of the metabolism-related mutations in the context of driver and

non–driver mutations and the heterogeneity of proliferation rates among the cells. We

have analysed the mutations with different threshold of FATHMM-MKL value which

measures the impact of a mutation . The FATHMM-MKL algorithm predicts the

functional, molecular and phenotypic consequences of protein missense variants using

hidden Markov models [41].

This analysis shows the importance of the metabolic mutations in the context of

the mutation impact calculated with the FATHMM score.

3.3. Discussion

To highlight the role of effective driver mutations and the role of the order in which the

driver mutations occur, we look at the differences with the unordered driver mutations

dynamics in which cancer cells evolve and migrate to different tissue depending only

http://cancer.sanger.ac.uk/
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Table 1. Go Ontologies ( from the top biological processes, molecular functions,

cellular components ) of the mutations with the highest FATHMM score > 0.9; the

last section shows the relative enrichment of the mutations with the highest FATHMM

with respect to a background of low FATHMM score below 0.7

GO term Description P-value

FDR

q-
value

Enrichment (N,B, n, b)

process

GO:0090662
ATP hydrolysis coupled trans-

membrane transport
7.30E-68 1.07E-63 14.24 (16103,65,1079,62)

GO:0099131
ATP hydrolysis coupled ion trans-

membrane transport
5.08E-62 3.72E-58 14.18 (16103,60,1079,57)

GO:0044710 single-organism metabolic process 1.84E-56 8.97E-53 2.66 (16103,3086,507,258)

GO:0099132
ATP hydrolysis coupled cation

transmembrane transport
5.61E-53 2.06E-49 14.61 (16103,48,1079,47)

GO:0044281 small molecule metabolic process 2.11E-47 6.20E-44 3.36 (16103,1526,549,175)

GO:0019752 carboxylic acid metabolic process 2.44E-42 5.95E-39 4.62 (16103,750,530,114)

GO:0006631 fatty acid metabolic process 3.57E-41 7.47E-38 15.96 (16103,262,181,47)

GO:0006637 acyl-CoA metabolic process 7.30E-40 1.34E-36 34.72 (16103,82,181,32)

GO:0035383 thioester metabolic process 7.30E-40 1.19E-36 34.72 (16103,82,181,32)

GO:0043436 oxoacid metabolic process 8.82E-39 1.29E-35 4.16 (16103,855,530,117)

GO:0006082 organic acid metabolic process 1.20E-38 1.59E-35 4.11 (16103,872,530,118)

GO:0032787
monocarboxylic acid metabolic

process
2.28E-38 2.79E-35 5.85 (16103,437,529,84)

GO:0044255 cellular lipid metabolic process 7.30E-37 8.23E-34 4.11 (16103,873,507,113)

molecular

GO:0043492
ATPase activity, coupled to

movement of substances
1.30E-114 5.69E-111 14.04 (16121,111,1086,105)

GO:0016820
hydrolase activity, acting on acid
anhydrides, catalyzing transmem-

brane movement of substances

6.49E-102 1.42E-98 14.18 (16121,98,1079,93)

GO:0042626

ATPase activity, coupled to trans-

membrane movement of sub-
stances

1.51E-99 2.20E-96 14.16 (16121,96,1079,91)

GO:0015399
primary active transmembrane
transporter activity

3.07E-97 3.37E-94 13.87 (16121,98,1079,91)

component

GO:0044444 cytoplasmic part 1.16E-32 2.06E-29 1.33 (16121,7980,1311,866)

GO:0005581 collagen trimer 1.69E-26 1.50E-23 3.90 (16121,84,3100,63)

GO:0016469
proton-transporting two-sector
ATPase complex

5.20E-22 3.09E-19 13.20 (16121,25,1075,22)

GO:0005891
voltage-gated calcium channel

complex
4.81E-20 2.14E-17 6.14 (16121,37,2201,31)

GO:0034704 calcium channel complex 3.39E-18 1.21E-15 4.93 (16121,54,2241,37)

GO:0005759 mitochondrial matrix 6.33E-18 1.88E-15 5.21 (16121,303,470,46)

GO:0098533
ATPase dependent transmem-
brane transport complex

1.57E-17 4.00E-15 13.82 (16121,19,1044,17)

