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Abstract
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1 Introduction

There is a growing literature dedicated to dynamic spatial panels, see El-
horst (2012, 2014), Lee and Yu (2010, 2015) for a review. Dynamic spatial
panels are able to deal with unobservable spatial, individual and/or time
specific effects. They also tackle more efficiently endogeneity problems, such
as the potential bias in the coefficient of the spatial lag of the dependent vari-
able. Baltagi, Fingleton and Pirotte (2014) propose a dynamic spatial model
that allows for time dependence as well as spatial dependence, but restricts
the time-space covariate to zero along the lines of Franzese and Hays (2007),
Kukenova and Monteiro (2009), Jacobs, Ligthart and Vrijburg (2009), Korni-
otis (2010), Elhorst (2010), and Brady (2011) to mention a few. They focus
on several estimators for the dynamic and autoregressive spatial lag panel
data model with spatially correlated disturbances. In the spirit of Arellano
and Bond (1991) and Mutl (2006), a dynamic spatial Generalized Method
of Moments (GM) is proposed including the Kapoor, Kelejian and Prucha
(2007, hereafter KKP) approach for the Spatial AutoRegressive (SAR) error
term. The remainder term of the latter is assumed to have a random effects
structure. This means that the disturbances are characterised by a SAR-RE
process. The main idea is to mix non-spatial and spatial instruments to ob-
tain consistent estimates of the parameters. Their Monte Carlo study finds
that when the true model is a dynamic first order spatial autoregressive spec-
ification with SAR-RE disturbances, estimators that ignore the endogeneity
of the spatial lag of the dependent variable and endogeneity of the tempo-
rally lagged dependent variable perform badly in terms of bias and RMSE.
Accounting for spatial correlation in the disturbances also reduces bias and
RMSE. Thus, ignoring both sources of spatial dependence leads to a huge
bias in the estimated coefficients.

A more general specification has been suggested by Yu, de Jong and Lee
(2008, 2012), Lee and Yu (2010, 2014) who implement a model that allows
for time and spatial dependence as well as component mixing of time-space
dependence that can be interpreted as spatial diffusion that takes place over
time. If all these forms of dependence are included, Anselin (2001, p. 318)
suggests calling this a time-space dynamic model. Parent and LeSage (2010,
2011, 2012), Debarsy, Ertur and LeSage (2012) extend this approach in-
troducing a space-time filter that implies a constraint on the mixing term
that reflects spatial diffusion. This type of constraint induces a separabil-
ity of time and space dependence that simplifies the estimation procedure,



especially in the Bayesian Markov Chain Monte Carlo (MCMC) approach.
Lee and Yu (2016) consider a spatial Durbin dynamic model which includes
simultaneously time dependence, spatial dependence and time-space depen-
dence on the explanatory variables. They focus on identification issues and
show that parameters are generally identified via Two-Stage Least Square
(2SLS) moment relations.

Following this literature, this paper employs a time-space specification as
defined by Anselin (2001, p. 318), i.e. including a temporal lag (capturing
time dependence), a spatial lag (that accounts for spatial dependence), a
cross-product term reflecting the time-space diffusion of the dependent vari-
able. Many theoretical and/or applied papers are based on this structure,
building on a priori theory which does not call for WXs in the model, see
Yu, de Jong and Lee (2008), Parent and LeSage (2010, 2011, 2012), Lee and
Yu (2014) or Yang (2017) among others. Additionally, the disturbances are
assumed to follow a Spatial Moving Average (SMA) process (local spatial
spillover effects) in the spirit of Fingleton (2008a). Fingleton (2008b) shows
that the sharp cut-off of the SMA disturbances specification is moderated
by the spatial lag element of the model. In the cross-section case, when
the model contains a spatial lag dependent variable, Kelejian and Prucha
(1998, 1999) suggest a 2SLS procedure. They propose that the instrument
set should be kept to a low order to avoid linear dependence and retain a
full column rank for the matrix of instruments, and thus recommend that
(X, WxX) should be used, if the number of regressors is large. Inclusion
of spatial lags on the explanatory variables could have a major impact on
the performance of the estimation procedure if one were to keep to this rec-
ommendation. Pace, LeSage and Zhu (2012) show that the instrumental
variables estimation suffers greatly in situations where spatial lags of the
explanatory variables (W yX) are included in the model specification. The
reason is that this requires the use of (W%X, W3X,...) as instruments, in
place of the conventional instruments that rely on W y X, and this appears to
result in a weak instruments problem. However the SMA process avoids this
problem, given that it embodies the same W matrix, by including omitted
spatial lags of the explanatory variables implicitly as part of the error process.
This means we can use the recommended instrument set without having ex-
ogenous spatial lags among the set of regressors. Instead, we assume that
the disturbances are characterized by a SMA-RE structure which purpose-
fully captures these local spillovers. The adoption of a SMA specification of
the error process can mitigate against the problem for instrumental variables
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estimation identified by Pace, LeSage and Zhu (2012). Naturally the choice
of this specification would carefully examine the nature of the local spillovers
in order to establish their appropriateness for the empirical application at
hand.

This paper proposes a spatial GM estimator following the work of Arel-
lano and Bond (1991), Mutl (2006) and KKP (2007). Using Monte Carlo
simulations, we compare the empirical performance of our GM spatial esti-
mator with that of OLS, Within and GMM a la ‘Arellano and Bond’. The
latter estimators are panel data estimators that take no account of the spa-
tial structure of the disturbances, especially on short-run and long-run effects.
We also compare our spatial estimator to other misspecified spatial GM esti-
mators, such as that of Mutl (2006). Moreover, forecasting with spatial panel
has become recently an integral part of the empirical work in economics, see
Baltagi and Li (2004, 2006), Longhi and Nijkamp (2007), Kholodilin, Siliv-
erstovs, and Kooths (2008), Fingleton (2009), Schanne, Wapler and Weyh
(2010), Girardin and Kholodilin (2011) and Baltagi, Fingleton and Pirotte
(2014) among others. We develop a dynamic spatial predictor and evalu-
ate the predictive efficiencies of various suboptimal predictors relative to the
Root Mean Square Error (RMSE) criterion along the lines of Kelejian and
Prucha (2007). The plan of the paper is as follows: Section 2 presents the
model, section 3 focuses on our spatial GM estimator. Section 4 derives a lin-
ear predictor. Section 5 describes the Monte Carlo design. Section 6 presents
the simulation results, Section 7 illustrates our approach using an application
in geographical economics which studies employment levels across 255 NUTS
regions of the EU over the period 2001-2012, with estimation to 2010 and
out-of-sample prediction for 2011 and 2012. The last section concludes.

2 The Time-Space Dynamic Panel Model with
SMA Errors

Unlike many expositions of spatial econometric models, we give logically
consistent reasons behind the presence of the spatial lag, temporal lag and
spatial lag of the temporal lag which are an outcome of assuming a tendency
towards equilibrium. In our exposition the model specification depends on
an assumption that disparities in the dependent variable will persist as an
equilibrium outcome to unchanging and fundamental causes. We therefore



assume that the (N x 1) vector y;, where N is the number of individuals or
regions, at time ¢ will persist at dynamically stable levels so that y;, = y;_4
unless there are changes in factors that affect the level of y;. For example
there may be changes in explanatory variables x;, where xX; = (21, .. .,2n¢)
is an (IV x K') matrix of explanatory (exogenous) variables, or other changes,
such as in unobservable effects. If such a disturbance occurs at time ¢ and
is ephemeral, then y; # y; ; but given a subsequent period of quiescence as
t — T then once again we expect y; to converge on a new equilibrium at
which y7r = yr_1. Assume data are observed where y; # y; 1 but tending
to converge, so that y; = f(y;_1), and an autoregressive process is assumed,
hence

Yt =S+ VYt-1, (1)

in which ¢ is an (IV x 1) vector and  is a scalar parameter. In the long-run
with || < 1, and with no subsequent disturbances, the process converges to
yr = ﬁ

Consider next connectivity between individuals or regions in the form
of a matrix W7, which is a time-invariant (N x N) matrix. For purposes
of interpreting parameter estimates we normalize W3,. This can be done
in several ways, for instance by dividing W} by the maximum eigenvalue
of W% to give! Wy, or by dividing each element of W% by its row sum.
Either of these normalizations gives the maximum eigenvalue of Wy equal
to 1, and the continuous range for which (Iy — p;Wy) is nonsingular is
m < pp < m = 1, in which p, is a scalar spatial autoregressive
parameter.

Given (1), logic dictates that

P Wny: = ptWrs + oy Wayye—i1. (2)

Subtracting (2) from (1) leads to another logically consistent expression
in which the spatial dependence implied by (2) can be seen in (3) as an
explicit cause of variation in y;. Thus

Vi — M Way: =6 +7yi-1 — (0 Whas + oy Wayyeo1),

(IN - P1WN) Yy = (71N - PWWN) Yio1+ (IN - p1WN) S.

!The matrix Wy comprises fixed (non-stochastic) non-negative values with zeros on
the leading diagonal and its row and column sums are uniformly bounded in absolute
value.




Writing 0 = —p,~y gives

yt = By [Cwyi—1 + Bus], (3)
in which By = (Iy — pyWx),Cy = (7Iny + 6Wy) in which v is the au-
toregressive time dependence parameter, p; is the spatial lag coefficient, 0
is the time-space diffusion parameter and Iy is an identity matrix of order
N. In order to solve equation (3), given appropriate parameter restrictions,
equation (3) converges to yr = (By — Cy) ' Bys.

Introducing the additional covariates by writing By¢ = (x3), in which
B is a (k x 1) vector, gives

Y = BJ_Vl [Cnyi—1 +x0].

In order to maintain dynamically stable simulations, following Elhorst
(2001, 2014, p. 98), Parent and LeSage (2011, p. 478, 2012, p. 731) and
Debarsy, Ertur and LeSage (2012, p. 162), requires the largest characteristic
100t (€igmax) Of B]_VlC ~ to be less than 1. This restriction ensures that y;
converges to equilibrium levels y; = (By — Cy) ™" (x8).

Additional realism is introduced as follows. First, the restriction that
0 = —p,7y is removed since p; and v are unknown, so that 6 is free to vary.
However we anticipate that 0~ —p7- Second, the time invariant matrix x
is replaced by time-varying matrix? x;. Third, unobservables are represented
by the error term g;. Although the system may, depending on B#C N, still
tend towards equilibrium, equilibrium will be continuously disturbed and
new equilibrium levels established as ¢ varies. For simplicity of estimation,
inter-regional connectivity is assumed to remain constant over the estima-
tion period. These considerations lead to the time-space dynamic panel data
model for i =1,...,N;t=1,...,T, which takes the form

Yit = VYit—1 + p1Wiye + OW;y 1 + X3 + €ir, (4)

where ¢;; is an error term for region i at time t and w; = (w;1,...,w;n)
is a (1 x N) vector which corresponds to the ith row of the matrix Wy.
In contrast to the classical literature on panel data, grouping the data by
periods rather than units is more convenient when we consider the spatial
dimension. For each period ¢, we have

Vi = Vi1 + i Way: +FOWry 1 + %0 + &y,
[-CnL+Bnly: = xB+e, (5)

2We assume that the elements of X, are uniformly bounded in absolute value.




where g, = (ey4,. .. ,ENt)T isan (N x 1) vector and L is the time-lag operator,
i.e. Ly; = y: 1. By is a nonsingular matrix, and B is uniformly bounded.
For (5) and following Elhorst (2001, p. 131), Parent and LeSage (2011, p.
478, 2012, p. 731) and Debarsy, Ertur and LeSage (2012, p. 162), stationarity
conditions are satisfied only if }C NB]_Vl‘ < 1, which requires

Y+ (p1+0)rmax <1 if p; +6 >0, (6)
Y4+ (py+0)rmm <1 if pp+60<0, (7)
Y= (p1 = 0) rmax > =1 if p; =0 >0, (8)
v—1(p; —0) i > —1 if p, — 0 <0, 9)

where 7,;, and 7. are the minimum and maximum eigenvalues of Wy .
We allow for a general spatial-autoregressive-moving-average errors process

€it = Q€jr_1 + PoIM€4 + Uy — AN, Uy, (10)

where p, and A are respectively autoregressive and moving average parame-
ters, and m; = (m;,...,m;y) is a (1 X N) vector which corresponds to the
1th row of the spatial matrix M y. My is similar to W in that it defines the
interaction assumed between the disturbances attributed to different regions,
and it is often the case that My = Wy is assumed. Estimating «, p, and
A jointly could be prohibitively difficult, and the most widely-used approach
to modelling spatial error dependence is a restricted version of this in which
a=0and A =0, so that

Eit = PoWiE + U, (11)

in which the autoregressive parameter space must be defined so that
(In — py Wy ) is non-singular, see LeSage and Pace (2009, pp. 88-89). (11) is
referred to as a Spatial AutoRegressive (SAR) process and implies complex
interdependence between locations, so that a shock at location j is transmit-
ted to all other locations. The SAR process is known to transmit the shocks
globally.

