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Abstract

In this paper, we study the effects of different prior and
likelihood choices for Bayesian matrix factorisation, focus-
ing on small datasets. These choices can greatly influence
the predictive performance of the methods. We identify four
groups of approaches: Gaussian-likelihood with real-valued
priors, nonnegative priors, semi-nonnegative models, and fi-
nally Poisson-likelihood approaches. For each group we re-
view several models from the literature, considering sixteen
in total, and discuss the relations between different priors
and matrix norms. We extensively compare these methods
on eight real-world datasets across three application areas,
giving both inter- and intra-group comparisons. We measure
convergence runtime speed, cross-validation performance,
sparse and noisy prediction performance, and model selec-
tion robustness. We offer several insights into the trade-offs
between prior and likelihood choices for Bayesian matrix fac-
torisation on small datasets—such as that Poisson models
give poor predictions, and that nonnegative models are more
constrained than real-valued ones.

1 Introduction
Matrix factorisation methods have become very popular in
recent years, and used for many applications such as col-
laborative filtering (Salakhutdinov and Mnih 2008a; Chen,
Wang, and Zhang 2009) and bioinformatics (Gönen 2012;
Brouwer and Lió 2017). Given a matrix relating two entity
types, such as movies and users, matrix factorisation decom-
poses that matrix into two smaller so-called factor matrices,
such that their product approximates the original one. Ma-
trix factorisation is often used for predicting missing values
in the datasets, and analysing the resulting factor values to
identify biclusters or features.

Most models can be categorised as being either non-
probabilistic, such as the popular models by (Lee and Se-
ung 2000), or Bayesian. The former seek to minimise an er-
ror function (such as the squared error) between the original
matrix and the approximation. In contrast, Bayesian variants
treat the two smaller matrices as random variables, place
prior distributions over them, and find the posterior distribu-
tion over their values after observing the data. A likelihood
function, usually Gaussian, is used to capture noise in the
dataset. Previous work (Brouwer and Lió 2017) has demon-
strated that Bayesian variants are much better for predictive

tasks than non-probabilistic versions, which tend to overfit
to noise and sparsity.

Matrix factorisation techniques can also be grouped by
their constraints on the values in the factor matrices. Firstly,
many approaches place no constraints, using real-valued
factor matrices (commonly done in the Bayesian literature
(Salakhutdinov and Mnih 2008b; Gönen 2012)). Instead,
we could constrain them to be nonnegative (as is popu-
lar in the non-probabilistic literature (Lee and Seung 2000;
Tan and Févotte 2013)), limiting its applicability to nonneg-
ative datasets, but making it easier to interpret the factors and
potentially also making the method more robust to overfit-
ting. Thirdly, semi-nonnegative variants constrain one fac-
tor matrix to be nonnegative, leaving the other real-valued
(Wang, Li, and Zhang 2008; Ding, Li, and Jordan 2010). Fi-
nally, some versions work only on count data.

In the Bayesian setting, the first three groups of methods
all generally use a Gaussian likelihood for noise, and place
either real-valued or nonnegative priors over the matrices.
For the former, Gaussian is a common choice (Salakhut-
dinov and Mnih 2008b; Gönen 2012; Virtanen, Klami,
and Kaski 2011; Virtanen et al. 2012), and for the lat-
ter options include the exponential distributions (Schmidt,
Winther, and Hansen 2009). The fourth group uses a Pois-
son likelihood to capture count data (Gopalan and Blei 2014;
Gopalan, Hofman, and Blei 2015; Hu, Rai, and Carin 2015).
These models are often extended by using complicated hi-
erarchical prior structures over the factor matrices, giving
additional behaviour (such as automatic model selection).

This paper offers the first systematic comparison between
different Bayesian variants of matrix factorisation. Similar
comparisons have been provided in other fields, such as for
the regression parameter in Bayesian model averaging (Ley
and Steel 2009; Eicher, Papageorgiou, and Raftery 2011),
which demonstrated that the choice of prior can greatly in-
fluence the predictive performance of these models. How-
ever, a similar study for Bayesian matrix factorisation is
still missing. More strikingly, many papers that introduce
new matrix factorisation models do not provide a thorough
comparison with competing approaches, or popular non-
probabilistic ones such as (Lee and Seung 2000)—for exam-
ple, the seminal paper by (Salakhutdinov and Mnih 2008b)
compares their approach with only one other matrix factori-
sation method; although (Gopalan, Hofman, and Blei 2015)
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compares with three others.
We give an overview of the different approaches that

can be found in the literature, including hierarchical pri-
ors, and then study the effects of these different Bayesian
prior and likelihood choices. We aim to make general state-
ments about the behaviour of the four different groups of
methods on small real-world datasets (up to a million ob-
served entries), by considering eight datasets across three
different applications—four drug effectiveness datasets, two
collaborative filtering datasets, and two methylation expres-
sion datasets. Our experiments consider convergence speed,
cross-validation performance, sparse and noisy prediction
performance, and model selection effectiveness. This study
offers novel insights into the differences between the four
approaches, and the effects of popular hierarchical priors.

We note that there is a rich literature of Bayesian non-
parametric matrix factorisation models, which learn the size
of the factor matrices automatically. However, these mod-
els often require complex inference approaches to find good
solutions, and hence their predictive performance is more
determined by the inference method than the precise model
choices (such as likelihood and prior). In this paper we there-
fore focus on parametric matrix factorisation models, to iso-
late the effects of likelihood and prior choices.

Finally, we acknowledge that the models we study were
generally introduced for a specific application domain, and
that this makes it hard to make general statements about the
behaviour of these methods on different datasets. However,
we believe that it is essential to provide a cross-application
comparison of the different approaches, as this teaches us
valuable lessons for the applications studied, and they are
likely to apply to different areas as well. The lack of other
studies exploring the trade-offs between likelihood and prior
choices for Bayesian matrix factorisation make this a novel
and essential study.

2 Bayesian Matrix Factorisation
In this section we introduce the different matrix factorisa-
tion models that we study. Formally, the problem of matrix
factorisation can be defined as follows. Given an observed
matrix R ∈ RI×J , we want to find two smaller matrices
U ∈ RI×K and V ∈ RJ×K , each with K so-called factors
(columns), to solve R = UV T + E, where noise is cap-
tured by matrix E ∈ RI×J . Some entries in R may be un-
observed, as given by the set Ω = {(i, j) | Rij is observed}.
These entries can then be predicted by UV T .