GO:1904949 ATPase complex 1.04E-16 2.31E-14 13.13 (16121,20,1044,17)

GO:0043190
ATP-binding cassette (ABC)

transporter complex
1.09E-16 2.15E-14 240.61 (16121,7,67,7)

drivers vs

non–drivers

GO:0044238 primary metabolic process 2.63E-12 5.94E-09 1.03 (10465,5247,9049,4658)

GO:0044237 cellular metabolic process 2.85E-12 5.53E-09 1.03 (10465,5305,9049,4708)

GO:0071704
organic substance metabolic pro-

cess
4.81E-12 8.16E-09 1.03 (10465,5488,9049,4865)
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on the number of driver mutations md and not on the specificity of the corresponding

genes. We simulate the two distinct cases and compare the recovering capabilities of

cancer cell populations after a drug targeting sub–populations of cells within a specific

range of the state σ = {d,mn,mm, k} has been administered in one compartment. The

effect of the drug is simulated by killing all the cells which match a given signature

at the time of administration tdrug. Therefore, let us define a drug target signature

σdrug = {ddrug,mn drug,mm drug, kdrug}, the amount of driver mutations md drug and the

vector of driver mutations ddrug belonging to the same space of the cell driver mutations

{0, 1}md , so that all the cells immediately sent to apoptosis are those for which hold

true both the relations:

σdrug ◦ σ = σdrug ◦ σdrug, (27a)

md drug ||d||1= md drug
2 (27b)

where ◦ is the Hadamard product and ||·||1 is the taxi cab norm of a vector. Then,

we observe the recovery of the populations after the perturbation induced by the drug

affecting the target cells is applied at the same time in the ordered and unordered

simulations. In the simulations, we have considered the biological significant case of

breast cancer cells metastasising in the bone. The process encompasses three different

tissues. The mammary ducts are the primary site where cells develop malignant mu-

tations and become tumourigenic. The second tissue is the circulatory system. Cancer

cells which undergo epithelial to mesenchymal transition will initiate to migrate and,

chemoattracted to regions with higher concentration of oxygen and nutrients, eventu-

ally they will intravasate through the proximal blood vessels. There, the cancer cells,

also named Circulating Tumour Cells (CTC), will travel in the circulatory system. The

CTCs which are recognized as self by the immune system will survive longer in the cir-

culatory system, but only the cells capable of extravasating while reach the secondary

sites. The third tissue is the bone. Breast cancer cells’ preferred metastasisation sites

are regions enriched in TGF–β, and bone tissue has one of the highest concentration

of TGF–β. Bone tissue represents the statistically preferred secondary site for breast

cancer cells. Nonetheless, not all cancer cells reaching the secondary site will be enough

tumourigenic to generate metastases, but only those which undergo mesenchymal to

epithelial transition show sufficient cancer stem-like behaviours with the potentiality to

form a secondary colony. Cell survival and capability of migrating is due to specific

membrane proteins involved in breast cancer metastasising in the bone. A small subset

of four genes corresponding to membrane proteins which positively correlate with the

evolution of the disease and the survival of the patients has been experimentally found

in [29] and are EPCAM, CD47, CD44 and MET. Mutations of these genes correspond

to driver mutations. The EPCAM is related to the cells’ connectivity of the mammary

duct lumen and plays a role in the epithelial to mesenchymal transition [42]. The CD47

is responsible for the production of membrane proteins increasing the survival of can-

cer cells by helping them to evade macrophage phagocytosis. CD44 variant isoforms
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are highly expressed in carcinomas of epithelial origin and relate to tumour progression

and metastatic potential of some cancers. The protein CD44 bound with hyaluronic

acid and sugar rich coating molecules is found on the surface of endothelial cells and

tumour cells. Different amounts of CD44 changes the arrangement of the coating sug-

ars causing the exposition of the embedded adhesion mediated selectin and integrins

favouring cell extravasation [43]. The MET gene regulates mesenchymal to epithelial

transition, and its overexpression positively correlates with metastasis formation. The

four driver mutations present a sequential order given by their respective functional-

ity in the three tissues, hence the order of the genes and their respective mutations

is {EPCAM, CD47, CD44, MET}. Using the definition in (2), we derive the following

table:

S ′′1 S ′′2 S ′′3

breast circulatory sys. bone

EPCAM CD47, CD44 MET

0-1 1-3 3-4

(28)

which puts in relation each compartment with a subset of mutations necessary to reach

or seed in the next compartment, hence, defining the right order of driver mutations. In

the circulatory system, CTCs need two driver mutations to survive and reach the bone

tissue. The order of mutations between CD47 and CD44 is not important and both are

considered effective drivers. The last row of table 28 shows the minimum and maximum

number of effective driver mutations a cell can have in each compartment.