In contrast, the Spatial Moving Average (SMA) process, which is the
focus of this paper, is obtained by the restrictions « = 0 and p, = 0, hence

Eit = Ui — AW, Uy, (12)



so that a shock at location j will only affect the directly interacting locations
given by the non-zero elements in W y. Hence shock-effects are local rather
than global. Regarding the error components, time dependency is introduced
in the innovation u; by specifying an unobserved permanent unit-specific
error component f, together with the transient error component v;;. Thus,
u;; follows an error component structure

Uit = p; + Vi, (13)

where p,; is an individual specific time-invariant effect which is assumed to
be iid (0, O'Z), and v;; is a remainder effect which is assumed to be iid (0, 62).
i; and v;; are independent of each other and among themselves. Combining
(12) and (13), we obtain the SMA-RE specification of the disturbance ;.
For a cross-section ¢, we have

Er = HNuta (14)
with
w = p+ vy, (15)
where Hy = (Iy — AWy), and u; = (ult,...,uNt)T, n = (,ul,...,,uN)T,
vy = (v1,...,vn) | are three vectors of dimension (N x 1).
By rewriting the model (5) as
y: = By'Cyyi1 + By'x8 + Byley, (16)

the matrix of partial derivatives of y; with respect to the kth explanatory
variable of x; in unit 1 up to unit N at time ¢ is given by

o 0 _
[ 8:5_}1’;6 Ce 81’]}\’]k ]t — 5[@:8]\]17 (17)

where
Bﬁl = (IN - PlWN)_l =In+p Wy + /)%W?V + p%W?V to (18)

The expression (17) denotes the effect of a change of an explanatory variable
in a particular spatial unit on the dependent variable of all other units in the
short-term. Similarly, the long-term effects are obtained by

2 g = B [-Cy+ By
Bl =) In — (py +O) Wy] "
= BBy, (19)
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where Lo 5
*— * -1 o« _ P1 * k

By ' = (Iy — pyWy) 701::and5k: T

The expressions in (17) and (19) illustrate that they depend respectively on
one and two global spatial multiplier matrices, respectively. Moreover, short-
term indirect effects do not occur if p; = 0, while long-term indirect effects

do not occur if p; = —0.

(20)

3 A Four Stage Spatial GM Estimator

The presence of a spatial lag, a time-lagged and a time-space lag depen-
dent variable renders the usual panel data estimators that ignore this spatial
correlation biased and inconsistent. In this context, Instrumental Variables
(IV) or GM estimators are required. These estimators assume much weaker
assumptions about the initial conditions compared to those of Maximum
Likelihood (ML). The consistency of ML estimators depends on the initial
conditions and on the way in which the time dimension 7" and number of
cross-sections N tend to infinity. For dynamic panel data models, Bond
(2002) argues that the distribution of the dependent variable depends in a
non-negligible way on what is assumed about the distribution of the initial
conditions. For example, the initial condition could be stochastic or non-
stochastic, correlated or uncorrelated with the individual effects, or have to
satisfy stationarity properties. Different assumptions about the nature of the
initial conditions will lead to different likelihood functions, and the resulting
ML estimators can be inconsistent when the assumptions on the initial con-
ditions are misspecified, see Hsiao (2003, pp. 80-135) for more details. IV or
GM estimators require much weaker assumptions. Following Anderson and
Hsiao (1981, 1982) and Arellano and Bond (1991), the individual effect p;
in (13), which is correlated with the spatial lag and time-lagged dependent
variable, is eliminated by first-differencing the model (4) yielding

Ayt = YAYi—1 + pywiAy, + 0w Ay, 1 + Axy 3 + Aey, (21)
t=2,...,T, and for a cross-section ¢, we have

Ay, =vAy,_; + pnWyAy, + OW Ay, | + Ax,3 + Ae;y. (22)
Following (14) and (15), (22) can be written as

Ay, =7Ay, 1 + pnWnyAy, + OWNAy, | + Ax B+ HyAv,. (23)
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Following Arellano and Bond (1991), we can define a GM estimator based on
the assumption of no correlation between the first-differenced disturbances
and earlier time-lagged levels of the dependent variable, y;; 1. This yields
the following moment conditions:

E(yqAvy) =0, Vi, 1=0,1,...;t—=2;t=2,...,T. (24)

If we assume that the explanatory variables xy ;, are strictly exogenous®, the
following additional moment conditions can be used

E<xk,imAvit) :07 Viaka m = 177T7 t:2>?T (25)
If, xj im is weakly exogenous then the associated moment conditions are
E(rgmAvy) =0, Vik, m=1,...t—1;t=2,...,T. (26)

Moreover, to take into account the endogeneity of the spatial lag, we can use
spatially weighted earlier time-lagged levels of the dependent and explana-
tory variables as instruments. This strategy is associated with the following
moments conditions:

E(w;y Avy) 0, 1=0,1,....t—2t=2,...,T, (27)

Ew yAvy) = 0, 1=0,1,...;t—=2,t=2,...,T, (28)
E(w;xpmAvy) = 0, Vik, m=1,....T;t=2,...,T, (29)
E(wWixpmAvy) = 0, Vik, m=1,....T;t=2,....T, (30

where wi = (w}y,...,wy) is a (1 x N) vector which corresponds to the ith

row of the matrix W#%. Considering the weakly exogenous assumption of
Tk im, the moment conditions (29) and (30) are replaced by the following:

E(w;xpmAvy) = 0, Vik, m=1,...,t—1t=2,....T, (31)
E(w!xpmAvy) = 0, Vijk,m=1,....,t—1,t=2,...,T. (32)

Let us define the matrix Z which contains the non-spatial instruments (i.e.
related to the conditions (24) and (25)) as

Z= dzag (Z27Z3a"'7ZT)7 (33)

3For other cases, see Bond (2002, p. 152), Bouayad-Agha and Védrine (2010, p. 211).



where
Zt: (y07y17"'7yt727X17'"7XT) (34)

is an (N x [(t — 1) + KT]) matrix of instruments at time ¢, y; is a vector of
dimension (N x 1) and x, is a matrix of dimension (N x K'). Moreover, we

can define a matrix Z° which contains the spatial instruments (i.e. related
to the conditions (27), (28), (29) and (30)) as

70 = diag (23,75, ...,75), (35)
with
Z; = (y;,yi" x*,x™), (36)
where y; = (y§,¥5, -, ¥i2), ¥i = (y5 . yi% . yi%s), x¥ = (x],...,x5),
x%* = (x§*,...,x5), and
w1y w1y
s WaYi S% W;yl
y; = . =Wyy, ¥ = ) = W3y, (37)
WNYI WNYI

where y; = (yu, - - - 7le)T and

WiXir WiXor - WiXgy
WoXir  WoXgr -+ WoXgy
S
X, = = Wyx,, (38)
WNXir WNXor -+ WNXKy
* * *
W]_XIT‘ W1X2rr A W1XKT
* * *
WiX WiX See WaX
2481y 2482 2X&Kr
Sk o 2
X7 = : : : = Wyx,, (39)
* * *
WyX1r WiXor - WxyXKy
T .
where xp. = (Tr1py .-, Tene) 5 kK =1,..., K. If we stack the matrices Z and

Z#, we obtain the valid instruments for the model (21), namely Z*. Moreover,
we use the weight matrix of moments

-1

Ay = [E [Z*T (Ae) (Ae)T ZH , (40)
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with

FE [(As) (AE)T} =02 (A®@HyHY), (41)
where
2 -1 0 0 O
-1 2 -1 0 O
: -1 0
o o0 o0 -1 2 -1
o o o --- =1 2

is the variance-covariance matrix of the remainder MA(1) unit roots error
which is of dimension (7"— 1 x T"— 1) used by Arellano and Bond (1991) in
their one-step GMM estimator.

A consistent estimate of the parameters A and 02 can be obtained using
a GM approach in the spirit of Fingleton (2008a) for the static spatial lag
model including a SMA-RE process on the disturbances. In fact, Fingleton
(2008a) extended the GM procedure from panel data proposed by KKP
(2007) for the SAR-RE case to the SMA-RE one. Here, the main difference is
that we base the estimation of A and ¢ on the first differences of the errors to
account for the dynamics and to get rid of the individual effects. Following
the derivation of the moment conditions and ignoring the expectations of
each term, the system involving A and o2 can be expressed as

I‘N¢ — 8N = 07 (43)
where
2N (T —1) 2(T -1t 0 o?
'y = | 2(T—1)t; 2(T —1)ty 4(T —1)ts o= | MNo? |,
0 2(T — 1)tz 2(T —1) (t;1 +t4) —\o?
Ae' Ae
gy = Ae'AE |, (44)
A" Ace

with ¢t =tr(W{Wy), & :tr<(W]2V)T W?V), t3 ztr<(W§V)T WN>, ty =

tr(W]zV)T. The GM estimators of A\ and o2 are the solution of the sam-

v

ple moments using nonlinear least squares on equation (43). See Fingleton
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(2008a) for the static spatial lag model including a SMA-RE process for
the disturbances. Our spatial GM procedure comprises of the following four
steps:

e In the first step, we use an IV or GM estimator to get consistent esti-
mates of v, p;, 6 and 3.

e In the second step, the IV or GM residuals are used to obtain consistent
estimates of the moving average parameter A and the variance o2.

e In the third step, we compute the preliminary one-stage consistent
Spatial GM estimator which is given by

0, = (AXTZ*ANZ T AX) 'AXTZ*ANZ T Ay, (45)
where AX = (Ay,l, (Ir—1 @ Wy) Ay, (Ir—1 ® Wy) Ay—hAX)’ 6] =
(7,,01,9,,BT) and

Ay = [Z*T (A ® ﬁNﬁD z*} - (46)
with Hy = (Iy — AWy).

e In the fourth step, following Arellano and Bond (1991), we replace (46)
by its robust version

Vi = |27 (I @ Hy) @ (I @ HY ) 77| B (47)
where
& — [(Av) (Avﬂ O Jr ®Iy), (48)

and Jr_; = (LT,1L;71), Lr—1 is a vector of ones of dimension (7" — 1 x 1).
To operationalize this estimator, Av is replaced by differenced resid-
uals obtained from the preliminary one-stage consistent Spatial GM
estimator (45). The resulting estimator is the two-stage Spatial GM
estimator

8, = (AXZVNZ TAX) ' AXTZ*VyZ T Ay. (49)

12



4 Prediction

In 2014, Baltagi, Fingleton and Pirotte argued that the derivation of the
predictor for a dynamic autoregressive spatial panel data model is more
complicated because the time/space lags of the dependent variable are corre-
lated with the disturbances. Thus, the Goldberger (1962) framework, which
assumes no correlation between the regressors and the error term, is not
applicable in this context. The predictor proposed by Baltagi, Fingleton
and Pirotte (2014), under the restrictive assumption of no time-space de-
pendence and SAR-RE disturbances structure, depends on the process that
generates the initial values and this may be difficult to handle in practice.
So, here, considering (4) without any restriction on time-space dependence
and a SMA-RE process on the disturbances € which captures local spillovers,
we propose a tractable approach which does not depend explicitly on the ini-
tial values. In the first step, the individual effects are estimated from the
residuals observed over time. To obtain this, we commence by using a single
cross-section equation at time ¢, in particular

Vi = pi Wyt + Cyyi1 +x:8 + €. (50)
So that
e = Hyu =y, — P1WNYt — Cnyi1 — x:0, (51)
and
u =M+ Ve = H]:rl (vt — i Wyt — Crnyim1 — x0), (52)
B = va1 (BNYt - Cnyi—1 — Xtﬁ) — Vi, (53)

with v; ~ N (0,021y). In order to calculate fi, one uses observed data for
the sequence of ys in equation (53) together with the parameter estimates
(7,4 ,@,B,X,ai,ai), using the data for the period ¢t = 2, ..., T (assuming that
Yo is not available) on each occasion drawing an (N X 1) vector v, at random
from the N (0, ol | N) distribution. This gives T'— 1 different estimates of p,
so we take the time mean as an estimate of the time-invariant (N x 1) vector
w, given E[v;] = 0. Also, the estimate is scaled so that its variance is equal
to 82. So, here, it is necessary to estimate ai and not only A and o2. These
two parameters are sufficient to compute the variance-covariance matrix of
the GM estimator. This means that instead of using the first differences
moment conditions approach, see (43) and (44), we have to consider the
moment conditions in levels described by Fingleton (2008a). The IV or GM
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level residuals are used to obtain consistent estimates of the moving average
parameter A and the variances o2 and O'i. In the second step, this estimated
u, denoted by 7, is then used in a bootstrap forecast approach considering
observed values yr for the first forecast yr. 1, and estimates of future y from
then on. Thus, the predictor is given by

Vi = f”]_vl aN?t—l + XtB + ﬁNﬁ ; (54)

which solves recursively over t = T + 1,7+ 2,....T + 7, 7 > 1 with yp
replacing yr for ¢ = T+ 1. In the Monte Carlo experiments that follow, this
predictor (54) is compared to other suboptimal predictors which correspond
to misspecified dynamic estimators.