In the Bayesian treatment of matrix factorisation, we ex-
press a likelihood function for the observed data that cap-
tures noise (such as Gaussian or Poisson). We treat the la-
tent matrices as random variables, placing prior distribu-
tions over them. A Bayesian solution for matrix factorisa-
tion can then be found by inferring the posterior distribution
p(θ|D) over the latent variables θ (U , V , and any addi-
tional random variables in our model), given the observed
data D = {Rij}i,j∈Ω. This posterior distribution is often
intractable to compute exactly, but several methods exist to
approximate it (see Section 4.1).

In Section 2.2 we introduce a wide range of models from

the literature, and categorise them into four groups. The
model names are highlighted in bold in the text.

2.1 Probability Distributions
We introduce all notation and probability distributions in the
paper below.

diag(λ−1) is a diagonal matrix with entries λ−1
1 , .., λ−1

K
on the diagonal.
N (x|µ, τ−1) = τ

1
2 (2π)−

1
2 exp

{
− τ2 (x− µ)2

}
is a

Gaussian distribution with precision τ .
N (x|µ,Σ) = |Σ|− 1

2 (2π)−
K
2 exp

{
− 1

2 (x− µ)TΣ−1(x− µ)
}

is a K-dimensional multivariate Gaussian distribution.
G(τ |ατ , βτ ) = βτ

ατ

Γ(ατ )x
ατ−1e−βτx is a Gamma distribu-

tion, where Γ(x) =
∫∞

0
xt−1e−xdt is the gamma function.

NIW(µ,Σ|µ0, β0, ν0,W0) =
N (µ|µ0,

1
β0

I)W−1(Σ|ν0,W0) is a normal-inverse
Wishart distribution, where W−1(Σ|ν0,W0) is an inverse
Wishart distribution, and I the identity matrix.
L(x|µ, ρ) = 1

2ρ exp
{
− |x−µ|ρ

}
is a Laplace distribution.

IG(x|µ, λ) = λ
2πx3 exp

{
−λ(x−µ)2

2µ2x

}
is an inverse Gaus-

sian.
E(x|λ) = λ exp {−λx}u(x) is an exponential distribu-

tion, where u(x) is the unit step function.

T N (x|µ, τ) =





√
τ
2π exp

{
− τ2 (x− µ)2

}

1− Φ(−µ√τ)
if x ≥ 0

0 if x < 0

is a truncated normal: a normal distribution with zero density
below x = 0 and renormalised to integrate to one. Φ(·) is the
cumulative distribution function of N (0, 1).

2.2 Models
There are three types of choices we make that determine
the type of matrix factorisation model we use: the like-
lihood function, the priors we place over the factor ma-
trices U and V , and whether we use any further hierar-
chical priors. We have identified four different groups of
Bayesian matrix factorisation approaches based on these
choices: Gaussian-likelihood with real-valued priors, non-
negative priors (constraining the matrices U ,V to be non-
negative), semi-nonnegative models (constraining one of the
two factor matrices to be nonnegative), and finally Poisson-
likelihood approaches. Models within each group use differ-
ent priors and hierarchical priors, and many choices can be
found in the literature. In this paper we consider a total of
sixteen models, as summarised in Table 1. We have focused
on fully conjugate models (meaning the prior and likelihood
are in the same family of distributions) to ensure inference
for each model is guaranteed to work well, so that all per-
formance differences in Section 6 come entirely from the
choice of likelihood and priors.

The first three groups all use a Gaussian likelihood for
noise, by assuming each value in R comes from the prod-
uct of U and V , Rij ∼ N (Rij |UiVj , τ

−1), with Gaussian
noise added of precision τ , for which we use a Gamma prior



Table 1: Overview of the Bayesian matrix factorisation models.

Category Name Likelihood Prior U Prior V Hierarchical prior

Real-valued GGG N (Rij |UiVj , τ
−1) N (Ui|0, λ−1I) N (Vj |0, λ−1I) -

GGGU N (Rij |UiVj , τ
−1) N (Ui|0, λ−1I) N (Vj |0, λ−1I) -

GGGA N (Rij |UiVj , τ
−1) N (Ui|0, diag(λ−1)) N (Vj |0, diag(λ−1)) λk ∼ G(α0, β0)

GGGW N (Rij |UiVj , τ
−1) N (Ui|µU ,ΣU ) N (Vj |µV ,ΣV ) (µU ,ΣU ) and (µV ,ΣV )

∼ NIW(µ0, β0, ν0,W0)
GLL N (Rij |UiVj , τ

−1) L(Uik|0, η) L(Vjk|0, η) -
GLLI N (Rij |UiVj , τ

−1) L(Uik|0, ηUik) L(Vjk|0, ηVjk) ηUik and ηVjk ∼ IG(µ, λ)
GVG N (Rij |UiVj , τ

−1) p(U) ∝ N (Vj |0, λ−1I) -
exp{−γ det(UTU)}

Nonnegative GEE N (Rij |UiVj , τ
−1) E(Uik|λ) E(Vjk|λ) -

GEEA N (Rij |UiVj , τ
−1) E(Uik|λk) E(Vjk|λk) λk ∼ G(α0, β0)

GTT N (Rij |UiVj , τ
−1) T N (Uik|µU , τU ) T N (Vjk|µV , τV ) -

GTTN N (Rij |UiVj , τ
−1) T N (Uik|µU , τU ) T N (Vjk|µV , τV ) p(µUik, τ

U
ik|µµ, τµ, a, b) ∝

1√
τUik

(
1− Φ(−µUik

√
τUik)

)

N (µUik|µµ, τ−1
µ )G(τUik|a, b)

GL2
1 N (Rij |UiVj , τ

−1) p(U) ∝ exp p(V ) ∝ exp -
{−λ2

∑
i(
∑
k Uik)2} {−λ2

∑
j(
∑
k Vjk)2}

with Uik ≥ 0 with Vjk ≥ 0

Semi- GEG N (Rij |UiVj , τ
−1) E(Uik|λ) N (Vj |0, λ−1I) -

nonnegative GVnG N (Rij |UiVj , τ
−1) GVG with Uik ≥ 0 N (Vj |0, λ−1I) -

Poisson PGG P(Rij |UiVj) G(Uik|a, b) G(Vjk|a, b) -
PGGG P(Rij |UiVj) G(Uik|a, hUi ) G(Vjk|a, hVj ) hUi and hVj ∼ G(a′, a

′

b′ )

G(τ |ατ , βτ ). The last group instead opt for a Poisson like-
lihood, Rij ∼ P(Rij |UiVj). This only works for nonnega-
tive count data, withR ∈ NI×J , but has been studied exten-
sively in the literature due to the popularity and prevalence
of datasets like the Netflix Challenge.