We have simulated three distinct cases of drug targets. The first two cases are less

realistic, but are proposed to show the effect of drugs acting on unordered driver muta-

tion systems, hence targeting cells with non specificity of the mutated gene. While, the

last case is a realistic example of a drug affecting cells in a specific compartment with

specific driver mutations. The drug target signature for the cases studied are:

case 1:

one driver

case 2:

two drivers

case 3:

specific drivers

ddrug {0, 0, 0, 0} {0, 0, 0, 0} {0, 1, 0, 0}
mn drug 0 0 0

mm drug 0 0 0

kdrug 2 2 2

md drug 1 2 0

(29)

All the components of the drug signature equal to zero are disregarded. Consequently,

cells can have any value corresponding to each of the null components and still be a

drug target.
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In case 1 of table 29, all the circulating tumour cells which have acquired a single

driver mutation are killed by the drug at time tdrug as shown in figure 1. On the one

hand, this means in the simulations with no ordered driver mutations, the cells targeted

in the circulatory system could have acquired any of the four driver mutations listed in

table 28. Considering that when the order of mutations does not affect the dynamics,

the cells which have one of any of the driver mutations can already intravasate, and, by

entering in the circulatory system, they allow the restoration of the number of CTCs

with one driver constituting a reservoir for cells which later acquire a second and a

third driver mutation by asymmetrical division. Furthermore, the drug does not target

sub–populations of cells having two or more driver mutations. Indeed, the dynamics of

the sub–populations of cells having more than one driver when the drug is administered

are close to the simulations with no drugs meaning they are mainly reservoirs of their

own sub–populations due to symmetrical proliferation.

On the other hand, in simulations with ordered driver mutations, a drug targeting

any cell with one driver (case 1) is more effective when compared with the simulations

with no order of driver mutations only in terms of total number of CTCs. The reason

for less CTCs is that the minimum requirement to intravasate is having the mutation

of the EPCAM gene which is more restrictive when compared to the unordered driver

dynamics. Indeed, the sub–population of cancer cells with two driver mutations is

close to the corresponding sub–population in the simulations with no order. The sub–

population of cells exiting the mummary duct and entering the circulatory system is

represented in both ordered and unordered driver simulations by the sub–population

with one driver mutation referring to the EPCAM gene in the former and to a generic

driver in the latter. Case 1 highlights a set of situations where perturbing sub–

populations of cells in a compartment with few driver mutations compared to the total

number of mutations necessary to change compartment, hence which are upstream

in respect to the local progenies, does not affect sub–populations with more driver

mutations, and therefore, the role of asymmetric proliferation is less relevant due to the

loss of cancer stemness.

In case 2 of table 29, the drug targets cancer cells in the second compartment

with two driver mutations. Cell sub–populations are plotted in figure 2. As in the

previous case, the results present different dynamics and drug conditions in all three

compartments. The effect of the treatment is equal in both simulations with order and

without order of driver mutation respectively. Indeed, the sub–population of circulating

tumour cells with two driver mutations are going to zero at time tdrug. The differences

between the two simulations is given by the dynamics of recovering of the targeted

sub–populations and by the competition with the non targeted ones.