5 Monte Carlo Design

We assume that the dependent variable y;;, ¢ = 1,... ,N; t = 1,...,T, is
given from a spatial dynamic panel data model of the form

Yit = @+ VYir—1 + pyWiYe + OWyi1 + By + €it, (55)

where the disturbance ¢;; follows a SMA process

Eit = Uip — AWy, (56)
w; = (w1, ..., w;iy) is a (1 x N) vector which corresponds the ith row of the
matrix Wy, A = —0.4, since this equates to positive dependence, and u;; has

an error component structure
Uit = [ + Vi, (57)

with pi; ~ @id.N (0,02), vy ~ iid.N (0,02) and (02, 02) = (0.8,0.2), (0.2,0.8).
The explanatory variable z;; is generated as

Tit = 0Tip—1 + &, (58)

with 6 = 0.8, &;, ~ iid.N (0,0%) and 0F = 10. We set 2; 5o = 0 and generate
xy for t = —49,-48,...,T. For y;, we also set y; _50 = 0 and discarded the
first 51 observations, using the observations ¢t = 1 through 7T for estimation
(we assume that 1o is non available in order to be closer to the empirical ap-
plications). Different sample sizes are considered N = 100, 200 and T" = 12.
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For the coefficients of (55), we take (a,v,py,0,5) = (1,0.2,0.8,—-0.2,1),
(1,0.8,0.4,-0.3,1), (1,0.7,0.8,—0.6,1) and (1,0.8,0.8, —0.7,1). Moreover,
following Baltagi and Yang (2013), the spatial matrix Wy has a rook conti-
guity structure?. This matrix is generated as follows: (i) index the N spatial
units by 1,..., N. Randomly permute these indices and then allocate them
into a lattice of R x M(> N) squares. (ii) let w;; = 1 if the index j is
in a square which is on the immediate left, or right, or above, or below the
square which contains the index ¢, otherwise w; ; = 0; and (z4i) divide each
element of Wy by its row sum. For all experiments, 5,000 replications are
performed. We Compute the mean, standard deviation, bias and RMSE of
the coefficients 7, p;, 9 ﬂ , X and the average direct, indirect and total short-
term and long-term effects using respectively (17) and (19). Following KKP
(2007), we adopt a measure of dispersion which is closely related to the stan-
dard measure of root mean square error (RMSE), but is based on quantiles.

It is defined as
1/2

RMSE = [bzas + (1[3Q5) ] ; (59)

where bias is the difference between the median and the true value of the
parameter, and () is the interquantile range defined as ¢; — ¢ where ¢;
is the 0.75 quantile and ¢ is the 0.25 quantile. Clearly, if the distribution
is normal the median is the mean and, aside from a slight rounding error,
1Q)/1.35 is the standard deviation. In this case, the measure (59) reduces to
the standard RMSE.

We compare the performance of 5 estimators in our Monte Carlo experi-
ments. These are as follows:

1. Ordinary Least Squares (OLS) which does not deal with the endogene-
ity of the spatial lag Wyy, the time lag y_; and the time-space lag
Wyy_1. OLS also ignores the SMA-RE process generating the distur-
bances.

2. The Within estimator which wipes out the individual effects, but oth-
erwise does not deal with the endogeneity of the spatial lag Wy, the
time lag y_; and the time-space lag W yy_; nor the SMA process for
the disturbances.

*Following Kelejian and Prucha (1999), we have also considered the spatial matrix
which is labelled as “j ahead and j behind” with the non-zero elements being 1/2j, j = 2,
i.e. W(2,2). The results are similar.
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3. The Arellano and Bond (1991) GMM estimator which eliminates the
individual effects by differencing, and handles the presence of the lagged
dependent variable by using the orthogonality conditions (24) and (25).
However, this estimator ignores the spatial lag W yy, the time-space
lag Wyy_; and the SMA process for the disturbances.

4. GM-TS-RE is an estimator that uses the orthogonality conditions (24)
and (25) of Arellano and Bond (1991) as well as the spatial orthog-
onality conditions (27), (28), (29) and (30). However, this estimator
ignores the SMA process for the disturbances.

5. GM-TS-SMA-RE is an estimator that uses the orthogonality condi-
tions (24) and (25) of Arellano and Bond (1991) as well as the spatial
orthogonality conditions (27), (28), (29) and (30) used by GM-TS-RE,
but it also accounts for the SMA structure of the disturbances using a
similar approach to that of Fingleton (2008a), see Section 3.

Last, for each experiment, we use the post sample RMSE criterion and
compute the out of sample forecast errors for each predictor associated with
the alternative estimators for one to five step ahead forecasts. In order to
do this, we generate 5 more time periods for each individual (i.e. T + T,
7 =1,...,5) which are not used in the estimation. An average RMSE is also
calculated across all individuals at different forecast horizons.

6 Monte Carlo Results

The estimates obtained via the various estimators are summarised in Tables 1
to4 (N = 100) and 6 to 9 (N = 200). They report the mean, bias and RMSE
of 7, py, X, 0 and B given various assumed true values for the data generating
process. The difference between Tables 1 and 2 (resp. Tables 5 and 6) is
that in Table 2 (resp. Table 6) we assume greater individual heterogeneity
where ai = 0.8 rather than 0.2. This is done holding the total variance of the
disturbances constant, i.e., 07 4+ 02 = 1 in both Tables. Tables 1 and 2 (resp.
Tables 5 and 6) show clearly that the GM-TS-SMA-RE estimator has the
lowest RMSEs for all experiments considered. This is especially true when
the individual heterogeneity and is high, i.e. when (ai,ag) = (0.8,0.2)
rather than (02 02) = (0.2,0.8). When N increases, comparing Tables 1

v
to 4 to their respective counterparts Tables 6 to 9, the spatial estimators
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perfom better in terms of RMSE. Table 11 reports the mean RMSE and it
clearly shows that GM-TS-SMA-RE performs well compared to the other
estimators. Tables 3 and 4 (resp. Tables 7 and 8) give the RMSE variation
for direct, indirect and total long and short-term effects in the case of the
two GM-based spatial estimators.

[INSERT TABLES 1 TO 10|

Table 11 - Mean RMSE for the non-spatial and spatial estimators

Mean (RMSE)
(Tables 1 & 2) (Tables 6 & 7)

Non-spatial estimators

- OLS 0.0343 0.0299
- Within 0.0165 0.0188
- GMM* 0.1102 0.1643
Spatial estimators

- GM-TS-RE 0.0189 0.0134
- GM-TS-SMA-RE 0.0172 0.0109
Total 0.0394 0.0475

*This estimator does not consider RMSEs of the coefficients p; and 0.

In order to illustrate the comparative prediction performance, Figures
la to ba and 1b to 5b show outcomes from specific parameter assump-
tions considering (N,T) = (200,12). In particular, Figures la to 5a, use
(a,7,p1,0.8,2) = (1,0.2,0.8,-0.2,1,-0.4), (02,02) = (0.2,0.8) and 7 =
1,...,5 whereas Figures 1b to 5b use the same values of (a,~, p;,0, 5, \), but
allow for a higher level of individual heterogeneity, i.e. (¢2,02) = (0.8,0.2).
Figure 16 shows the good performance associated with the GM-TS-SMA-RE
compared to the other figures. This figure also shows that the higher the
individual heterogeneity, i.e. (02,0%) = (0.8,0.2), the better the forecasting
performance comparing to Figure 1a. This is shown more formally in Table
10 which summarizes the forecasting performance results in RMSE terms and

shows that GM-TS-SMA-RE gives the lowest RMSE in all cases considered.

17



Predicted Data

Predicted Data

40

GM-TS-SMA-RE:

One to Five Periods Ahead Predictions

]
[=]
T

=y
=
T

[=1
T

e
8%

1
0 10
Observed Data

20

30

Figure la: (02,0%) = (0.2,0.8)

GM-TS-SMA-RE: One to Five Periods Ahead Predictions

40

40

30F

201

-10

-30
-30

-20 -10

0 10
Observed Data

20

30

Figure 1b: (02,07) = (0.8,0.2)

18

40



Predicted Data

Predicted Data

GM-TS-RE: One to Five Periods Ahead Predictions

40 T T T T T T

20

10+

_30 1 1 1 1 1 1
-30 -20 -10 0 10 20 30

Observed Data

Figure 2a: (02,02) = (0.2,0.8)

o

GM-TS-RE: One to Five Periods Ahead Predictions

40

40 T T T T T T

30

20

A0 -

-30 1 1 1 1
-30 -20 -10 0 10 20 30

Observed Data

Figure 2b: (02,07) = (0.8,0.2)

19

40



Predicted Data

Predicted Data

GMM: One to Five Periods Ahead Predictions

40

301

20

-20
-30

L
-20 -10 0 10 20 30
Observed Data

Figure 3a: (07,07) = (0.2,0.8)

GMM: One to Five Periods Ahead Predictions

40

40

301

20

XX

-20
-30

L
-20 -10 0 10 20 30
Observed Data

Figure 3b: (02,07) = (0.8,0.2)

20

40



Predicted Data

Predicted Data

Within: One to Five Periods Ahead Predictions

80

.
1=
T

=]
[=]
T

40+

-60

1
-20 -10 0 10 20 30
Observed Data

Figure 4a: (02,02) = (0.2,0.8)

o
Within: One to Five Periods Ahead Predictions

40

80

60

40}

40 -

60
-30

L
-20 -10 0 10 20 30
Observed Data

Figure 4b: (02,07) = (0.8,0.2)

21

40



Predicted Data

Predicted Data

OLS: One to Five Perieds Ahead Predictions

50 T T T T T T

230 1 1 1 1 1

1
-30 -20 -10 0 10 20 30
Observed Data

(02,0%) =(0.2,0.8)

wo
OLS: One to Five Periods Ahead Predictions

Figure 5a:

40

50 T T T T T

401

.30 ! ! !
-30 -20 -10 0 10 20 30

Observed Data

Figure 5b: (02,07) = (0.8,0.2)

22

40



7 Empirical Illustration

In this section, we apply the estimation and prediction methods outlined
above to estimate a time-space dynamic panel data model in which the level
of employment across EU regions observed over recent years is the dependent
variable and levels of output and capital are hypothesized causes of employ-
ment variation, controlling for spatial and temporal interactions involving
employment. We analyze total employment over the period 2001-2010 across
N = 255 NUTS2 regions of the EU°. The model specification we adopt is de-
rived from standard urban economics as given by Abdel-Rahman and Fujita
(1990), Ciccone and Hall (1996) and Fujita and Thisse (2002), among many
others. From this it is possible to derive a model which shows that the drivers
of (log) employment (Ine) are (log) output denoted by Inq and a measure
of (log) capital investment denoted by Ink. Following the arguments made
at the start of Section 2, we assume an underlying trend toward equilibrium
in employment levels in the absence of any disturbances. In reality equilib-
rium will be disturbed by other factors, but we maintain an assumption of
a tendency towards equilibrium following a shock, so that Ine;, = f (Ine; ;)
and this leads logically to our specification with temporal and spatial wage
interdependence, thus

Ine, = ciy;+ylne, 1+p,Wylne,+0Wylne, 1+ 5, Inq,+ 5, Ink,+e; (60)

in which ¢; is a vector of ones of dimension (N x 1), e;, e,_1, q; and k; are
(N x 1) vectors of observations in levels, with ¢ = 2001, ...,2010. The data
series are based on Cambridge Econometrics’ European Regional Economic
Data Base, in which e, is the annual regional employment series, q; is output
(Gross Value Added, or GVA) and k; is a measure of capital investment
(Gross Fixed Capital Formation, or GFCF). The error term e; captures all
other unobservable effects influencing the level of employment, especially
interregional heterogeneity.