Real-valued matrix factorisation The most common ap-
proach is to use independent zero-mean Gaussian priors
for U ,V (Salakhutdinov and Mnih 2008b; Gönen 2012;
Virtanen, Klami, and Kaski 2011; Virtanen et al. 2012),
which gives rise to the GGG model. The GGGU model is
identical but uses a univariate posterior for inference (see
supplementary materials).

The first hierarchical model (GGGA) uses the Bayesian
automatic relevance determination (ARD) prior, which helps
with model selection. The main idea is to replace the λ hy-
perparameter by a factor-specific variable λk, which has a
further Gamma prior. This causes all entries in columns of
U and V to go further to zero if only a few values in that
column are high, effectively making the factor inactive. This
prior has been used for real-valued (Virtanen, Klami, and
Kaski 2011; Virtanen et al. 2012) and nonnegative matrix
factorisation (Tan and Févotte 2013).

Another hierarchical model (GGGW) was introduced in
the seminal paper of (Salakhutdinov and Mnih 2008b). In-
stead of assuming independence of each entry in U ,V , we
assume each row of U comes from a multivariate Gaussian

with row meanµU and covariance ΣU , and similarly for V .
We then place a further Normal-Inverse Wishart prior over
these parameters.

An alternative to the Gaussian prior is to use the Laplace
distribution (Jing, Wang, and Yang 2015), which has a much
more pointy distribution than Gaussian around x = 0. This
leads to more sparse solutions, as more factors are set to
low values. The basic model (GLL) can be extended with
a hierarchical Inverse Gaussian prior over the η parameter
(GLLI), which they claim helps with variable selection.

The final model (GVG) was introduced by (Arngren,
Schmidt, and Larsen 2011). They used a volume prior for
the U matrix, with density p(U) ∝ exp{−γ det(UTU)}.
The γ hyperparameter determines the strength of the volume
penalty (higher means stronger prior).

Nonnegative matrix factorisation These models all place
nonnegative prior distributions over entries inU and V , and
as a result can only deal with nonnegative datasets.

(Schmidt, Winther, and Hansen 2009) introduced a model
using exponential priors over the factor matrices (GEE).
This model can also be extended with ARD (Brouwer,
Frellsen, and Lió 2017) (GEEA). Another option is to use
the truncated normal distribution (GTT), which can also be
extended by placing a hierarchical prior over the mean and
precision µU , τU , µV , τV (GTTN), as done by (Schmidt and
Mohamed 2009). This nontrivial prior cannot be sampled



from directly, but will be useful for inference.
Finally, we can use a prior inspired by the L2

1 norm for
both U and V (GL2

1), as we will discuss in Section 3.

Semi-nonnegative matrix factorisation Instead of forc-
ing nonnegativity on both factor matrices, we could place
this constraint on only one, as was done in (Wang, Li, and
Zhang 2008; Ding, Li, and Jordan 2010). In the Bayesian
setting we place a real-valued prior over one matrix, and
a nonnegative prior over the other. The major advantage is
that we can handle real-valued datasets, while still enforcing
some nonnegativity. However, we will see in Section 6 that
its performance is identical to the real-valued approaches.

Firstly we can use an exponential prior for entries in U ,
and a Gaussian for V , effectively combining the GGG and
GEE models into one (GEG). Another semi-nonnegative
model (GVnG) comes from constraining the volume prior
in the GVG model to also be nonnegative: p(U) = 0 if any
Uik < 0.

Poisson likelihood The standard Poisson matrix factorisa-
tion model (PGG) uses independent Gamma priors over the
entries inU and V , with hyperparameters a, b (Gopalan and
Blei 2014; Gopalan, Hofman, and Blei 2015; Hu, Rai, and
Carin 2015). This model can also be extended with a hierar-
chical prior (PGGG), by replacing b with hUi , h

V
j and plac-

ing a further Gamma prior over these parameters (Gopalan,
Hofman, and Blei 2015).

3 Priors and Norms
The prior distributions in Bayesian models act as a regu-
lariser that prevents us from overfitting to the data, prevent-
ing poor predictive performance. We can write out the ex-
pression of the log posterior of the parameters, which for a
Gaussian likelihood and no hierarchical priors becomes

log p(θ|D) = log p(D|θ) + log p(θ) + C1

=
∑

(i,j)∈Ω

log p(Rij |UiVj , τ
−1) + log p(U ,V ) + C2

= −τ
2

∑

(i,j)∈Ω

(Rij −UiVj)2 + log p(U ,V ) + C3

for some constants Ci. Note that this last expression is
simply the negative Frobenius norm (squared error) of the
training fit, plus a regularisation term over the matrices
U ,V . This training error is frequently used in the nonprob-
abilistic matrix factorisation literature (Lee and Seung 2000;
Pauca et al. 2004; Pauca, Piper, and Plemmons 2006), where
different regularisation terms are used. These are often based
on row-wise matrix norms, such as

L1 =
I∑

i=1

K∑

k=1

Uik L2 =
I∑

i=1

√√√√
K∑

k=1

Uik

L2
1 =

I∑

i=1

(
K∑

k=1

Uik)2 L2
2 =

I∑

i=1

K∑

k=1

U2
ik

Figure 1: Plots of the prior distributions with hyperparame-
ters from Section 4.2.

This offers some interesting insights: the L2
2 norm is equiv-

alent to an independent Gaussian prior (GGG), due to the
square in the exponential of the Gaussian prior; the L1 norm
is equivalent to a Laplace prior distribution (GLL); if we
constrainU ,V to be nonnegative then the L1 norm is equiv-
alent to an exponential prior distribution (GEE); and finally,
the L2

1 norm can be formulated as a nonnegative prior distri-
bution, which we use for the GL2

1 model (see Table 1).
In other words, the type of priors chosen for Bayesian ma-

trix factorisation determine the type of regularisation that we
add to the model. Additionally, we can use hierarchical pri-
ors to model further desired behaviour (such as ARD).

4 Model Discussion
4.1 Inference

In this paper we use Gibbs sampling (see Section 4.1), be-
cause it tends to be very accurate at finding the true posterior
(Brouwer, Frellsen, and Lió 2017), but other methods like
variational Bayesian inference are also possible. The Gibbs
sampling algorithms, together with their time complexities,
are given in the supplementary materials.

4.2 Hyperparameters

The hyperparameter values we choose for each model can
influence their performance, especially when the data is
sparse. The hierarchical models try to automatically choose
the correct values, by placing a prior over the original hyper-
parameters. This introduces new hyperparameters, but the
models are generally less sensitive to these.

However, in our experience even the models without hier-
archical priors are not very sensitive to this choice, as long
as we use fairly weak priors. In particular, we used λ = 0.1
(GGG, GGGU, GEE, GTT, GL2

1, GEG), η =
√

10 (GLL),
and a = 1, b = 1 (PGG). The distributions with these hyper-
parameter values are plotted in Figure 1.

