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Abstract. We formulate a notion of stability for maps between polarised

varieties which generalises Kontsevich’s definition when the domain is a curve

and Tian-Donaldson’s definition of K-stability when the target is a point. We
give some examples, such as Kodaira embeddings and fibrations. We prove

the existence of a projective moduli space of canonically polarised stable maps,

generalising the Kontsevich-Alexeev moduli space of stable maps in dimensions
one and two. We also state an analogue of the Yau-Tian-Donaldson conjecture

in this setting, relating stability of maps to the existence of certain canonical

Kähler metrics.

1. Introduction

1.1. Foreword. A useful idea in algebraic geometry is that properties of spaces are
better phrased as properties of morphisms between spaces. With this in mind, the
goal of this paper is to lay the foundations for what is means for a morphism to be
K-stable, as well as to study its basic properties and consequences. In the absolute
case, by which we mean without the morphism, K-stability is a condition that is
expected to ensure the moduli space of varieties has good properties (for instance
ensuring that it is separated and in some cases proper) and, in the Fano case, is the
algebro-geometric condition that is equivalent to the existence of a Kähler-Einstein
metric through the Yau-Tian-Donaldson correspondence [19, 80].

In particular we shall see:

(i) K-stable maps arise naturally in many places, for instance through Kodaira
embeddings and in the study of K-stability of fibrations.

(ii) K-stability for maps appears as a leading order asymptotic in a Geometric
Invariant Theory setup, mimicking the passage from Hilbert stability to K-
stability of varieties.

(iii) In the canonically polarised case, K-stable maps are precisely those with semi-
log canonical singularities. Moreover, there exists a projective moduli space
of K-stable maps generalising both the KSBA moduli space of stable pairs,
and the moduli space of Konsevich stable maps to higher dimensions.

(iv) There is a version of the Yau-Tian-Donaldson conjecture in this setting, re-
lating K-stable maps to certain canonical metrics in Kähler geometry.

We sketch our definition of K-stability for morphisms, which rests on the notion
of a test-configuration. By

p : (X,L)→ (Y, T )

we mean a morphism p : X → Y between varieties X and Y that are endowed with
Q-line bundles L and T respectively. We will always assume that X is projective,
L is ample, and will often require some positivity of T (for instance that it be nef
or ample). A test-configuration for p is a projective C∗-degeneration of this data,
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by which we mean a projective scheme X fitting into a diagram

X Y × P1

P1

p

along with a line bundle L on X that is relatively ample over P1 and a C∗-action on
(X ,L) covering the usual action on P1, and satisfying some additional properties,
such that the fibre of (X ,L, p) over any point in P1 other than the fixed point 0 ∈ P1

is isomorphic to (X,L, p).
Associated to any test-configuration is a numerical invariant DFp(X ,L), called

the Donaldson-Futaki invariant. When the total space X is a normal variety, the
Donaldson-Futaki invariant is given intersection-theoretically on X by the formula

DFp(X ,L) =
n

n+ 1
µpLn+1 + Ln.(KX/P1 + p∗T )

where KX/P1 is the relative canonical class, n = dimX and µp is the constant

µp :=
−(KX + p∗T ).Ln−1

Ln

to be understood as a ratio of intersection numbers computed on X. There is a
notion of the norm ‖(X ,L)‖m of a test-configuration, with the property that a
test-configuration with zero norm has normalisation that is a trivial product (see
Section 2.1).

Definition 1.1 (K-stability). We say that p : (X,L)→ (Y, T ) is

(i) K-semistable if DFp(X ,L) ≥ 0 for all test-configurations for p;
(ii) K-stable if DFp(X ,L) > 0 for all test-configurations for p with ‖(X ,L)‖m > 0;

(iii) uniformly K-stable if there exists an ε > 0 such that for all test-configurations
(X ,L) for p we have

DFp(X ,L) ≥ ε‖(X ,L)‖m.

The following are some of the basic properties of K-stable maps we will establish
(Theorems 3.7, 3.15 and 3.17).

Theorem 1.2 (Properties of K-stable Maps). Assume that X is semi-log-
canonical. Then

(i) (Kodaira Embedding) Any Kodaira embedding

(X,L) ↪
L⊗k−−−→ (PNk ,OP(1))

is a uniformly K-stable map for k � 0.