Written in first difference terms, in other words as exponential growth
rates, the estimating equation is

Alne; = ~vAlne, 1 +p,WyAlne; +OWyAlne, ; + ;Alnq;
+52A hl kt + AEt. (61)

®We use 'regions of the EU’ as a convenience, since some regions are located in closely
intergrated but non-EU countries Norway and Switzerland.
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The matrix Wy is based on estimated bilateral trade flows between EU
NUTS2 regions. The data come from the PBL (the Netherlands Environ-
mental Assessment Agency)® who developed a new methodology which is
close to that of Simini et al. (2012). Details of the methodology are given
in Thiessen et al. (2013a, b, ¢), see also Gianelle et al. (2014). The method
follows a top-down approach and therefore is consistent with the national
accounts of the different countries. Given the total international exports and
imports on the country level, interregional trade flows are derived using data
on business travel (services) and on freight transport (goods). Trade flows
involving regions of Switzerland and Norway were obtained on the basis of
interregional trade flows estimated by the best linear disaggregation method
of Chow and Lin (1971), which was initially used to break down annual time
series into quarterly series (see Abeysinghe and Lee, 1998, Doran and Fin-
gleton, 2014). In this, commencing with aggregate trade values’ between
21 EU counties, these were allocated to the NUTS2 regions. A parallel ap-
proach has been used by Polasek, Verduras and Sellner (2010), Vidoli and
Mazziotta (2010), and Fingleton, Garretsen and Martin (2015), who pro-
vide more detail. Finally, OLS regression of the log PBL trade flows on log
Chow-Lin trade flows produced parameters used to predict the missing PBL
regional trade flows for Switzerland and Norway using the values for these
regions obtained via the Chow-Lin approach. We subsequently normalize the
trade matrix by dividing by its maximum eigenvalue, thus giving the matrix
W . This normalization ensures that the most positive real eigenvalue of
Wy is equal to max(eig) = 1.0, and the continuous range for p; for which
By = (In — p; Wy) is nonsingular is mimte < P1 < 1. This normalization
retains real trade magnitude differences between regions so that Wy In e;, for
example, depend on the size of the trade flow between regions. In contrast,
normalization by row standardization would make interregional interaction
depend on trade shares.

Assuming an SMA process for the compound errors, the spatial error de-
pendence is €; = u;; — Am;u; in which m; is the ¢’th row of My, where M y
is an (N x N) row-normalized regional contiguity matrix. The key feature
of an SMA process is that shocks to the unobservables have local rather than
global effects. Note that both components of the compound errors &; are

OWe are grateful to Mark Thiessen, who kindly provided the data. The data can be
visualized at http://themasites.pbl.nl/eu-trade/index2.html?vis=net-scores.

"They are downloadable from http://cid.econ.ucdavis.edu/data/undata/undata.html,
see also Feenstra et al. (2005).
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assumed to be subject to this same spatial error dependence processes. The
SMA assumption is somewhat distinct from the more usual SAR assump-
tion for the errors, which implies complex simultaneous association involving
errors across all regions.

With regard to causation, we make two assumptions. One is that the
regressors are strictly exogenous. In this case the moments conditions® are
given by equations (25) and (29), combined with the moments for the en-
dogenous variable and its spatial lag, as defined in the moments equations
(24) and (27). Probably a more realistic assumption is that there will be
feedback from employment to the variables q; and k; but that this will be
delayed rather than instantaneous, and thus we estimate the model assuming
that the variables are predetermined. In this case estimation is based on the
moments (26), (31), (24) and (27).

Columns 1 and 2 of Table 12 gives the resulting parameter estimates’
for equation (61) assuming either predeterminedness or exogeneity, and this
shows that the effects of Inq; and Ink; on Ine; are significant and positive.
Note that the negative estimated A\ also indicates positive error dependence.
If the positive space and time dependence parameter estimates were large,
so that v + p; > 1, this would not necessarily imply nonstationarity if 6 <
0. On the other hand given a restriction that § = 0 then large v would
necessarily requires small p; in order to satisfy stationarity. Therefore under
the assumption that 6 = 0 the possibility of bias is introduced. However with
0 # 0, in other words with no restriction imposed on space-time covariance, a
large positive « plus large positive p; could be offset by a negative covariance
term so that collectively the parameters pass the stationarity conditions. In
this instance it turns out that with predetermined regressors the maximum
absolute eigenvalue of CyBy' is 0.6757 < 1, p; +60 = 0.13472, |y|+ (p; +0) =
0.7872 < 1, and p; —6 = 0.9359, v — (p; — ) = —0.28337 > —1, see (6), (7),
(8) and (9). Likewise, assuming exogenous regressors, the model parameter
estimates indicate stationarity and dynamic stability.

The estimates obtained cast some light on the question of increasing re-
turns, in other words as a region’s economy grows, are there productivity

8For simplicity, we exclude the additional moments based on W¥;.

9Note that because the estimates are based on differences, no estimate of the constant
c is provided. This estimate is subsequently constructed as the difference between Ine
and the expected Ine given by the model without ¢, using means over time. With the
assumption of predetermined regressors this gives ¢ = 0.4462, assuming exogeneity gives
c = 0.4076.

25



benefits so that employment grows by less than output, due to positive ex-
ternalities associated with increasing size and diversity of the economy as
q increases overcoming negative ones such as the effects of congestion. As-
suming predetermined regressors, controlling for the effect of k, spatial in-
teraction, temporal dependence and space-time covariance, the estimated (3,
suggests that a 1% increase in q produces a 0.1272% increase in employment.
This would indicate a high level of productivity growth. However, this es-
timate is misleading. As noted earlier, under model specifications involving
autoregressive spatial interdependence of a dependent variable y, the partial
derivative 38—3]_ is not simply equal to the regression coefficient 3;, as pointed
out by LeSage and Pace (2009). The true effect of x; differs from 3, because
it also includes the consequences of spillovers across regions. Based on the
Table 12 estimates, one obtains via equations (17) and (19) (the means of)
the true derivatives which are given in Table 13, with total effects partitioned
into direct and indirect components. As shown in Table 13 the total long-
term total effect of q equal to 0.4184, assuming predetermined regressors,
which remains well below the value of 1.0 which one would associate with
constant returns to scale. In order to obtain the standard errors and hence
t-ratios given in Table 13, we draw at random from the multivariate normal
distribution with mean equal to the parameter estimates given in Table 12,
and covariance matrix equal to the estimated covariance matrix for these pa-
rameters. Each draw allows us to calculate the corresponding short and long
term direct, indirect and total effects. With multiple (500) draws we obtain
the distributions of these effects thus giving the standard errors in Table 13.
From these draws it is evident that the effects are significantly different to
zero under exogeneity and predetermindness. Note that the total long term
elasticity with regard to GVA is similar, and clearly less than 1.0, regard-
less of estimator. It is evident that increasing productivity is an enduring
characteristic of the EU regional economy.

The predictive performance of the SMA specification is given by the one-
and two-step ahead predictions!’, as measured by the post sample RMSE
criterion. Computing the out-of-sample forecast errors for 2011 and for 2012
indicates that the specification with either predetermined regressors or as-
suming exogeneity, provides relatively accurate predictions compared with
the outcome of assuming SAR errors, which do not explicitly focus on lo-

10Data limitations mean that for 2012, k in each region is estimated using each region’s
previous growth rate.
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cal spillovers. With SAR errors ¢; = p, Zjvzl mij€je + Uy in which my;
denotes cell(i,j) of My, and uy = p; + vy, in which p; ~ 4d(0,07) is a
region (i.e. individual)-specific time-invariant effect and the remainder ef-
fect vy ~ 4id(0,02%). In this case the RMSEs for the SAR errors estimator
are calculated from the difference between y; and y; given by the prediction

equation
y: = By [CNyt—l + oy +xB8+HY R (62)

in which Hy = (In — pyMy) is a nonsingular matrix and g is based on

p=Hy (Byy: — Cyyio1 — xB—cty) — vy (63)

With exogenous regressors, the the SAR errors estimator is non-stationary
and dynamically unstable with out-of-sample RMSE forecast errors for 2011
and for 2012 of 0.8305 and 2.3758. Assuming predetermined regressors, the
estimator is stationary and gives RMSE’s of 0.1742 and 0.2291.

The final two columns of Table 12 gives estimates for the SMA errors
specification with predetermined and exogenous regressors, but with the
additional variables W yxy;, the spatial lag of q;, with parameter 35, and
W yxsy, the spatial lag of k, with parameter 3,. This is thus a form of spa-
tial Durbin specification with regressors x; = (X1, X2, W nX1¢, WXg) . The
additional covariates evidently cause a problem of weak instruments, giv-
ing dynamically unstable nonstationary estimates, as reflected by the largest
characteristic roots of B;,lC ~ equal to 1.0663 and 1.9041 respectively, and
the one-step ahead RMSEs are 7.4094 and 3.0746. Assuming the Spatial
Durbin with predetermined regressors and with p, restricted to zero, gives a
largest characteristic root equal to 1.1127 and RMSE equal to 3.3007. The
same specification but with a spatial autoregressive (SAR) error process gives
2.489 and 23.3138 respectively. Thus omitting the spatial lags W yxy; and
Wxo; and hence restricting the direct effect to the total effect ratio to
equality across explanatory variables is a necessary simplification. Compar-
ing the RMSEs of the SAR and SMA estimators, the conclusion is that the
GM-TS-SMA-RE estimator with predetermined regressors provides more ac-
curate one- and two-step ahead predictions of employment levels across EU
regions.
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Table 12 - GM-TS-SMA-RE parameter estimates

Parameters Predetermined Exogenous Spatial Durbin Spatial Durbin

(a) (b)
¥ 0.6525 0.5634 0.3357 0.5673
(0.003769) (0.001425) (0.00209) (0.002129)
(173.1) (395.2) (160.6) (266.4)
P1 0.5353 0.5909 1.5160 1.1990
(0.01045) (0.006908) (0.01156) (0.01358)
(51.2) (85.54) (131.2) (88.3)
B4 0.1272 0.1787 0.3604 0.1897
(0.002116) (0.0006129) (0.001307) (0.001245)
(60.11) (291.5) (275.6) (152.4)
By 0.02636 0.01966 —0.03702 0.01581
(0.0006568) (0.0001589) (0.0007463) (0.0002156)
(40.13) (123.7) (—49.61) (73.34)
B 0.2910 0.3576
- - (0.005024) (0.006044)
(57.91) (59.18)
By _ B —0.3930 —0.3025
(0.003494) (0.002825)
(—112.5) (—107.1)
0 —0.4006 —0.3807 —0.8863 —0.9465
(0.008868) (0.005913) (0.008452) (0.009802)
(—45.17) (—64.39) (—104.9) (—96.56)
A —0.7975 —0.6545 —0.3079 —0.5852
O'i 0.0753 0.2786 0.0097 0.4663
o2 0.0003 0.0003 0.0006 0.0003
Forecasting RMSE
2011 0.0465 0.1413 7.4094 3.0746
2012 0.0977 0.2168 7.4711 3.1091
Average 0.0721 0.1791 7.4403 3.0918

(a) Predetermined regressors; (b) Exogenous regressors.
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Table 13 - GM-TS-SMA-RE short- and long-term effects

Predetermined Exogenous
Direct Indirect Total Direct Indirect Total

GVA(q)
Short-term  0.1278  0.0285 0.1564 0.1798 0.0473 0.2271
(0.00218)  (0.0007)  (0.0022)  (0.0006)  (0.0009)  (0.0011)
(60.94) (38.43) (7027)  (288.43)  (51.31)  (213.42)

Long-term 0.3669 0.0515 0.4184 0.4108 0.0779  0.4887
(0.0068) (0.0020)  (0.0069)  (0.0008)  (0.0017) 0.0019)

( (
(53.624) (26.08) (60.90)  (494.39) (47.03) (257.59)
GFCF(k)
Short-term  0.0265 0.0059 0.0324 0.0198 0.0052 0.0250
(0.0007)  (0.0002)  (0.0009)  (0.0002)  (0.0001)  (0.0002)
(39.67) (24.20) (38.07)  (121.60) (46.80) (110.39)

Long-term 0.0760  0.0107  0.0867 0.0452 0.0086  0.0538
(0.0017)  (0.0005)  (0.0020)  (0.0004)  (0.0002) 0.0005)

(
(44.50) (20.76) (44.27)  (117.40) (44.78) (111.81)

8 Conclusion

In this paper we have developed a new spatial panel data estimator, denoted
by GM-TS-SMA-RE, which incorporates dynamic effects and spatial effects
including a time-space covariance term, with the spatial effects comprising a
spatially autoregressive endogenous spatial lag. This is combined with a spa-
tial moving average compound error process, which we advocate as a means
of controlling for local spillovers. The resulting time-space dynamic panel
data estimator with spatial moving average errors is shown via Monte Carlo
simulations to produce estimates which are similar to the true values used
in the data generating process. We also show that the estimator is superior
to a number of alternatives in terms of its forecasting accuracy, as measured
by the mean RMSE. An empirical example examines the efficacy of the es-
timator in the context of modelling and predicting employment levels across
EU NUTS2 regions, which provides evidence for the existence of increasing
returns to scale and cumulative agglomeration processes in the EU economy.
Estimation based on an assumption of predetermined regressors and SMA
errors produces the slightly more accurate one- and two-step ahead forecasts
when compared with an assumption of exogeneity, and when compared with
forecasts based on an equivalent estimator (GM-TS-SAR-RE) assuming SAR
erTors.