For the other models we used: ατ = βτ = 1 (Gaussian
likelihood); α0 = β0 = 1 (GGGA, GEEA); µ0 = 0, β0 =
1, ν0 = K,W0 = I (GGGW); µ = λ = K (GLLI), µµ =
0, τµ = 0.1, a = b = 1 (GTTN), a = a′ = b′ = 1 (PGGG).

We did find that the volume prior models (GVG,
GVnG) were very sensitive to the hyperparameter choice
γ. The following values were chosen by trying a
range on each dataset and choosing the best one:
γ = 10{−30,−20,−10,−10,0,0,0,0} for {GDSC,CTRP,CCLE
IC50,EC50,MovieLens 100K,1M,GM,PM}.



Figure 2: Distributions of the values of the four drug sensitivity, two MovieLens, and two methylation datasets.

Table 2: Overview of the four drug sensitivity, two Movie-
Lens, and two methylation datasets, giving the number of
rows (cell lines, users, genes), columns (drugs, movies, pa-
tients), and the fraction of entries that are observed.

Dataset Rows Columns Fraction obs.

GDSC IC50 707 139 0.806
CTRP EC50 887 545 0.801
CCLE IC50 504 24 0.965
CCLE EC50 502 24 0.632
MovieLens 100K 943 1473 0.072
MovieLens 1M 6040 3503 0.047
Gene body meth. 160 254 1.000
Promoter meth. 160 254 1.000

4.3 Software
Implementations of all models, datasets, and experiments,
are available at https://github.com/Anonymous/.

5 Datasets
We conduct our experiments on a total of eight real-world
datasets across three different applications, allowing us to
see whether our observations on one dataset or applica-
tion also hold more generally. We will focus on one or two
datasets at a time for more specific experiments. Also note
that we make sure all datasets contain only positive integers,
so that we can compare all four groups of Bayesian matrix
factorisation approaches.

The first comes from bioinformatics, in particular predict-
ing missing values in drug sensitivity datasets, each detailing
the effectiveness (IC50 or EC50 values) of a range of drugs
on different cancer and tissue types (cell lines). We consider
the Genomics of Drug Sensitivity in Cancer (GDSC v5.0
(Yang et al. 2013), IC50), Cancer Therapeutics Response
Portal (CTRP v2 (Seashore-Ludlow et al. 2015), EC50),
and Cancer Cell Line Encyclopedia (CCLE (Barretina et
al. 2012), both IC50 and EC50) datasets. We preprocessed
these datasets by: undoing the natural log transform of the
GDSC dataset; capping high values to 100 for GDSC and
CTRP; and then casting them as integers. We also filtered
out rows and columns with only one or two observed data-
points.

The second application is collaborative filtering, where
we are given movie ratings for different users (one to five
stars) and we wish to predict the number of stars a user will
give to an unseen movie. We use the MovieLens 100K and
1M datasets (Harper and Konstan 2015), with 100,000 and
1,000,000 ratings respectively.

Finally, another bioinformatics application, this time
looking at methylation expression profiles (Koboldt et al.
2012). These datasets give the amount of methylation mea-
sured in either the body region of 160 breast cancer driver
genes (gene body methylation) or the promoter region (pro-
moter methylation) for 254 different patients. We multiplied
all values by twenty and cast them as integers.

The datasets are summarised in Table 2, and the distri-
bution of values for each dataset is visualised in Figure 2.
This shows us that the drug sensitivity datasets tend to be bi-
modal, whereas the MovieLens and methylation datasets are
more normally distributed. We can also see that the Movie-
Lens datasets tend to be large and sparse, whereas the others
are well-observed and relatively small.

6 Experiments
We conducted experiments to compare the four different
groups of approaches. In particular, we measured their con-
vergence speed, cross-validation performance, sparse pre-
diction performance, and model selection effectiveness. We
sometimes focus on a selection of the methods for clarity.
To make the comparison complete, we also added a popu-
lar non-probabilistic nonnegative matrix factorisation model
(NMF) (Lee and Seung 2000) as a baseline. The results are
discussed in Section 7.

6.1 Convergence
Firstly we compared the convergence speed of the mod-
els on the GDSC and MovieLens 100K datasets. We ran
each model with K = 20, and measured the average mean
squared error on the training data across ten runs. We plot-
ted the results in Figure 4, where each group is plotted as the
same colour: red for real-valued, blue for nonnegative, green
for semi-nonnegative, yellow for Poisson, and grey for the
non-probabilistic baseline. Runtime speeds are given in the
supplementary materials.

6.2 Cross-validation
Our first predictive experiment was to measure the 5-fold
cross-validation performance on each of the eight datasets.
We used the hyperparameter values from Section 4.2, and
used 5-fold nested cross-validation to choose the dimension-
ality K. The average mean squared error of predictions are
given in Figure 3 for all eight datasets. The average dimen-
sionality found in nested cross-validation can be found in the
supplementary materials.

6.3 Noise test
We then measured the predictive performance when the
datasets are very noisy. We added different levels of Gaus-



Figure 3: Average mean squared error of 5-fold
nested cross-validation for the seventeen meth-
ods on the eight datasets. We also plot the stan-
dard deviation of errors across the folds.

Figure 4: Convergence of the models on the GDSC drug sensitivity (left)
and MovieLens 100K (right) datasets, measuring the training data fit (mean
square error).

Figure 5: Noise experiment results on the GDSC drug sensitivity dataset.
We added different levels of Gaussian noise to the data, and measured the
10-fold cross-validation performance.

sian noise to the data, with the noise-to-signal ratio being
given by the ratio of the variance of the Gaussian noise we
add, to the standard deviation of the generated data. For each
noise level we split the datapoints randomly into ten folds,
and measured the predictive performance of the models on
one held-out set at a time. We used K = 5 for all methods.
The results for the GDSC drug sensitivity dataset are given
in Figure 5, where we plot the ratio of the variance of the
data to the mean squared error of the predictions—higher
values are better, and using the row average gives a perfor-
mance of one.

6.4 Sparse predictions
Next we measured the predictive performances when the
sparsity of the data increases. For different fractions of un-
observed data, we randomly split the data based on that frac-
tion, trained the model on the observed data, and measured
the performance on the held-out test data. We used K = 5
for all models. The average mean squared error of ten re-
peats is given in Figure 6, showing the performances on both
the methylation GM and GDSC drug sensitivity datasets.

6.5 Model selection
We also measured the robustness of the models to overfitting
if the dimensionalityK is high. As a result, most models will
fit very well to the training data, but give poor predictions on
the test data. Here, we vary the dimensionalityK for each of
the models on the GDSC drug sensitivity dataset, randomly
taking out 10% as test data, and repeating ten times. The re-
sults are given in Figure 7—in the supplementary materials
we look at two more datasets.