(ii) (Factorisation) Suppose (X,L)→ (Y, T ) factors as

(X,L)→ (Z, T |Z) ↪→ (Y, T ),

for some subvariety Z of Y . Then (X,L)→ (Z, T |Z) is uniformly K-stable if
and only if (X,L)→ (Y, T ) is.

(iii) (Variation) Uniform K-stability of a map p : (X,L) → (Y, T ) is an open
condition as T varies in PicQ(Y ).
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The previous theorem yields many examples of K-stable maps. It is clear that
not all maps are K-stable; for a simple example if (X,L) is a polarised variety that
is not K-stable (in the absolute sense) and (X ′, L′) is any other polarised variety
then the projection p : (X ×X ′, L� L′)→ (X ′, L′) is not K-stable.

*

For our next statement, suppose f : X → B is a fibration such that each fibre
of f is smooth and KX/B is relatively ample. For simplicity assume that the fibres
also all have trivial automorphism group. Then X induces a classifying morphism
p : B →Mcan to the moduli space of smooth canonically polarised varieties (again
with trivial automorphism group). Let V be the volume of the fibres, LCM be the
CM-line bundle on Mcan (defined in Section 4) and LB be a choice of ample line
bundle on B.

Theorem 1.3 (Fibrations). Set

δ :=
1

(dimX − dimB + 1)V
.

If the classifying map

p : (B,LB)→ (Mcan, δLCM )

is not K-semistable, then the polarised variety

(X,KX/B +mf∗LB)

is not K-semistable (in the absolute sense) for m� 0.

In fact, thinking of a test-configuration for p : B →Mgen as a degeneration of
p to some map p0 : B0 → Mcan, a fibre-product construction with the universal
family over Mcan gives a test-configuration X for X whose limit is the fibration
corresponding to p0. The leading order term in the Donaldson-Futaki invariant
for X as m � 0 turns out to be precisely Donaldson-Futaki invariant of the test-
configuration for p : (B,H)→ (Mcan, LCM ), which implies Theorem 1.3.

The reason for restricting attention to varieties with trivial automorphism group
is to ensure the existence of a universal family on the moduli space. However essen-
tially the same statement holds much more generally, allowing for automorphisms
or for fibrations with fibres that are possibly not canonically polarised, as long
as these fibres still vary in some kind of moduli space or stack (see Remark 4.7).
Another situation in which an analogue of Theorem 1.3 applies is to the study of
K-stability of projective bundles P(E) → B, by noting that these are induced by
maps (of stacks) from B to the moduli stack of projective space (see Remark 4.8).

*

The definition of K-stability for morphisms extends without difficulty to the log
case, in which X is endowed also with a boundary divisor D. In the following
assume that H is an ample Q-line bundle on Y . We shall say that a map p :
((X,D);L)→ (Y,H) is canonically polarised if L = KX +D + p∗H is ample.

Proposition 1.4 (Dervan [24, Theorem 1.7, Theorem 1.11]). A canonically po-
larised map p : ((X,D);L)→ (Y,H) is uniformly K-stable if and only if (X,D) has
semi-log canonical singularities (see Remark 2.16).

In the following we say that the line bundle H on Y is sufficiently ample if there
exists an ample line bundle T ′ on Y with H − 2nT ′ nef. We prove the following:
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Theorem 1.5 (Moduli Spaces of Canonically Polarised Maps). There exists
a separated, projective moduli spaceM(Y,H) of canonically polarised stable maps
with fixed target (Y,H) as long as H is sufficiently ample.

This recovers Kontsevich’s moduli space of stable maps when the domain is a
curve, Alexeev’s moduli of stable maps where the domain has dimension two [5],
and the KSBA moduli space of stable pairs in the absolute case. We will follow
Alexeev’s strategy closely, and our result can be seen as an application of the recent
progress in the minimal model program.

A natural question is whether one can define higher dimensional Gromov-Witten
invariants using such maps, which we shall discuss this in Section 5.3. The main
difference in the higher dimensional case is that the analogue of the “evaluation
maps” in the definition of the usual Gromov-Witten invariants become maps to
certain Hilbert schemes, since we are dealing with varieties together with divisors
rather than points. The construction of a virtual fundamental class seems out
of reach with present techniques, thus as it stands the enumerative invariants we
construct are not invariant under deformations of Y in general. Nevertheless, it
seems interesting that one can define enumerative invariants using the moduli spaces
constructed in Theorem 1.5.