29



References

Abdel-Rahman, H. and Fujita, M. (1990). ‘Product variety, Marshallian
externalities and city size’, Journal of Regional Science, Vol. 30, pp.
165-83.

Abeysinghe, T. and Lee, C. (1998). ‘Best linear unbiased disaggregation
of annual GDP to quarterly figures: the case of Malaysia’, Journal of
Forecasting, Vol. 17, pp. 527-537.

Anderson, T.W. and Hsiao, C. (1981). ‘Estimation of dynamic models with
error components’, Journal of the American Statistical Association,
Vol. 76, pp. 598-606.

Anderson, T.W. and Hsiao, C. (1982). ‘Formulation and estimation of
dynamic models using panel data’, Journal of Econometrics, Vol. 18,
pp. 47-82.

Anselin, L. (2001). Spatial econometrics. Ch. 14 in B.H. Baltagi, ed.,
A Companion to Theoretical Econometrics, Blackwell Publishers Lte,
Massachusetts, pp. 310-330.

Anselin, L., Le Gallo, J. and Jayet, H. (2008). Spatial panel econometrics,
Ch. 19 in L. Matyds and P. Sevestre, eds., The Econometrics of Panel
Data: Fundamentals and Recent Developments in Theory and Practice,
Springer-Verlag, Berlin, pp. 625-660.

Arellano, M. and Bond, S. (1991). ‘Some tests of specification for panel
data: Monte Carlo evidence and an application to employment’, Review
of Economic Studies, Vol. 58, pp. 277-297.

Arellano, M. and Bover, O. (1995). ‘Another look at the instrumental vari-
able estimation of error-components models’. Journal of Econometrics,
Vol. 68, pp. 29-52.

Baltagi, B.H. and Li, D. (2004). Prediction in the panel data model with
spatial correlation, Chapter 13 in L. Anselin, R.J.G.M. Florax and S.J.
Rey, eds., Advances in Spatial Econometrics: Methodology, Tools and
Applications, Springer, Berlin, pp. 283-295.

30



Baltagi, B.H. and Li, D. (2006). ‘Prediction in the panel data model with
spatial correlation: the case of liquor’, Spatial Economic Analysis, Vol.
1, pp. 175-185.

Baltagi, B.H. and Yang, Z. (2013). ‘Heteroskedasticity and non-normality
robust LM tests for spatial dependence’, Regional Science and Urban
Economics, Vol. 43, pp. 725-739.

Baltagi, B.H., Fingleton, B. and Pirotte, A. (2014). ‘Estimating and fore-
casting with a dynamic spatial panel data model’, Ozford Bulletin of
Economics and Statistics, Vol. 76, pp. 112-136.

Blundell, R. and Bond, S. (1998). ‘Initial conditions and moment restrictions
in dynamic panel data models’, Journal of Econometrics, Vol. 87, pp.
115-143.

Blundell, R., Bond, S. and Windmeijer, F. (2000). ‘Estimation in dynamic
panel data models: improving on the performance of the standard
GMM estimator’. Advanced in Econometrics, 15, pp. 53-91.

Bond, S. (2002). ‘Dynamic panel data models: a guide to micro data meth-
ods and practice’, Portuguese FEconomic Journal, Vol. 1, pp. 141-162.

Bouayad-Agha, S. and Védrine, L. (2010). ‘Estimation strategies for a spa-
tial dynamic panel using GMM. A new approach to the convergence
issue of European regions’, Spatial Economic Analysis, Vol. 5, pp. 205-
227.

Brady, R.R. (2011). ‘Measuring the diffusion of housing prices across space
and time’, Journal of Applied Econometrics, Vol. 26, pp. 213-231.

Ciccone, A. and Hall, R. E. (1996). ‘Productivity and the density of eco-
nomic activity’, American Economic Review, Vol. 86, pp. 54-70.

Chow, G. and Lin, A.-I. (1971). ‘Best linear unbiased interpolation, dis-
tribution and extrapolation of time series by related series’, Review of
Economics and Statistics, Vol. 53, pp. 372-375.

Debarsy, N., Ertur, C. and LeSage, J.P. (2012). ‘Interpreting dynamic
space-time panel data models’, Statistical Methodology, Vol. 9, pp. 158-
171.

31



Doran, J. and Fingleton, B. (2014). ‘Economic shocks and growth: spatio-
temporal perspectives on Europe’s economies in a time of crisis’, Papers
in Regional Science, Vol. 93, pp. S137-S165.

Elhorst, J.P. (2001). ‘Dynamic models in space and time’, Geographical
Analysis, Vol. 33, pp. 119-140.

Elhorst, J.P. (2010). ‘Dynamic panels with endogenous interaction effects
when T is small’, Regional Science and Urban Economics, Vol. 40, pp.
272-282.

Elhorst, J.P. (2012). ‘Dynamic spatial panels: models, methods and infer-
ences’, Journal of Geographical Systems, Vol. 14, pp. 5-28.

Elhorst, J.P. (2014). Spatial Econometrics: From Cross-Sectional Data to
Spatial Panels, Heidelberg, New York, Dordrecht, London: Springer-
Verlag.

Feenstra, R.C., Lipsey, R.E., Deng, H., Ma, A.C. and Mo, H. (2005). ‘World
trade flows: 1962-2000’, NBER Working Paper No. 11040. Available
at: http://www.nber.org/papers/w11040.

Fingleton, B. (2008a). ‘A generalized method of moments estimator for a
spatial panel model with an endogenous spatial lag and spatial moving
average errors’, Spatial Fconomic Analysis, Vol. 3, pp. 28-44.

Fingleton, B. (2008b). ‘A generalized method of moments estimator for
a spatial model with moving average errors, with application to real
estate prices’, Empirical Economics, Vol. 34, pp. 35-57.

Fingleton, B. (2009). ‘Prediction using panel data regression with spatial
random effects’, International Regional Science Review, Vol. 32, pp.
195-220.

Fingleton, B. and McCombie, J. (1998). ’'Increasing returns and economic
growth : some evidence for manufacturing from the Furopean Union
regions’, Ozford FEconomic Papers, Vol. 50, pp. 89-105.

Fingleton, B., Garretsen, H. and Martin, R.L. (2014). ‘Shocking aspects
of monetary union: the vulnerability of regions in Euroland’, Jour-
nal of Economic Geography, first published online January 8, 2015
doi:10.1093/jeg/1bu055.

32



Franzese Jr., R.J. and Hays, J.C. (2007). ‘Spatial econometric models
of cross-sectional interdependence in political science panel and time-
series-cross-section data’, Political Analysis, Vol. 15, pp. 140-164.

Fujita, M. and Thisse, J.-F. (2002). FEconomics of Agglomeration, Cam-
bridge University Press, Cambridge.

Gianelle C., Goenaga, X., Gonzdlez, I. and Thissen, M. (2014). ‘Smart
specialisation in the tangled web of European inter-regional trade’, S3
Working Paper Series No. 05/2014, JRC-IPTS, Sevilla.

Girardin, E. and Kholodilin, K. A. (2011). ‘How helpful are spatial effects in
forecasting the growth of Chinese provinces?’, Journal of Forecasting,
Vol. 30, pp. 622-643.

Goldberger, A.S. (1962). ‘Best linear unbiased prediction in the generalized
linear regression model’;, Journal of the American Statistical Associa-
tion, Vol. 57, pp. 369-375.

Hsiao, C. (2003). Analysis of Panel Data, Cambridge University Press, New
York.

Jacobs, J.P.A.M., Ligthart, J.E. and Vrijburg, H. (2009). ‘Dynamic panel
data models featuring endogenous interaction and spatially correlated
errors’, Working Paper n°09-15, International Studies Program, Geor-
gia State University.

Kapoor, M., Kelejian, H.H. and Prucha, I.R. (2007). ‘Panel data models
with spatially correlated error components’;, Journal of Econometrics,
Vol. 140, pp. 97-130.

Kelejian, H.H., and Prucha, L.R. (1998). ‘A generalized spatial two-stage
least squares procedure for estimating a spatial autoregressive model

with autoregressive disturbances’, Journal of Real Estate Finance and
Economics, Vol. 17, 99-121.

Kelgjian, H.H. and Prucha, L.R. (1999). ‘A generalized moments estima-
tor for the autoregressive parameter in a spatial model’, International
FEconomic Review, Vol. 40, pp. 509-533.

33



Kelejian, H.H. and Prucha, I.R. (2007). ‘Relative efficiencies of various pre-
dictors in spatial econometric models containing spatial lags’, Regional
Science and Urban Economics, Vol. 37, pp. 363-374.

Kelejian, H.H. (2016). ‘Critical issues in spatial models: error term spec-
ifications, additional endogenous variables, pre-testing, and Bayesian
analysis’, Letters in Spatial and Resource Sciences, Vol. 9, pp. 113-
136.

Kholodilin, K. A., Siliverstovs, B. and Kooths, S. (2008). ‘A dynamic panel
data approach to the forecasting of the GDP of German Lénder’, Spatial
Economic Analysis, Vol. 3, pp. 195-207.

Korniotis, G.M. (2010). ‘Estimating panel models with internal and exter-
nal habit formation’, Journal of Business € Economic Statistics, Vol.
28, pp. 145-158.

Kukenova, M. and Monteiro, J.-A. (2009). ‘Spatial dynamic panel model
and system GMM: a Monte Carlo investigation’, Munich Personal RePEc
Archive paper n°14319. http://mpra.ub.uni-muenchen.de/14319/.

Lee, L.-F. and Yu, J. (2010). ‘Some recent developments in spatial panel
data models’, Regional Science and Urban Economics, Vol. 40, pp.
255-271.

Lee, L.-F. and Yu, J. (2014). ‘Efficient GMM estimation of spatial dynamic
panel data models with fixed effects’, Journal of Econometrics, Vol.
180, pp. 174-197.

Lee, L.-F. and Yu, J. (2015). Spatial panel data models, Ch. 12 in B.H. Bal-
tagi, ed., Oxford Handbook of Panel Data, Oxford: Oxford University
Press.

Lee, L.-F. and Yu, J. (2016). ‘Identification of spatial Durbin panel models’,
Journal of Applied Econometrics, Vol. 31, pp. 133-162.

LeSage, J.P. and Pace, R.K. (2009). Introduction to Spatial Econometrics,
Chapman & Hall/CRC Press, Boca Raton.

Longhi, S. and Nijkamp, P. (2007). ‘Forecasting regional labor market de-
velopments under spatial heterogeneity and spatial correlation’, Inter-
national Regional Science Review, Vol. 30, pp. 100-119.

34



Mutl, J. (2006). Dynamic panel data models with spatially correlated dis-
turbances, PhD, University of Maryland.

Ord, J.K. (1975). ‘Estimation methods for models of spatial interaction’,
Journal of the American Statistical Association, Vol. 70, pp. 120-126.

Pace, R.K., LeSage, J.P. and Zhu, S. (2012). Spatial dependence in regres-
sors, Advances in Econometrics, Vol. 30, T.B. Fomby, R. Carter Hill, I.
Jeliazkov, J.C. Escanciano and E. Hillebrand (Series Eds., Volume edi-
tors: D. Terrell and D. Millimet), Emerald Group Publishing Limited,
pp- 257-295.