7 Discussion
From the results shown in the previous section, we were able
to draw the following conclusions.

Observation 1: Poisson likelihood methods perform
poorly compared to the Gaussian likelihood—they overfit
quickly (Figures 7a), give worse predictive performances in
cross-validation (Figure 3) and under noisy conditions (Fig-
ure 5), presumably because they cannot converge as deep as
the other methods (Figure 4). At high sparsity levels they can
start to perform better (Figure 6d). Some papers (Gopalan,
Hofman, and Blei 2015) claim that Poisson models offer bet-



Figure 6: Sparsity experiment results on the GDSC drug sensitivity (top, a-e) and gene body methylation (bottom, f-j) datasets.
We measure the predictive performance (mean squared error) on a held-out dataset for different fractions of unobserved data.

Figure 7: Model selection experiment results on the GDSC drug sensitivity dataset. We measure the predictive performance
(mean squared error) on a held-out dataset for different dimensionalities K.

ter predictions, but for small and well-observed datasets we
found the opposite to be true.

Observation 2: Nonnegative models are more constrained
than the real-valued ones, causing them to converge less
deep (Figure 4), and to be less likely to overfit to high spar-
sity levels (6c, 6h) than the standard GGG model. However,
the right hierarchical prior for a real-valued model (such as
Wishart) can bridge this gap.

Observation 3: There is no difference in performance be-
tween real-valued and semi-nonnegative matrix factorisa-
tion, as shown in the model selection and sparsity experi-
ments (Figures 6e, 6j, and 7e): the performance for GGG
and GEG, as well as GVG and GVnG, are nearly identical.

Observation 4: There is no difference in predictive per-
formance between univariate and multivariate posteriors
(GGG, GGGU), as shown in Figures 6b and 6g.

Observation 5: The automatic relevance determination
and Wishart hierarchical priors are effective ways of pre-
venting overfitting, as shown in Figures 7b and 7c: the
GGGA, GGGW, and GEEA models keep the line down as
K increase, whereas the GGG and GEE models start over-

fitting more. This has been shown before for nonnegative
models (Brouwer, Frellsen, and Lió 2017) but the effect is
even stronger for the real-valued ones.

Overvation 6: Similarly, the Laplace priors are good at
reducing overfitting as the dimensionality grows (Figure 7b),
without requiring additional hierarchical priors.

Observation 7: Some other hierarchical priors do not
make a difference, such as with GLLI, GTTN, PGGG—
Figures 6d, 6i, and 7d show little difference in performance.
They can help us automatically choose the hyperparameters,
but in our experience the models are not very sensitive to
this choice anyways.

Although these observations are specific to the applica-
tions and dataset sizes studied, we believe that general in-
sights can be drawn from them about the behaviour of the
four different groups of Bayesian matrix factorisation mod-
els. The behaviour of Poisson models is especially interest-
ing, because they are often claimed to be better than Gaus-
sian models for large datasets, but for smaller ones this does
not hold. We hope that these insights will assist future re-
searchers in their model design.
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1 Gibbs sampling algorithms

In this section we give the Gibbs sampling posteriors for the sixteen Bayesian matrix fac-
torisation models studied in the paper.

The idea of Gibbs sampling is as follows. We wish to sample values from the posterior
distribution p(θ|D), but we cannot sample these directly. Instead, we could draw 2values
from the conditional posterior p(θi|θ−i, D), which is the distribution over the parameter θi
(such as Uik) given the current values of the other parameters θ−i, and the observed data D.
If we sample new values in turn for each parameter θi from p(θi|θ−i, D), we will eventually
converge to draws from the true posterior p(θ|D), which can be used to approximate it.
In this paper we focus on models where we have so-called model conjugacy, allowing us to
sample from the conditional posteriors.

We give the Gibbs sampling posterior distributions for U , which can be derived using
Bayes’ theorem. For example, the derivations for Uik in the GEE model can be found below.
Expressions for V are symmetrical, and hence omitted.

p(Uik|τ,U−ik,V ,λ) ∝ p(R|τ,U ,V )× p(Uik|λk)
∝
∏

j∈Ω1
i

N (Rij|U i · V j, τ
−1)× E(Uik|λk)

∝ exp



−

τ

2

∑

j∈Ω1
i

(Rij −U iV j)
2



× exp {−λkUik} × u(x)

∝ exp



−

U2
ik

2


τ
∑

j∈Ω1
i

V 2
jk




+Uik


−λk + τ

∑

j∈Ω1
i

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk





× u(x)

∝ exp

{
−τ

U
ik

2
(Uik − µUik)2

}
× u(x)

∝ T N (Uik|µUik, τUik).

1.1 Real-valued matrix factorisation

The first group of methods use a Gaussian likelihood for noise, and place real-valued prior
distributions over U and V , typically Gaussian as well. We assume each value in R comes
from the product of U and V , with Gaussian noise added,

Rij ∼ N (Rij|UiVj , τ
−1) τ ∼ G(τ |ατ , βτ )

where N (x|µ, τ) = τ
1
2 (2π)−

1
2 exp

{
− τ

2
(x− µ)2

}
is the density of the Gaussian distribution,

with precision τ . Ui,Vj denote the ith and jth rows of U and V . We place a further Gamma

prior over τ , with G(τ |ατ , βτ ) = βτ
ατ

Γ(ατ )
xατ−1e−βτx, where Γ(x) =

∫∞
0
xt−1e−xdt is the gamma

function.

2



In the Gibbs sampling algorithm, the posterior for the noise parameter is

τ ∼ G(τ |α∗τ , β∗τ ) α∗τ = ατ +
|Ω|
2

β∗τ = βτ +
1

2

K∑

k=1

(Rij −UiVj)
2.

1.1.1 All Gaussian model (GGG)

We place Gaussian independent priors over the entries in U ,V , with hyperparameter λ,

Ui ∼ N (Ui|0, λ−1I) Vj ∼ N (Vj|0, λ−1I)

where N (x|µ,Σ) = |Σ|− 1
2 (2π)−

K
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
is the density of a K-

dimensional multivariate Gaussian distribution, and I is the identity matrix. The condi-
tional posterior distributions we obtain in the Gibbs sampling algorithm are also multi-
variate Gaussians. The parameter values are given below, with Ωi = {j | (i, j) ∈ Ω} and
Ωj = {i | (i, j) ∈ Ω}.