Similarly to case 1, when no treatment is administered, the number of CTCs with

one driver mutation is larger in the simulations with unordered dynamics due to a less

restrictive filter on the transition rates of cancer cells to pass from the mammary duct

into the circulatory system than in the simulations with ordered dynamics. On the

contrary, sub–populations with two driver mutations is larger in the ordered dynamics
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than in the unordered one because there are larger reservoirs of cancer cells in the

mammary duct which have a null transition rate as a consequence of the wrong order

of driver mutations. These reservoirs are composed of heterogeneous populations of

cancer cells which go from committed phenotypes to more stem-like phenotypes. When

the necessary mutations are acquired (in this specific case the required mutation is on

the EPCAM gene) by any of the cells in the reservoirs, their transition rate becomes

different from zero, and they contribute to the sub–populations with higher numbers

of driver mutations shown in the last row of table 28. Cells with more stemness will

have more chances to survive and divide asymmetrically, while committed cells will

have less possibility to contribute to the evolution of the disease. Similarly, many CTCs

are obliged to remain in circulatory system until they have all the required mutations

necessary for the extravasation. Hence, in the simulations with order of driver mutations,

there are CTCs with more than two driver mutations, while in the simulations without

order, there is only a sub–population of cells with two driver mutations which are already

ready to extravasate.

The evolution of sub–populations of cancer cells reaching the bone compartment

are similar in both ordered and unordered types of simulations when the system is

not perturbed at all. Instead, when a perturbation is applied at time tdrug, the

simulations with unordered dynamics show no sub–population of cells capable of seeding

and metastasise in the bone, while, in the simulations with order of driver mutation

dynamics, the number of aggressive cancer cells capable of reaching the bone tissue is

even larger than in the absence of perturbation. This major difference between the two

dynamics stems from the fact that in simulations with ordered driver mutations there

are CTCs having high value of cancer-stemness which are missing only few (in this case

just the CD47 and CD44 genes) driver mutations, but are constrained to remain in the

circulatory system. The lack of extravasating capabilities make these sub–populations

of cancer cells apparently less aggressive, when instead they are a few mutational steps

away from the aggressive phenotype. Furthermore, part of these cells acquired a large

number of metabolic mutations which contribute to the speed of the cell cycle and their

effective capability of forming secondary colonies.

Case 3 of table 29 differentiates from the former cases for the specificity of the drug

that targets only circulating tumour cells with the CD47 gene mutated, see figure 3.

In the dynamics with ordered driver mutations, the sub–populations affected are those

with two and three driver mutations, but the treatment leaves untouched cells with

only one driver mutation referring to the EPCAM gene. In this case, we can see the

corresponding curves do not go to zero as in the former cases because the respective

sub–populations contain cells without the CD47 mutation. In the unordered dynamics,

the drug also hit the sub–population of cells with one driver mutation, and it is more

effective compared with the ordered dynamics. Precisely in terms of combinatorics, the

drug in the unordered dynamics targets 1/4 of all the combinations of cells with one

driver mutations, 1/2 of the combinations of cells with two driver mutations and 3/4

of the combinations of cells with three driver mutations. In the dynamics with ordered
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driver mutations, the drug targets none of the cells with one driver mutation, 1/3 of the

combinations of cells with two drivers and 2/3 of the combinations of cells with three

driver mutations.

The order of driver mutations introduces a strong constraint in the migration

of cancer cells from one compartment to another compared to a cancer evolution

driven by unordered dynamics, and the former limits the cell heterogeneity much

more than the latter. Even though the ordered dynamics is slower as consequence

of the limits imposed on the transition rates by driver mutations waiting to become

effective driver mutations, the ordered and unordered dynamics are comparable up to

opportune rescaling of parameters. Nevertheless, the two dynamics are characterized

by completely different types of evolution of the disease after the same kind of drug

treatment. Simulations based on the unordered driver mutations show a slower recovery

of the cancer populations and a retardation in the appearance of highly tumorigenic sub–

populations, while simulations with ordered driver mutations show a faster restoration of

the targeted cells and the anticipation of the appearance of aggressive sub–populations.

The perturbation induced by the drug produces different results on the two

dynamics by breaking the symmetries between the heterogeneous cancer cell sub–

populations. In the examples shown on breast cancer metastasizing in the bone, the

restoration induced by the ordered dynamics strongly affects the extravasating cancer

cells because, although the cells with mutation in the CD47 gene are sent to apoptosis

by the drug, many other cells which present much less effective driver mutations (in this

specific case only one effective driver mutation) survive, and some of these surviving

cells are mutationally a few steps away from becoming highly tumorigenic.