Parent, O. and LeSage, J.P. (2010). ‘A spatial dynamic panel model with
random effects applied to commuting times’, Transportation Research,

Part B, Vol. 44, pp. 633-645.

Parent, O. and LeSage, J.P. (2011). ‘A space-time filter for panel data
models containing random effects’, Computational Statistics and Data
Analysis, Vol. 55, pp. 475-490.

Parent, O. and LeSage, J.P. (2012). ‘Spatial dynamic panel data models

with random effects’, Regional Science € Urban Economics, Vol. 42,
pp. 727-738.

Pesaran, M.H. (2015). Time Series and Panel Data Econometrics, Oxford:
Oxford University Press.

Polasek, W., Verduras, C. and Sellner, R. (2010), ‘Bayesian methods for
completing data in spatial models’, Review of Economic Analysis, Vol.
2, pp- 194-214.

Schanne, N.,; Wapler, R. and Weyh, A. (2010). ‘Regional unemployment
forecasts with spatial interdependencies’, International Journal of Fore-
casting, Vol. 26, pp. 908-926.

Simini F., Gonzélez M.C., Maritan A. and Barabdsi A. (2012). A universal
model for mobility and migration patterns, Nature, 484, 96-100.

Thissen, M., van Oort, F., Diodato, D. and Ruijs, A. (2013a). ‘Regional
Competitiveness and Smart Specialization in Furope: Place-based De-
velopment in International Economic Networks’, Cheltenham, UK: Ed-
ward Elgar Publishing.

35



Thissen, M., Diodato, D. and van Oort, F. (2013b). ‘Integration and Con-
vergence in Regional Europe: European Regional Trade Flows from
2000 to 2010°, PBL publication number: 1036, PBL Netherlands Envi-
ronmental Assessment Agency, The Hague/Bilthoven.

Thissen, M., Diodato, D. and van Oort F. (2013¢). ‘Integrated Regional
Europe: European Regional Trade Flows in 2000°, PBL publication
number: 1035, PBL Netherlands Environmental Assessment Agency,
The Hague/Bilthoven.

Vidoli, F. and Mazziotta, C. (2010). ‘Spatial composite and disaggregate
indicators: Chow-Lin methods and applications’, Proceedings of the
45th Scientific Meeting of the Italian Statistical Society, Padua.

Yang, Z.L. (2017). ‘Unified M-estimation of fixed-effects spatial dynamic
models with short panels’, forthcoming in Journal of Econometrics.

Yu, J., de Jong, R. and Lee, L.-F. (2008). ‘Quasi-maximum likelihood
estimators for spatial dynamic panel data with fixed effects when both
n and T are large’, Journal of Econometrics, Vol. 146, pp. 118-134.

Yu, J., de Jong, R. and Lee, L.-F. (2012). ‘Estimation for spatial dynamic
panel data with fixed effects: the case of spatial cointegration’, Journal
of Econometrics, Vol. 167, pp. 16-37.

36



Table 1 — Mean, bias and RMSE of the coefficients ¥, p1, 0, ﬁ and 1 for rook contiguity matrix,
(a,B,2) = (1,1,-0.4), (62,02) = (0.2,0.8), (N,T) = (100,12), 5,000 replications

Non-spatial estimators Spatial estimators
oLS Within GMM GM-TS-RE GM-TS-SMA-RE
v, p1,60) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
¥  Mean 0.2249 0.8046 0.2019 0.7969 0.2458 0.8114 0.2045 0.7988 0.2018 0.7987
Bias 0.0249 0.0046 0.0019 -0.0032 0.0457 0.0113 0.0044 -0.0012 0.0019 -0.0014
RMSE 0.0261 0.0054 0.0075 0.0044 0.0513 0.0123 0.0146 0.0049 0.0147 0.0049
p1 Mean 0.8474 0.4502 0.8444 0.4556 na na 0.8412 0.4516 0.8378 0.4385
Bias 0.0476 0.0504 0.0446 0.0557 na na 0.0413 0.0521 0.0382 0.0385
RMSE 0.0482 0.0524 0.0452 0.0571 na na 0.0430 0.0579 0.0403 0.0470
& Mean -0.2546 -0.3488 -0.2300 -0.3521 na na -0.2268 -0.3507 -0.2231 -0.3380
Bias -0.0546 -0.0489 -0.0298 -0.0523 na na -0.0269 -0.0510 -0.0232 -0.0384
RMSE 0.0558 0.0509 0.0318 0.0538 na na 0.0333 0.0571 0.0309 0.0469
ﬁ Mean 0.9689 0.9855 0.9883 0.9969 1.2124 1.0376 0.9846 0.9967 0.9888 0.9999
Bias -0.0311 -0.0143 -0.0118 -0.0032 0.2128 0.0375 -0.0156 -0.0034 -0.0113 0.0003
RMSE 0.0324 0.0163 0.0146 0.0078 0.2141 0.0390 0.0230 0.0130 0.0207 0.0128
A Mean na na na na na na na na -0.3210 -0.3358
Bias na na na na na na na na 0.0795 0.0651
RMSE na na na na na na na na 0.0914 0.0831
(]/, P1, 9) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
¥  Mean 0.7087 0.8056 0.6989 0.7985 0.6853 0.7653 0.7019 0.8010 0.7011 0.8005
Bias 0.0086 0.0055 -0.0011 -0.0015 -0.0148 -0.0348 0.0020 0.0011 0.0012 0.0006
RMSE 0.0094 0.0061 0.0038 0.0034 0.0178 0.0357 0.0071 0.0052 0.0070 0.0052
p1 Mean 0.8400 0.8381 0.8386 0.8379 na na 0.8358 0.8353 0.8323 0.8313
Bias 0.0403 0.0384 0.0387 0.0381 na na 0.0358 0.0354 0.0325 0.0316
RMSE 0.0410 0.0391 0.0394 0.0387 na na 0.0376 0.0372 0.0348 0.0339
® Mean -0.6421 -0.7376 -0.6333 -0.7329 na na -0.6331 -0.7322 -0.6297 -0.7289
Bias -0.0422 -0.0377 -0.0334 -0.0329 na na -0.0331 -0.0324 -0.0299 -0.0291
RMSE 0.0431 0.0385 0.0344 0.0338 na na 0.0359 0.0348 0.0333 0.0320
ﬁ Mean 0.9769 0.9799 0.9902 0.9903 1.2599 1.2583 0.9867 0.9874 0.9911 0.9923
Bias -0.0231 -0.0200 -0.0098 -0.0097 0.2599 0.2587 -0.0134 -0.0127 -0.0088 -0.0076
RMSE 0.0245 0.0215 0.0123 0.0121 0.2605 0.2594 0.0197 0.0186 0.0175 0.0162
A Mean na na na na na na na na -0.3309 -0.3329
Bias na na na na na na na na 0.0694 0.0675

RMSE na na na na na na na na 0.0835 0.0820




na = not applicable.

Table 2 — Mean, bias and RMSE of the coefficients ¥, p1, 0, ﬁ and 1 for rook contiguity matrix,
(a,B,2) = (1,1,-0.4), (64,02) = (0.8,0.2), (N,T) = (100,12), 5,000 replications

Non-spatial estimators Spatial estimators
oLS Within GMM GM-TS-RE GM-TS-SMA-RE
v, p1,60) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
¥  Mean 0.2643 0.8160 0.2007 0.7992 0.2595 0.8123 0.2014 0.7997 0.2005 0.7997
Bias 0.0637 0.0160 0.0007 -0.0008 0.0594 0.0122 0.0014 -0.0003 0.0006 -0.0003
RMSE 0.0647 0.0165 0.0038 0.0018 0.0609 0.0126 0.0071 0.0024 0.0073 0.0024
p1 Mean 0.8334 0.4247 0.8129 0.4148 na na 0.8118 0.4135 0.8106 0.4097
Bias 0.0333 0.0247 0.0129 0.0148 na na 0.0119 0.0137 0.0107 0.0098
RMSE 0.0343 0.0303 0.0137 0.0163 na na 0.0139 0.0191 0.0131 0.0168
& Mean -0.2680 -0.3246 -0.2093 -0.3139 na na -0.2084 -0.3133 -0.2069 -0.3095
Bias -0.0677 -0.0245 -0.0093 -0.0139 na na -0.0087 -0.0137 -0.0071 -0.0095
RMSE 0.0690 0.0299 0.0110 0.0154 na na 0.0137 0.0194 0.0132 0.0169
ﬁ Mean 0.9347 0.9649 0.9967 0.9992 1.2014 0.10371 0.9957 0.9991 0.9970 1.0000
Bias -0.0649 -0.0348 -0.0034 -0.0009 0.2014 0.0371 -0.0044 -0.0009 -0.0028 -0.0000
RMSE 0.0660 0.0363 0.0054 0.0036 0.2018 0.0376 0.0094 0.0064 0.0091 0.0064
A Mean na na na na na na na na -0.3746 -0.3826
Bias na na na na na na na na 0.0263 0.0184
RMSE na na na na na na na na 0.542 0.0530
(]/, P1, 9) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
¥  Mean 0.7243 00.8163 0.6998 0.7996 0.6898 0.7690 0.7006 0.8003 0.7003 0.80002
Bias 0.0242 0.0163 -0.0002 -0.0004 -0.0103 -0.0310 0.0006 0.0003 0.0004 0.0002
RMSE 0.0248 0.0168 0.0019 0.0016 0.0119 0.0315 0.0034 0.0026 0.0035 0.0026
p1  Mean 0.8237 0.8215 0.8107 0.8105 na na 0.8099 0.8098 0.8088 0.8085
Bias 0.0237 0.0215 0.0108 0.0106 na na 0.0098 0.0098 0.0088 0.0085
RMSE 0.0250 0.0232 0.0116 0.0114 na na 0.0119 0.0119 0.0112 0.0110
® Mean -0.6335 -0.7238 -0.6095 -0.7093 na na -0.6093 -0.7091 -0.6082 -0.7079
Bias -0.0336 -0.0239 -0.0094 -0.0092 na na -0.0094 -0.0090 -0.0081 -0.0079
RMSE 0.0350 0.0255 0.0105 0.0102 na na 0.0122 0.0116 0.0115 0.0109
ﬁ Mean 0.9533 0.9604 0.9973 0.9973 1.2581 1.2580 0.9963 0.9965 0.9977 0.9980
Bias -0.0464 -0.0393 -0.0027 -0.0027 0.2583 0.2582 -0.0037 -0.0035 -0.0023 -0.0020

RMSE 0.0476 0.0408 0.0046 0.0045 0.2585 0.2584 0.0082 0.0077 0.0078 0.0074



A Mean na
Bias na
RMSE na

na
na
na

na
na
na

na
na
na

na
na
na

na
na
na

na
na
na

na
na
na

-0.3732 -0.3806
0.0264 0.0205
0.0620 0.0520

na = not applicable.