U i ∼ N (Ui|µU
i ,Σ

U
i ) µU

i = ΣU
i ·
[
τ
∑

j∈Ωi

RijVj

]
ΣU

i =

[
λI + τ

∑

j∈Ωi

(Vj ⊗ Vj)

]−1

1.1.2 All Gaussian model with univariate posterior (GGGU)

It is also possible to have a univariate posterior for the Gibbs sampler,

Uik ∼ N (Uik|µUik, (τUik)−1) µUik =
1

τUik

[
τ
∑

j∈Ωi

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk

]
τUik = λ+ τ

∑

j∈Ωi

V 2
jk.

1.1.3 All Gaussian model with ARD hierarchical prior (GGGA)

For the automatic relevance determination (ARD) prior we replace the λ hyperparameter
by a factor-specific variable λk, which has a further Gamma prior.

Ui ∼ N (Ui|0, diag(λ−1)) Vj ∼ N (Vj|0, diag(λ−1)) λk ∼ G(λk|α0, β0)

where diag(λ−1) is a diagonal matrix with entries λ−1
1 , .., λ−1

K on the diagonal. The Gibbs
sampling posteriors for Ui and Vj are largely unchanged, replacing λI in the expressions for
ΣU

i ,Σ
V
j by diag(λ1, .., λK). The posterior for λk is

λk ∼ G(λk|α∗0, β∗0) α∗0 = α0 +
I

2
+
J

2
β∗0 = β0 +

1

2

I∑

i=1

U2
ik +

1

2

J∑

j=1

V 2
jk.

1.1.4 All Gaussian model with Wishart hierarchical prior (GGGW)

Instead of assuming independence of each entry in U ,V , we now assume each row of U
comes from a multivariate Gaussian with row mean µU and covariance ΣU , and similarly
for V . We place a further Normal-Inverse Wishart prior over these parameters,

Ui ∼ N (Ui|µU ,ΣU ) µU ,ΣU ∼ NIW(µU ,ΣU |µ0, β0, ν0,W0)

Vj ∼ N (Vj|µV ,ΣV ) µV ,ΣV ∼ NIW(µV ,ΣV |µ0, β0, ν0,W0)

3



where NIW(µU ,ΣU |µ0, β0, ν0,W0) = N (µ|µ0,
1
β0

I)W−1(Σ|ν0,W0) is the density of a

normal-inverse Wishart distribution, and W−1(Σ|ν0,W0) is the inverse Wishart distribu-
tion.

For the Gibbs sampling algorithm we obtain the posteriors Ui ∼ N (Ui|µU
i ,Σ

U
i ) and

µU ,ΣU ∼ NIW(µU ,ΣU |µ∗
0, β

∗
0 , ν

∗
0 ,W

∗
0 ), with

µU
i = ΣU

i ·
[
Σ−1

U µU + τ
∑

j∈Ωi

RijVj

]
ΣU

i =
[
Σ−1

U + τ
∑

j∈Ωi

(Vj ⊗ Vj)
]−1

β∗0 = β0 + I ν∗0 = ν0 + I µ∗
0 =

β0µ0 + IŪ

β0 + I
Ū =

1

I

I∑

i=1

Ui

W ∗
0 = W0 + IS̄ +

β0I

β0 + I
(µ0 − Ū)⊗ (µ0 − Ū) S̄ =

1

I

I∑

i=1

(Ui ⊗Ui).

1.1.5 Gaussian likelihood with Laplace priors (GLL)

An alternative to the Gaussian prior is to use the Laplace distribution, which has a much
more pointy distribution than Gaussian around x = 0. This leads to more sparse solutions,
as more factors are set to low values. The priors are

Uik ∼ L(Uik|0, η) Vjk ∼ L(Vjk|0, η)

To simplify inference we introduce a new variable λUik for each Uik, with prior λUik ∼ E(λUik|η).
The idea behind this is that we can rewrite a Laplace distribution as

L(x|µ, ρ) =

∫ ∞

ε=0

N (x|µ, ε)E(ε|ρ
2

)dε

This leads to the following Gibbs sampling posteriors:

U i ∼ N (Ui|µU
i ,Σ

U
i ) µU

i = ΣU
i ·
[
τ
∑

j∈Ωi

RijVj

]

ΣU
i = diag((λU

i )−1) +

[
τ
∑

j∈Ωi

(Vj ⊗ Vj)

]−1

1

λUik
∼ IG(x|µUik, λUik) µUik =

√
η

|Uik|
λUik = η.

1.1.6 Gaussian likelihood with Laplace and hierarchical inverse Gaussian priors (GLLI)

We can place a further hierarchical prior over the η parameters,

ηUik ∼ IG(µ, λ) ηVjk ∼ IG(µ, λ).

The paper that introduced this prior (Jing, Wang and Yang 2015) placed a Generalised
Inverse Gaussian GIG(γ, a, b) prior over the η parameters, but then used γ = −1

2
, which

reduces the prior to the Inverse Gaussian above with µ =
√
b/a, λ = b (or a = 1/µ, b = λ).

4



The posteriors for U ,V are identical, and for λUik we only replace η with ηUik. We obtain
another Inverse Gaussian posterior for the ηUik parameters,

ηUik ∼ IG(ηUik|µηik, ληik) µUik =

√
λUik + a

b
=

√
λUik + 1/µ

λ
λUik = λUik + b = 1/µ.

1.1.7 Gaussian likelihood with volume prior (GVG)

The prior over V in this model is Gaussian, as in the GGG model, but we now use the
volume prior (VP) for the U matrix, with density p(U) ∝ exp{−γ det(UTU)}. This model
leads to the posterior

Uik ∼ N (Uik|µUik, (τUik)−1) µUik =
1

τUik

[
γUik̃Ak̃k̃(UT

ĩk̃
Uĩk) + τ

∑

j∈Ωi

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk

]

τUik = τ
∑

j∈Ωi

V 2
jk + γ(Dk̃k̃ −Uik̃Ak̃k̃U

T
ik̃

).

In the above, vector Uik̃ is the ith row of U excluding column k; vector Uĩk is the kth
column of U excluding row i; matrix Uĩk̃ is U excluding row i and column k; matrix U·k̃ is
U excluding column k; Dk̃k̃ = det{UT

·k̃U·k̃}; and matrix Ak̃k̃ = det{UT
·k̃U·k̃} is the matrix

adjugate.

1.2 Nonnegative matrix factorisation

Nonnegative matrix factorisation models use the same Gaussian noise model as the real-
valued ones, but placing nonnegative prior distributions over entries in U and V .

1.2.1 Gaussian likelihood with exponential priors (GEE)

This model places independent Exponential priors over the entries in U ,V ,

Uik ∼ E(Uik|λ) Vjk ∼ E(Vjk|λ).