A special case of Theorem 1.5 recovers the construction of the moduli space of
KSBA stable varieties, which gives a moduli space of birational models of varieties
of general type. Conjecturally, when X is not uniruled, the minimal model program
terminates with an Iitaka fibration X → Xcan, such that the generic fibre of the
fibration is Calabi-Yau, and KXcan +D is ample, for some divisor D encoding the
multiple fibres of the fibration. When all fibres are Calabi-Yau, this implies that
the map Xcan → (MCY , LCM ) is a stable map, where (MCY , LCM ) is a moduli
space of Calabi-Yau varieties endowed with the CM line bundle. In a formal sense, a
similar result holds in general replacing LCM with the moduli part of the fibration
(see for example [7]). This suggests a link between K-stability of maps and the
minimal model program for generalised polarised pairs, which has been a crucial
ingredient in the recent progress in understanding of the minimal model program
for varieties which are not of general type [14, 15]. Two questions arise naturally
from these observations: firstly, whether or not one can form a birational moduli
space of non-uniruled varieties using K-stable maps, and secondly, whether or not
one can give a K-stability interpretation of the remaining case of Mori fibre spaces,
which should include K-stability of Fano varieties as a special case.

*

A primary motivation for considering K-stability in the absolute case is the link
with canonical Kähler metrics. To discuss the analogy for maps, suppose α ∈ c1(T )
is a Kähler metric on Y . We say that a (1, 1)-form ω ∈ c1(L) on X is p∗α-twisted
constant scalar curvature Kähler (or simply twisted cscK ) if ω is positive, so is a
Kähler form, and satisfies

Scal(ω)− Λωp
∗α ≡ const.

where Scal(ω) denotes the scalar curvature of the Riemannian metric associated to
ω. The following is the analogy of the Yau-Tian-Donaldson conjecture for maps.

Conjecture 1.6. Suppose p : (X,L) → (Y, T ) has discrete automorphism group
(which will occur, for instance, if p∗T is ample). Then c1(L) admits an p∗α-twisted
cscK metric if and only if the map p : (X,L)→ (Y, T ) is uniformly K-stable.
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The analogous conjecture when the map p has automorphisms is more subtle; in
this case the most likely candidate for the stability notion is some form of uniform
or filtration K-polystability.

In the Fano case, which means that L = −KX − p∗T is ample, it should even be
true that the existence of a p∗α-twisted cscK metric is equivalent to K-stability of
p (possibly allowing p to develop some singularities in the central fibre, see Remark
2.12). We expect that this can be proved by following the classical continuity
approach of Aubin [12] executed by Datar-Székelyhidi [20], and plan to return to
this topic in the future.

The knowledgeable reader will notice a similarity between our definition of K-
stability for maps and the definition of twisted K-stability [24]. But we emphasise
that whereas it is the case that DFp is precisely the twisted Donaldson-Futaki
invariant with respect to p∗T , in our definition of K-stability we are demanding that
the total space of the test-configuration comes with a morphism to Y extending p
(the reader is referred to Remark 2.12 for further discussion on this point). Using
this twisted point of view, we can observe that it is already known that the easy
direction of Conjecture has almost been proved in [24, Theorem 1.1], namely that
the existence of such a metric implies K-semistability (and even uniform K-stability
if p∗α is positive).

Through the link with twisted cscK metrics, one also obtains a stability inter-
pretation of the continuity method. For instance, when X is a Fano manifold with
α ∈ c1(X) arbitrary, following Aubin’s continuity method Székelyhidi [77] defines
the greatest lower bound on the Ricci curvature as

R(X) := sup{0 < t < 1 : ∃ ωt ∈ c1(X) with Ricωt > tωt},
= sup{0 < t < 1 : ∃ ωt ∈ c1(X) with Ricωt = tω + (1− t)α}.

It follows from [24, 77] that

R(X) = sup
{k∈N and t∈(0,1]}

{
p : (X,−KX) ↪

−kKX−−−−→
(
PNk ,OP

(
1− t
k

))
is stable

}
.

Similarly, for a general polarised variety (X,L), stability of the Kodaira embed-
dings using Lk are related to the continuity method for cscK metrics discussed by
Chen [18] and the analogue of R(X) discussed by Chen [18, Definition 1.16] and
Hashimoto [41, Section 1.3].