Table 3 — Mean, bias and RMSE of the average direct, indirect and total short and long-term effects for rook contiguity matrix,

(a,,2) =(1,1,-0.4), (6%, 05) = (0.2,0.8), (N,T) = (100,12) and 5,000 replications

GM-TS-RE GM-TS-SMA-RE
Short-run Long-run Short-run Long-run
(y,p1,0) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;,—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;,—0.2) (0.8;0.4;—0.3)
Direct Mean 1.3964 1.0648 1.6039 5.4020 1.3950 1.0638 1.6017 5.4114
Bias 0.0595 0.0131 0.0211 -0.0414 0.0580 0.0123 0.0189 -0.0335
RMSE 0.0664 0.0203 0.0379 0.1799 0.652 0.0196 0.0371 0.1759
Indirect Mean 4.8371 0.7565 3.8640 4.7070 4.7380 0.7210 3.8205 4.6779
Bias 1.1500 0.1398 0.4162 -0.0230 1.0520 0.1031 0.3711 -0.0351
RMSE 1.2285 0.1587 0.5727 1.1094 1.1383 0.1279 0.5393 1.1232
Total Mean 6.2335 1.8213 5.4679 10.1089 6.1330 1.7848 5.4222 10.0892
Bias 1.2086 0.1528 0.4345 -0.0803 1.1090 0.1150 0.3894 -0.0777
RMSE 1.2916 0.1747 0.6035 1.2509 1.1987 0.1431 0.5708 1.2660
Short-run Long-run Short-run Long-run
v, p1,0) (0.7;0.8;—0.6)  (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;—0.7)
Direct Mean 1.3874 1.3873 3.9611 5.4400 1.3861 1.3858 3.9599 5.4432
Bias 0.0497 0.0494 0.0121 0.0038 0.0492 0.0488 0.0116 0.0068
RMSE 0.0566 0.0559 0.1008 0.1337 0.0562 0.0556 0.0989 0.1333
Indirect Mean 4.6503 4.6355 6.4954 4.9459 4.5535 4.5267 6.4286 4.8696
Bias 0.9607 0.9495 0.3590 0.3114 0.8706 0.8438 0.2865 0.2387
RMSE 1.0328 1.0206 1.0285 0.9280 0.9554 0.9287 0.9946 0.8853
Total Mean 6.0376 6.0228 10.4565 10.3859 5.9397 5.9126 10.3885 10.3128
Bias 1.0084 1.0010 0.3629 0.3049 0.9175 0.8928 0.2981 0.2447
RMSE 1.0846 1.0760 1.1147 0.9965 1.0061 0.9835 1.0779 0.9675
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Table 4 — Mean, bias and RMSE of the average direct, indirect and total short and long-term effects for rook contiguity matrix,
(a,B,2) = (1,1,-0.4), (62,02) = (0.8,0.2), (N,T) = (100,12) and 5, 000 replications

GM-TS-RE GM-TS-SMA-RE
Short-run Long-run Short-run Long-run
(y,py1,0) (0.2;0.8;-0.2)  (0.8;0.4;—0.3) (0.2;0.8,—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;,—0.2) (0.8;0.4;—0.3)
Direct Mean 1.3517 1.0548 1.5871 5.4242 1.3514 1.0546 1.5866 5.4277
Bias 0.0148 0.0031 0.0050 -0.0091 0.0147 0.0030 0.0045 -0.0065
RMSE 0.0207 0.0083 0.0163 0.0910 0.0204 0.0082 0.0163 0.0897
Indirect Mean 3.9470 0.6497 3.5239 4.6011 3.9208 0.6404 3.5136 4.6003
Bias 0.2780 0.0345 0.0987 -0.0143 0.2529 0.0246 0.0861 -0.0000
RMSE 0.3336 0.0491 0.2084 0.5677 0.3147 0.0430 0.2062 0.5795
Total Mean 5.2987 1.7045 5.1111 10.0253 5.2723 1.6950 5.1002 10.0281
Bias 0.2931 0.0378 0.1029 -0.0245 0.2669 0.0275 0.0901 -0.0098
RMSE 0.3522 0.0550 0.2220 0.6438 0.3322 0.0485 0.2204 0.6461
Short-run Long-run Short-run Long-run
(v, p1,0) (0.7;0.8;-0.6)  (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;,—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;—0.7)
Direct Mean 1.3492 1.3492 3.9476 5.4335 1.3489 1.3489 3.9478 5.4351
Bias 0.122 0.0122 0.0034 0.0018 0.0120 0.0119 0.0031 0.0018
RMSE 0.0177 0.0174 0.0510 0.0681 0.0178 0.0176 0.0496 0.0679
Indirect Mean 3.8985 3.8951 6.1592 4.6578 3.8748 3.8684 6.1466 4.6427
Bias 0.2268 0.2265 0.0778 0.0707 0.2059 0.2019 0.0677 0.0579
RMSE 0.2809 0.2797 0.4856 0.4299 0.2669 0.2631 0.4716 0.4334
Total Mean 5.2477 5.2443 10.1068 10.0913 5.2237 5.2173 10.0944 10.0778
Bias 0.2396 0.2388 0.0797 0.0681 0.2176 0.2139 0.0707 0.0598

RMSE 0.2972 0.2960 0.5291 0.4739 0.2820 0.2791 0.5082 0.4785
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Table 5 — Forecasting RMSE for rook contiguity matrix, (a, 8,4) = (1,1,—-0.4), (N,T) = (100,12), 5,000 replications

Non-spatial estimators

Spatial estimators

OoLS

Within

GMM

GM-TS-RE

GM-TS-SMA-RE

(02,02) = (0.2,0.8)

(y‘ 01, 0) (0.2;0.8;-0.2) (0.8;0.4;—-0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
1" year 1.7685 2.5465 11.3291 2.4040 4.3129 2.3661 1.6872 1.2076 1.6721 1.1953
2% year 1.9444 2.6361 12.6103 3.3726 4.4696 2.7497 1.8403 1.3967 1.8284 1.3824
3™ year 2.0046 2.6930 13.1446 4.1769 4.5812 3.0752 1.9078 1.5277 1.8956 1.5125
4" year 2.0605 2.7384 13.4392 4. 8622 5.0084 3.4147 1.9818 1.6385 1.9648 1.6213
5" year 2.1281 2.7778 13.6533 5.4516 5.1288 3.7209 2.0263 1.7342 2.0085 1.7158
5-year average 1.9812 2.6784 12.8353 4.0534 4.7002 3.0653 1.8887 1.5009 1.8739 1.4854
(y, 01, 0) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
1" year 2.6747 3.0420 10.1648 9.1076 6.1694 5.6732 2.0227 2.0486 2.0010 2.0265
2% year 2.8263 3.1930 14.1410 13.1759 6.5034 6.0698 2.2441 2.2846 2.2243 2.2648
3" year 2.9015 3.2727 17.1859 16. 5860 6.7797 6.3661 2.3698 2.4245 2.3500 2.4050
4" year 2.9710 3.3435 19.5698 19.4890 7.3519 6.8989 2.4854 2.5515 2.4614 2.5277
5" year 3.0203 3.3969 21.4966 22.0172 7.6426 7.1959 2.5614 2.6415 2.5371 2.6174
5-year average 2.8788 3.2496 16.5117 16.0752 6.8894 6.4408 2.3367 2.3901 2.3148 2.3683

(02,02) = (0.8,0.2)

(v, ps, 0) (0.2;0.8,-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
1% year 1.8157 4.1948 9.2422 1.9864 4.1539 2.1895 0.8105 0.5818 0.8092 0.5800
2% year 1.8968 4.2613 10.2323 2.8592 4.2452 2.5449 0.8960 0.6825 0.8951 0.6804
3 year 1.9269 4.3171 10.6665 3.5919 4.3312 2.8574 0.9305 0.7533 0.9295 0.7511
4" year 1.9581 4.3673 10.8986 4.2161 4.7867 3.1969 0.9561 0.8121 0.9544 0.8095
5" year 1.9766 4.4131 11.0466 4.7510 4.9068 3.5038 0.9736 0.8630 0.9719 0.8602
5-year average 1.9148 4.3107 10.4172 3.4809 4.4848 2.8585 0.9133 0.7385 0.9120 0.7362
(v, ps, 0) (0.7;0.8,-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;,—0.7) (0.7;0.8;—0.6) (0.8;0.8;,—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;—0.7)
1% year 3.8344 4.6037 8.4496 7.5269 6.0764 5.5896 0.9567 0.9688 0.9552 0.9681
2% year 3.9016 4.6766 11.7747 10.9352 6.3501 5.9249 1.0809 1.1005 1.0792 1.0995
3rd year 3.9402 4.7248 14.3434 13.8143 6.6010 6.1934 1.1522 1.1798 1.1499 1.1785
4" year 3.9769 4.7700 16.3596 16.2718 7.1923 6.7487 1.2067 1.2420 1.2037 1.2400
5 year 4.0063 4.8078 17.9697 18.3914 7.4830 7.0483 1.2476 1.2903 1.2444 1.2882
5-year average 3.9319 4.7166 13.7794 13.3879 6.7406 6.3010 1.1288 1.1563 1.1265 1.1548
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Table 6 — Mean, bias and RMSE of the coefficients ¥, p1, 0, ﬁ and 1 for rook contiguity matrix,
(a,B,2) = (1,1,-0.4), (62,02) = (0.2,0.8), (N,T) = (200,12), 5,000 replications

Non-spatial estimators Spatial estimators
oLS Within GMM GM-TS-RE GM-TS-SMA-RE
(v, p1,0) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;,—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
¥  Mean 0.2264 0.8054 0.2025 0.7981 0.2209 0.8116 0.2037 0.7998 0.2005 0.7994
Bias 0.264 0.0055 0.0025 -0.0020 0.0210 0.0117 0.0038 -0.0002 0.0006 -0.0006
RMSE 0.0270 0.0057 0.0058 0.0029 0.0262 0.0120 0.0075 0.0027 0.0064 0.0027
p1 Mean 0.8445 0.4468 0.8418 0.4520 na na 0.8263 0.4259 0.8223 0.4162
Bias 0.0445 0.0468 0.0419 0.0521 na na 0.0265 0.0261 0.0225 0.0166
RMSE 0.0449 0.0479 0.0422 0.0529 na na 0.0274 0.0288 0.0238 0.0205
& Mean -0.2538 -0.3454 -0.2293 -0.3489 na na -0.2202 -0.3250 -0.2155 -0.3159
Bias -0.0537 -0.0454 -0.0293 -0.0488 na na -0.0201 -0.0253 -0.0155 -0.0159
RMSE 0.0543 0.0466 0.0302 0.0497 na na 0.0225 0.0281 0.0186 0.0201
ﬁ Mean 0.9674 0.9825 0.9861 0.9932 1.3224 1.0670 0.9895 0.9961 0.9963 1.0002
Bias -0.0326 -0.0175 -0.0139 -0.0069 0.3221 0.0669 -0.0106 -0.0038 -0.0037 0.0002
RMSE 0.0333 0.0183 0.0152 0.0085 0.3226 0.0673 0.0131 0.0072 0.0085 0.0061
A Mean na na na na na na na na -0.3431 -0.3635
Bias na na na na na na na na 0.0572 0.0370
RMSE na na na na na na na na 0.0657 0.0504
(y, P1 9) (0.7;0.8; —0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—-0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7)
¥  Mean 0.7093 0.8061 0.6995 0.7989 0.6820 0.7553 0.7013 0.8006 0.7003 0.8001
Bias 0.0094 0.0062 -0.0005 -0.0012 -0.0181 -0.0448 0.0012 0.0006 0.0003 0.0001
RMSE 0.0097 0.0064 0.0028 0.0025 0.0192 0.0451 0.0037 0.0029 0.0035 0.0028
p1 Mean 0.8367 0.8348 0.8373 0.8365 na na 0.8238 0.8230 0.8199 0.8191
Bias 0.0368 0.0349 0.0374 0.0365 na na 0.0239 0.0231 0.0201 0.0192
RMSE 0.0373 0.0354 0.0377 0.0369 na na 0.0249 0.0241 0.0214 0.0205
& Mean -0.6396 -0.7351 -0.6323 -0.7314 na na -0.6222 -0.7211 -0.6184 -0.7177
Bias -0.0397 -0.0351 -0.0323 -0.0313 na na -0.0223 -0.0213 -0.0186 -0.0178
RMSE 0.0402 0.0357 0.0328 0.0319 na na 0.0238 0.0227 0.0204 0.0194
ﬁ Mean 0.9742 0.9782 0.9875 0.9877 1.3396 1.3287 0.9906 0.9911 0.9965 0.9968

Bias -0.0252 -0.0217 -0.0125 -0.0123 0.3395 0.3285 -0.0095 -0.0089 -0.0036 -0.0032



RMSE 0.0259 0.0225 0.0136 0.0134 0.3397 0.3287 0.0117 0.0111 0.0076 0.0072

A Mean na na na na na na na na -0.3476 -0.3492
Bias na na na na na na na na 0.0529 0.0512
RMSE na na na na na na na na 0.0619 0.0608

na = not applicable.