The product of a Gaussian and Exponential distribution leads to a truncated normal poste-
rior,

Uik ∼ T N (Uik|µUik, τUik) µUik =
1

τUik

[
− λ+ τ

∑

j∈Ωi

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk

]
τUik = τ

∑

j∈Ωi

V 2
jk.

1.2.2 Gaussian likelihood with exponential prior and ARD (GEEA)

Similar to the GGGA model, we can extend GEE with the ARD prior,

Uik ∼ E(Uik|λk) Vjk ∼ E(Vjk|λk) λk ∼ G(λk|α0, β0)

The posteriors for U and V are the same as in the GEE model, but replacing λ by λk. The
posteriors for λk become

λk ∼ G(λk|α∗0, β∗0) α∗0 = α0 + I + J β∗0 = β0 +
I∑

i=1

Uik +
J∑

j=1

Vjk.

5



1.2.3 Gaussian likelihood with truncated normal priors (GTT)

We can also use the truncated normal distribution directly as the priors for U and V ,

Uik ∼ T N (Uik|µU , τU) Vjk ∼ T N (Vjk|µV , τV )

This again gives a truncated normal posterior, but with slightly different values.

Uik ∼ T N (Uik|µUik, (τUik)−1) µUik =
1

τUik

[
µUτU + τ

∑

j∈Ωi

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk

]

τUik = τU + τ
∑

j∈Ωi

V 2
jk.

An alternative to the truncated normal distribution is the so-called half normal. If random
variable y has density N (y|0, σ2), and random variable x = |y|, then x follows a half normal

distribution with density HN (x|σ) =
√

2
σ
√
π

exp{− x2

2σ2}u(x). Note however that when µ = 0

in the truncated normal distribution, then these distributions are equivalent, with τ = 1
σ2 ,

so the GTT model is more general.

1.2.4 Gaussian likelihood with truncated normal and hierarchical priors (GTTN)

We can place a further prior over the parameters of the truncated normal distributions,

Uik ∼ T N (Uik|µUik, τUik) Vjk ∼ T N (Vjk|µVjk, τVjk)

p(µUik, τ
U
ik |µµ, τµ, a, b) ∝

1√
τUik

(
1− Φ(−µUik

√
τUik)

)
N (µUik|µµ, τ−1

µ ).G(τUik |a, b)

The density for µVjk, τ
V
jk is identical. Note that this is not the same as the product of a Normal

and Gamma distribution. It is not easy to sample from this prior, but it can be used as a
hierarchical prior. The posteriors for Uik remain the same (replacing µU and τU by µUik and
τUik), and for µUik and τUik we obtain posteriors

µUik ∼ N (µUik|mµ, t
−1
µ ) mµ =

1

tµ

[
τUikUik + µµτµ

]
tµ = τUik + τµ

τUik ∼ G(τUik |a∗, b∗) a∗ = a+
1

2
b∗ = b+

(Uik − µUik)2

2
.

1.2.5 Gaussian likelihood with L2
1 norm priors (GL2

1)

We can also use a prior inspired by the L2
1 norm for both U and V , giving prior densities

p(U) ∝





exp{−λ
2

∑

i

(∑

k

Uik

)2

} if Uik ≥ 0 for all i, k

0 if any Uik < 0

p(V ) ∝





exp{−λ
2

∑

j

(∑

k

Vjk

)2

if Vjk ≥ 0 for all j, k

0 if any Vjk < 0
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The nonnegativity constraint is used to address the fact that the L2
1 norm used the absolute

value of entries in U ,V , which makes inference impossible unless we constrain them to be
nonnegative (in which case the values are automatically absolute).

The posteriors are similar to the GEE and GTT models, but now adding a term that
depends on the other entries in the ith (or jth) row of U ,

Uik ∼ T N (Uik|µUik, τUik) µUik =
1

τUik

[
− λ

∑

k′ 6=k
Uik′ + τ

∑

j∈Ωi

(Rij −
∑

k′ 6=k
Uik′Vjk′)Vjk

]

τUik = λ+ τ
∑

j∈Ωi

V 2
jk.

1.3 Semi-nonnegative matrix factorisation

In the nonnegative matrix factorisation models we placed nonnegative priors over both U
and V . Instead, we could constrain only one to be nonnegative. In the Bayesian setting
this is done by placing a real-valued prior over one matrix, and a nonnegative prior over the
other. The major advantage is that we can handle real-valued datasets, while still enforcing
some nonnegativity.

1.3.1 Gaussian likelihood with nonnegative volume prior (GVnG)

The volume prior discussed earlier can also be formulated to be nonnegative. In particular,
the probability distribution over U is

p(U) ∝
{

exp{−γ det(UTU)} if Uik ≥ 0 for all i, k
0 if any Uik < 0

The posterior parameters are the same as for the GVG model, but drawing new values from
a truncated normal, rather than normal. For V we again use a Gaussian.

1.3.2 Gaussian likelihood with exponential and Gaussian priors (GEG)

For this model we use an exponential prior for entries in U , and a Gaussian for V . The
posteriors are given in the GEE and GGG model sections.

1.4 Poisson matrix factorisation

The final category of matrix factorisation models do not use a Gaussian likelihood, instead
opting for a Poisson one. This only works for nonnegative count data, with R ∈ NI×J . We
again assume each value in R comes from the product of U and V , Rij ∼ P(Rij|UiVj),

where P(x|λ) = λx exp{−λ}
x!

is the density of a Poisson distribution.

1.4.1 Poisson likelihood with Gamma priors (PGG)

The standard Poisson matrix factorisation model uses independent Gamma priors over the
entries in U and V . To make inference simpler, we also introduce random variables Zijk

7



such that Rij =
∑K

k=1 Zijk, each effectively accounting for the contribution of factor k to
Rij. We use the following distributions and priors:

Zijk ∼ P(Zijk|UikVjk) Uik ∼ G(Uik|a, b) Vjk ∼ G(Vjk|a, b).

Note that we can do this because the sum of Poisson distributed random variables (like Zijk)
is again Poisson distributed, with rate λ equal to the sum of rates of the Zijk, giving us
the original Poisson likelihood for Rij. The above is also equivalent to saying that Zij ∼
Mult(Zij|n,p) with n = Rij and p = (

Ui1Vj1
UiVj

, ..,
UiKVjK
UiVj

), where Zij is a vector containing

Zij1, .., ZijK , and Mult(x|n,p) = n!
x1!..xK !

px11 ..p
xK
K is a K-dimensional multinomial distribution.

Using the above trick, the posteriors are

Zij ∼ Mult(Zij |n,p) n = Rij p = (
Ui1Vj1
UiVj

, ..,
UiKVjK
UiVj

)

Uik ∼ P(Uik|a∗ik, b∗ik) a∗ik = a+
∑

j∈Ωi

Zijk b∗ik = b+
∑

j∈Ωi

Vjk.