Hence, drugs targeting the larger sub–populations of cells just entering the

compartment or the sub–populations surviving longer when not treated are less effective

in the long time regime because they eliminate the cells with a high number of effective

driver mutations. However, they leave cells with an even higher number of driver

mutations with a non aggressive phenotype, but which are missing a few mutations

to unlock the complete sequence of the right order of mutations and switch to an

aggressive tumorigenic phenotype. Furthermore, cells with few effective driver mutations

can posses high stem-like potentiality due to acquired driver mutations which are not

effective. These cells, in the long time regime, represent a source for many other cancer

cells speeding up the restoration of cancer sub–populations.

4. Conclusion

We investigated the role of heterogeneity in cancer cells by embedding a new internal

structure driving the development of the disease in the dynamics of the mutation

process. Such internal structure is given by the order of occurrence of mutations

and the metabolic cell cycle acceleration. The structure introduced in the dynamics

stems from a phenomenological derivation of the effects of mutations which results in

an increase/decrease of the capability of cancer cells to survive, differentiate, proliferate
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and metastasise. On one side, we have considered driver mutations responsible for the

increase of cancer cell stemness and their order relevant for the development of oncogenic

phenotypes involved in the process of metastasization in a secondary site of the cell and

its progenies. On the other side, metabolic mutations are related to the production and

consumption of ATP and are involved in the acceleration of the mitotic rate.

The order of mutations and acceleration of the dynamics have been considered

relevant in some specific types of cancers like melanomas, but their importance and

effects have been experimentally difficult to measure. To understand their effects on

cancer evolution, we introduced an analytical description of the order of driver mutations

and the effects of metabolic mutations in terms of operators, and we have included them

in the derivation of the master equations for the cancer cell populations.

This model has been applied to the case of breast cancer metastasising in the bone

tissue for which we simulated the evolution of cancer in presence and absence of the order

of driver mutations. To highlight the differences between the two types of dynamics,

we have compared them before and after they are affected by an external perturbation

represented by the action of an anti-tumoral drug. The numerical results show the

order of mutations introduce a slower dynamics of cancer cells reaching the bone

than in simulations with no order of driver mutations. Nevertheless, for realistic drug

perturbations of the two dynamics, the recovery of aggressive cancer sub-populations

is faster in presence of order of driver mutations than in the case of cancer cells non

sensitive to the mutation order.

This model pinpoints how the order of mutations and metabolic mutations in cancer

may be responsible for the short time of relapse after drug treatments. Furthermore,

this work helps us to understand the difficulties in experimentally detecting the order of

mutation in cancer, their role in the dynamics and their response due to the interactions

of the system with drugs.
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Figure 1. Plot of the number of cell populations in function of the time. The 3

tissues are shown in the columns ordered from left to right following the cell traversing.

All the combinations of ordered (w/ order) and unordered (w/o order) mutation

dynamics together with drug (w/ drug) and without drug (w/o drug) administration

are considered and shown in rows. Each curve represents the sub–population of cells

with a specific number of driver mutations: md = 0 is red, md = 1 is green, md = 2 is

pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is

at time tdrug which is marked with a vertical line for easier comparison. The target of

the drug, (27a) and (27b), and the compartment affected is shown at the bottom.
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Figure 2. Plot of the number of cell populations in function of the time. The 3

tissues are shown in the columns ordered from left to right following the cell traversing.

All the combinations of ordered (w/ order) and unordered (w/o order) mutation

dynamics together with drug (w/ drug) and without drug (w/o drug) administration

are considered and shown in rows. Each curve represents the sub–population of cells

with a specific number of driver mutations: md = 0 is red, md = 1 is green, md = 2 is

pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is

at time tdrug which is marked with a vertical line for easier comparison. The target of

the drug, (27a) and (27b), and the compartment affected is shown at the bottom.
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Figure 3. Plot of the number of cell populations in function of the time. The 3

tissues are shown in the columns ordered from left to right following the cell traversing.

All the combinations of ordered (w/ order) and unordered (w/o order) mutation

dynamics together with drug (w/ drug) and without drug (w/o drug) administration

are considered and shown in rows. Each curve represents the sub–population of cells

with a specific number of driver mutations: md = 0 is red, md = 1 is green, md = 2 is

pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is

at time tdrug which is marked with a vertical line for easier comparison. The target of

the drug, (27a) and (27b), and the compartment affected is shown at the bottom.
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