Table 7 — Mean, bias and RMSE of the coefficients ¥, p1, 0, B and 1 for rook contiguity matrix,
(a,B,2) = (1,1,-0.4), (62,02) = (0.8,0.2), (N,T) = (200,12), 5,000 replications

Non-spatial estimators Spatial estimators
oLS Within GMM GM-TS-RE GM-TS-SMA-RE
(v, p1,0) (0.2;0.8;-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;,—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
¥  Mean 0.2645 0.8160 0.2008 0.7995 0.2248 0.8110 0.2010 0.7999 0.2001 0.7998
Bias 0.0645 0.0160 0.0008 -0.0005 0.0245 0.0110 0.0011 -0.0001 0.0001 -0.0002
RMSE 0.0650 0.0162 0.0028 0.0012 0.0265 0.0111 0.0035 0.0013 0.0032 0.0013
p1  Mean 0.8348 0.4324 0.8121 0.4139 na na 0.8072 0.4066 0.8059 0.4039
Bias 0.0347 0.0322 0.0121 0.0139 na na 0.0073 0.0067 0.0060 0.0041
RMSE 0.0353 0.0349 0.0125 0.0147 na na 0.0083 0.0091 0.0072 0.0073
& Mean -0.2706 -0.3301 -0.2089 -0.3131 na na -0.2057 -0.3064 -0.2042 -0.3039
Bias -0.0705 -0.0301 -0.0089 -0.0131 na na -0.0057 -0.0064 -0.0042 -0.0039
RMSE 0.0711 0.0328 0.0098 0.0139 na na 0.0079 0.0090 0.0068 0.0073
ﬁ Mean 0.9316 0.9605 0.9960 0.9982 1.3192 1.0671 0.9972 0.9990 0.9992 1.0001
Bias -0.0681 -0.0394 -0.0040 -0.0019 0.3193 0.0672 -0.0028 -0.0010 -0.0008 0.0001
RMSE 0.0687 0.0402 0.0050 0.0031 0.3195 0.0673 0.0048 0.0032 0.0039 0.0030
A Mean na na na na na na na na -0.3819 -0.3885
Bias na na na na na na na na 0.0185 0.0116
RMSE na na na na na na na na 0.0384 0.0355
v, p1,0) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8,—0.7)  (0.7;0.8;—0.6) (0.8;0.8;—0.7)
7 Mean 0.7237 0.8162 0.6999 00.7997 0.6812 0.7543 0.7003 0.80002 0.70001 0.8000
Bias 0.0238 0.0162 -0.0001 -0.0003 -0.0190 -0.0457 0.0003 0.0002 0.0000 0.0000
RMSE 0.0240 0.0164 0.0014 0.0012 0.0194 0.0459 0.0018 0.0014 0.0017 0.0013
p1 Mean 0.8259 0.8236 0.8104 0.8101 na na 0.8064 0.8061 0.8051 0.8049
Bias 0.0258 0.0234 0.0104 0.0101 na na 0.0064 0.0061 0.0052 0.0050
RMSE 0.0268 0.0246 0.0108 0.0105 na na 0.0075 0.0072 0.0065 0.0062
& Mean -0.6355 -0.7264 -0.6091 -0.7088 na na -0.6059 -0.7056 -0.6047 -0.7046

Bias -0.0356 -0.0265 -0.0091 -0.0089 na na -0.0059 -0.0057 -0.0049 -0.0047



RMSE
B Mean
Bias
RMSE
Mean
Bias
RMSE

Doy

0.0364
0.9489
-0.0510
0.0516
na
na
na

0.0275
0.9561
-0.0438
0.0445
na
na
na

0.0097
0.9965
-0.0035
0.0044
na
na
na

0.0094
0.9966
-0.0034
0.0043
na
na
na

na
1.3408
0.3409
0.3409
na
na
na

na
1.3295
0.3296
0.3296
na
na
na

0.0073
0.9975
-0.0025
0.0043
na
na
na

0.0070
0.9976
-0.0024
0.0041
na
na
na

0.0065
0.9992
-0.0008
0.0034
-0.3836
0.0169
0.0374

0.0062
0.99993
-0.0008

0.0033
-0.3841

0.0164

0.0371

na = not applicable.

Table 8 — Mean, bias and RMSE of the average direct, indirect and total short and long-term effects for rook contiguity matrix,
(a,,2) =(1,1,-0.4), (a2,062) = (0.2,0.8), (N,T) = (200,12) and 5, 000 replications

GM-TS-RE GM-TS-SMA-RE
Short-run Long-run Short-run Long-run
(y,p1,0) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;,—0.2) (0.8;0.4;—0.3)
Direct Mean 1.3607 1.0543 1.5824 5.4077 1.3625 1.0557 1.5835 5.4118
Bias 0.0322 0.0036 0.0078 -0.0180 0.0341 0.0050 0.0091 -0.0139
RMSE 0.0353 0.0079 0.0160 0.0778 0.0373 0.0087 0.0168 0.0777
Indirect Mean 4.3449 0.6813 3.6277 4.6377 4.2538 0.6582 3.5940 4.5850
Bias 0.6698 0.0651 0.2005 0.0484 0.5786 0.0425 0.1639 -0.0052
RMSE 0.7034 0.0728 0.2534 0.4076 0.6206 0.0531 0.2279 0.3976
Total Mean 5.7056 1.7356 5.2101 10.0454 5.6163 1.7140 5.1772 9.9968
Bias 0.7014 0.0684 0.2080 0.0252 0.6117 0.0476 0.1742 -0.0247
RMSE 0.7374 0.0776 0.2648 0.4551 0.6561 0.0598 0.2424 0.4458
Short-run Long-run Short-run Long-run
¥, p1,0) (0.7;0.8;—0.6)  (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;—0.7) (0.7;0.8;,—0.6) (0.8;0.8;—0.7)
Direct Mean 1.3574 1.3567 3.9337 5.4178 1.3581 1.3571 3.9376 5.4268
Bias 0.0291 0.0283 0.0017 -0.0072 0.0301 0.0288 0.0056 0.0012
RMSE 0.0322 0.0314 0.0416 0.0650 0.0333 0.0320 0.0432 0.0654
Indirect Mean 4.2727 4.2516 6.2806 4.7631 4.1827 4.1606 6.2271 4.7056
Bias 0.5960 0.5742 0.2031 0.1832 0.5067 0.4836 0.1479 0.1250
RMSE 0.6302 0.6084 0.3955 0.3693 0.5483 0.5238 0.3713 0.3370
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Total

Mean
Bias
RMSE

5.6301
0.6248
0.6606

5.6082
0.6028
0.6395

10.2143
0.2023
0.4180

10.1809
0.1737
0.3787

5.5409
0.5368
0.5808

5.5177
0.5132
0.5560

10.1647
0.1542
0.3972

10.1324
0.1246
0.3611
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Table 9 — Mean, bias and RMSE of the average direct, indirect and total short and long-term effects for rook contiguity matrix,
(a,B,2) =(1,1,-0.4), (62,02) = (0.8,0.2), (N,T) = (200,12) and 5, 000 replications

GM-TS-RE GM-TS-SMA-RE
Short-run Long-run Short-run Long-run
(y,py1,0) (0.2;0.8;-0.2)  (0.8;0.4;—0.3) (0.2;0.8,—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
Direct Mean 1.3365 1.0516 1.5762 5.4195 1.3370 1.0520 1.5766 5.4207
Bias 0.0082 0.0008 0.0018 -0.0049 0.0088 0.0013 0.0022 -0.0037
RMSE 0.0110 0.0036 0.0072 0.0386 0.0115 0.0038 0.0073 0.0388
Indirect Mean 3.8378 0.6321 3.4749 4.5910 3.8127 0.6261 3.4660 4.5779
Bias 0.1651 0.0162 0.0493 0.0119 0.1408 0.0104 0.0395 -0.0021
RMSE 0.1925 0.0224 0.0905 0.2061 0.1729 0.0184 0.0857 0.2004
Total Mean 5.1743 1.6837 5.0511 10.0105 5.1497 1.6780 5.0426 9.9985
Bias 0.1739 0.0170 0.0516 0.0068 0.1505 0.0116 0.0414 -0.0047
RMSE 0.2037 0.0244 0.0957 0.2309 0.1845 0.0209 0.0914 0.2240
Short-run Long-run Short-run Long-run
(v, p1,0) (0.7;0.8;-0.6)  (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;,—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
Direct Mean 1.3355 1.3353 3.9316 5.4219 1.3358 1.3355 3.9328 5.4247
Bias 0.0072 0.0070 0.0003 -0.0020 0.0076 0.0073 0.0014 0.0001
RMSE 0.0099 0.0097 0.0212 0.0329 0.0103 0.0100 0.0217 0.0331
Indirect Mean 3.8178 3.8127 6.1234 4.6245 3.7942 3.7889 6.1093 4.6092
Bias 0.1451 0.1400 0.0529 0.0486 0.1224 0.1171 0.0369 0.0307
RMSE 0.1721 0.1670 0.1767 0.1661 0.1543 0.1486 0.1720 0.1598
Total Mean 5.1533 5.1480 10.0550 10.0465 5.1299 5.1244 10.0421 10.0339
Bias 0.1524 0.1472 0.0537 0.0466 0.1294 0.1247 0.0395 0.0303

RMSE 0.1817 0.1763 0.1891 0.1739 0.1638 0.1581 0.1849 0.1698
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Table 10 — Forecasting RMSE for rook contiguity matrix, (a, 8,4) = (1,1,—0.4), (N,T) = (200,12), 5,000 replications

Non-spatial estimators

Spatial estimators

OoLS

Within

GMM

GM-TS-RE GM-TS-SMA-RE

(aﬁ, a,,z) = (0.2,0.8)

(y, 01, 0) (0.2;0.8;-0.2) (0.8;0.4;—-0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
1" year 14.1073 2.5969 1.8673 2.9520 4.4517 2.6146 1.5887 1.1320 1.5758 1.1276
2% year 15.7153 2.6845 2.0028 4.2041 4.6497 3.0051 1.7510 1.3102 1.7405 1.3052
3" year 16.4150 2.7403 2.0417 5.2471 4.6637 3.3068 1.8100 1.4311 1.8011 1.4257
4" year 16.8072 2.7825 2.0881 6.1360 4.9916 3.5781 1.8573 1.5277 1.8461 1.5214
5" year 17.0370 2.8167 2.1035 6.8979 5.2407 3.8155 1.8819 1.6085 1.8704 1.6012
5-year average 16.0163 2.7242 2.0207 5.0874 4.7995 3.2640 1.7778 1.4019 1.7668 1.3962
(y, 01, 0) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
1" year 2.7290 3.0913 12.7410 11.1849 5.9901 5.5729 1.8144 1.8472 1.8033 1.8361
2% year 2.8873 3.2467 17.7832 16.2703 6.5245 6.2241 2.0468 2.0950 2.0342 2.0825
3" year 2.9429 3.3095 21.6797 20.5747 6.8178 6.6154 2.1647 2.2303 2.1531 2.2188
4" year 3.0006 3.3711 24.7688 24.2849 7.3056 7.2078 2.2628 2.3435 2.2474 2.3283
5" year 3.0503 3.4239 27.2291 27.4773 7.8872 7.9035 2.3432 2.4372 2.3233 2.4176
5-year average 2.9220 3.2885 20.8404 19.9584 6.9050 6.7048 2.1263 2.1907 2.1123 2.1766

(02,02) = (0.8,0.2)

(y, D1, 0) (0.2;0.8;-0.2) (0.8;0.4;—-0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3) (0.2;0.8;-0.2) (0.8;0.4;—0.3) (0.2;0.8;—0.2) (0.8;0.4;—0.3)
1" year 1.8516 4.2376 11.7437 2.5583 4.2589 2.4465 0.7775 0.5550 0.7759 0.5548
2% year 1.9324 4.3072 13.0199 3.6976 4.4024 2.7991 0.8636 0.6510 0.8623 0.6507
3" year 1.9562 4.3662 13.5889 4.6542 4.3928 3.0879 0.8966 0.7170 0.8954 0.7165
4" year 1.9805 4.4188 13.8956 5.4682 4.7390 3.3505 0.9170 0.7694 0.9154 0.7687
5" year 1.9946 4.4665 14.0802 6.1649 5.0017 3.5837 0.9294 0.8130 0.9277 0.8120
5-year average 1.9431 4.3592 13.2657 4.5086 4.5590 3.0536 0.8768 0.7011 0.8754 0.7006
(y, D1, 0) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7) (0.7;0.8;-0.6) (0.8;0.8;—0.7) (0.7;0.8;—0.6) (0.8;0.8;—0.7)
1" year 3.9067 4.6695 10.7659 9.4032 5.7851 5.3301 0.8889 0.9031 0.8882 0.9024
2% year 3.9724 4.7426 15.0300 13.7074 6.2863 5.9621 1.0083 1.0315 1.0073 1.0306
3" year 4.0064 4.7875 18.3457 17.3695 6.5754 6.3688 1.0731 1.1059 1.0720 1.1048
4" year 4.0330 4.8243 20.9653 20.5170 7.0843 7.0024 1.1199 1.1616 1.1182 1.1599
5" year 4.0578 4.8580 23.0548 23.2318 7.6913 7.7305 1.1559 1.2057 1.1534 1.2032
5-year average 3.9953 4.7764 17.6323 16.8458 6.6845 6.4788 1.0492 1.0816 1.0478 1.0802
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