1.4.2 Poisson likelihood with Gamma and hierarchical Gamma priors (PGGG)

We can extend the standard Poisson matrix factorisation model with hierarchical priors.
The priors are

Uik ∼ G(Uik|a, hUi ) Vjk ∼ G(Vjk|a, hVj ) hUi ∼ G(a′,
a′

b′
) hVj ∼ G(a′,

a′

b′
)

The posteriors for Uik are identical to the PGG model, except replacing b with hUi in the
expression for b∗ik. For the hierarchical part we obtain the following posteriors:

hUi ∼ G(hUi |a∗i , b∗i ) a∗i = a′ +Ka b∗i =
a′

b′
+

K∑

k=1

Uik.
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2 Computational complexity

The different matrix factorisation models have different time complexities for computing the
parameter values and sample new values for U , V , and any other random variables. The
space complexity for all models is O(IK + JK) per iteration, with an additional K|Ω| term
for the Poisson models (for the Zijk).

The time complexities per iteration for the multivariate Gaussian posterior models (GGG,
GGGA, GGGW, GLL, GLLI) is O((I + J)K3 + IJK2). However, these row draws and pa-
rameter value computations can all be done in parallel. The univariate posterior models
(GGGU, GEE, GEEA, GTT, GTTN, GL2

1, GEG) have complexity O(IJK2), but the pa-
rameters can be computed efficiently per column. The volume prior models (GVG, GVnG)
have the highest complexity, with O(I2JK2). Finally, the Poisson models are O(IJK), but
this hides a big constant that effectively makes it the slowest model for low values of K.

3 Runtime speed

The average runtime (in seconds) per iteration is given in Table 1, for different values of
K on the GDSC drug sensitivity and MovieLens 100K datasets. Here we see that the
univariate posterior models (GGGU, GEE, GEEA, GTT, GTTN, GL2

1, GEG) are faster
than the multivariate ones (GGG, GGGA, GGGW, GLL, GLLI); models with hierarchical
priors are not noticably slower; the volume prior models are by far the slowest, due to their
higher time complexity; and the Poisson models are slow for low K, but at higher values
this is no longer true.

Table 1: Average runtime per iteration (in seconds) on GDSC drug sensitivity and MovieLens 100K.

GDSC drug sensitivity MovieLens 100K

Method K = 5 K = 10 K = 20 K = 50 K = 5 K = 10 K = 20 K = 50

GGG 0.14 0.18 0.29 0.93 1.04 1.29 1.86 5.07
GGGU 0.02 0.03 0.07 0.16 0.48 0.79 1.49 3.99
GGGA 0.14 0.17 0.28 0.93 1.03 1.30 1.88 5.75
GGGW 0.13 0.17 0.26 0.82 1.27 1.23 1.84 5.06
GLL 0.24 0.30 0.38 0.95 0.81 0.94 1.30 3.01
GLLI 0.22 0.29 0.42 0.98 0.82 0.99 1.49 3.26
GVG 0.42 1.02 2.58 22.1 1.22 2.86 5.94 40.9

GEE 0.06 0.12 0.25 0.66 0.49 0.86 1.68 4.16
GEEA 0.06 0.12 0.24 0.63 0.68 1.27 2.53 6.50
GTT 0.06 0.12 0.25 0.68 0.70 1.27 2.34 6.00
GTTN 0.07 0.14 0.29 0.77 0.71 1.22 2.55 6.56
GL2

1 0.06 0.13 0.26 0.62 0.43 0.80 1.56 3.88

GVnG 0.45 1.16 2.88 22.9 2.02 5.08 9.63 53.2
GEG 0.07 0.12 0.22 0.61 0.96 1.30 1.34 3.51

PGG 0.36 0.40 0.50 0.78 1.32 1.96 3.36 7.07
PGGG 0.56 0.49 0.50 0.78 1.34 2.02 3.40 7.19

NMF-NP 0.01 0.04 0.04 0.16 0.32 0.52 1.11 2.62
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4 Nested cross-validation dimensionalities

In the main paper we used nested cross-validation to find the best dimensionality K in each
fold of the cross-validation. Table 2 contains the average values for each model on each
dataset, rounded to the nearest integer. We used these values for the noise and sparsity
experiments, to give each model their own optimal starting point. The models with ARD
and Wishart priors (GGGA, GGGW, GEEA) and with the volume prior (GVG, GVnG) can
often leverage higher dimensionalities K than the others.

For reference, the cross-validation performances are provided in Figure 1.

Table 2: Average dimensionality found in 5-fold nested cross-validation for each method on the eight datasets.

Drug sensitivity MovieLens Methylation

Method GDSC CTRP CCLE IC50 CCLE EC50 100K 1M Gene body Promoter

GGG 6 4 5 1 2 5 4 3
GGGU 6 5 5 1 2 2 3 3
GGGA 10 6 5 1 4 10 6 3
GGGW 16 8 6 2 5 13 7 3
GLL 10 6 5 1 3 8 4 2
GLLI 10 6 5 1 2 7 4 2
GVG 10 5 6 2 3 3 4 4

GEE 8 6 5 1 2 8 6 5
GEEA 10 6 5 1 2 10 6 4
GTT 9 6 5 1 2 8 5 4
GTTN 8 6 5 1 2 8 5 4
GL2

1 6 6 4 1 2 8 5 5

GEG 6 5 5 1 2 5 4 3
GVnG 11 8 5 2 2 1 3 3

PGG 4 2 13 1 1 1 2 3
PGGG 5 2 12 1 1 1 2 3

NMF 4 2 1 1 1 3 2 2

5 Sparsity and model selection plots

Although we presented results for the sparsity and model selection experiments on only a
few datasets, we ran them both on the GDSC drug sensitivity, MovieLens 100K, and gene
body methylation datasets. We give the results in Figures 2 and 3.
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Figure 1: Average mean squared error of 5-fold nested cross-validation for the seventeen methods on the
eight datasets. We also plot the standard deviation of errors across the folds.
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Figure 2: Sparsity experiment results on the GDSC drug sensitivity (top, a-e), gene body methylation
(middle, f-j), and MovieLens 100K (bottom, k-o) datasets. We measure the predictive performance (mean
squared error) on a held-out dataset for different fractions of unobserved data.

Figure 3: Model selection experiment results on the GDSC drug sensitivity (top, a-e), gene body methylation
(middle, f-j), and MovieLens 100K (bottom, k-o) datasets. We measure the predictive performance (mean
squared error) on a held-out dataset for different dimensionalities K.
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