1.2. Comparison with other work. K-stability, in the absolute case, was intro-
duced by Tian [79, 80] in the Fano case building on the invariant of Futaki [36],
and was later generalised to include more general polarisations and singularities by
Donaldson [27]. The intersection-theoretic approach that we take is due to Odaka
[65] and Wang [82].

While the notion of a K-stable map we introduce is new, the analytic counterpart
of twisted cscK metrics has appeared in previous work. Apart from their use in
Aubin’s continuity method [12], these metrics originally appeared in the work of
Fine [30] and Song-Tian [75]. Theorem 1.3 is an algebraic converse to the result of
Fine, who proves that if (B,LB) admits a unique twisted cscK metric, where the
twisting is determined by the fibration, and the fibres (Xb, LXb) all admit a unique
cscK metric, then (X,mf∗LB + LX) admits a cscK metric for all m� 0.
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Song-Tian prove that under certain regularity hypotheses, if KX is semiample,
then the resulting Iitaka fibrationX → Xcan is realised by the unnormalised Kähler-
Ricci flow on X. That is, if ωt is a family of Kähler metrics induced from the
Kähler-Ricci flow, one has Gromov-Hausdorff convergence (X,ωt)→ (Xcan, ωcan),
where ωcan is a twisted Kähler-Einstein metric with respect to the pullback of a
Weil-Petersson type metric on the moduli space of Calabi-Yau varieties, and with
certain cone singularities along the divisors encoding the multiple fibres of the
fibration. This fits in well with what we mention above, that the end product
of the minimal model program for non-uniruled varieties has a natural stability
interpretation using stable maps.

The analytic analogue of Theorem 1.2 (i) is due to Hashimoto and Zeng inde-
pendently [41, Theorem 1.2][83, Theorem 1.1], who prove the existence of twisted
cscK metrics with a large twist. Hashimoto also proves a more general result using
critical points of the J-flow, which is the counterpart to our more general Theorem
3.12, which uses J-stability. In Theorem 3.12, using J-stability we also prove an
algebraic converse to Hashimoto’s result. We remark that in Theorem 3.9 we are
also able to give a uniform k for flat families of varieties for which the Kodaira
embedding is a stable map, provided one embeds using certain adjoint bundles. It
would be very interesting, but challenging, to prove a similar statement for twisted
cscK metrics.

The first stability notion for twisted cscK metrics is due to Stoppa [76], who
proves that the existence of such a metric implies a twisted version of slope semista-
bility. Stoppa also provides a moment map interpretation for the existence of
twisted cscK metrics [76, Section 2]; it would be interesting to give a moment map
interpretation for twisted cscK metrics which is closer to the point of view of stable
maps.

Proposition 1.4 (from [24]) is proved in a similar way to Odaka’s technique in
the absolute case [63, 65].

1.3. Acknowledgements. The authors would like to thank Giulio Codogni, Kento
Fujita and Jacopo Stoppa and Gabor Székelyhidi for helpful discussions. The first
author especially thanks Roberto Svaldi and Chenyang Xu for birational advice.
We also thank the referee for their comments.

1.4. Notation. We work throughout over the complex numbers. We often mix
multiplicative and additive notation for line bundles, especially when computing
intersection numbers. We often have a map of varieties or schemes p : (X,L) →
(Y, T ), which we shall abbreviate to p. When one has a natural map f : Z → W
of varieties or schemes, the pullback of a line bundle H on W to Z is often simply
written as H.

2. Stability notions for maps

2.1. K-stability for maps. Suppose that X,Y are schemes with X projective and
equidimensional of dimension n, that L, T are line bundles on X and Y respectively
with L ample, and p : X → Y is a morphism. We shall write this data as

p : (X,L)→ (Y, T ).
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Definition 2.1. (Twisted-slope) For a Q-line bundle T ′ on X the twisted slope is
defined to be

µT ′(X,L) =
−(KX + T ′).Ln−1

Ln

where KX denotes the degree two part of the singular Todd class as defined by
Fulton [34, p354]. In particular if X is a normal variety then KX can be replaced
with the canonical Weil-divisor. When T ′ = 0 we abbreviate this to µ(X,L), and
given a morphism p : (X,L)→ (Y, T ) we abbreviate this to

µp = µp(X,L) = µp∗T (X,L) = − (KX + p∗T ).Ln−1

Ln
.

Remark 2.2. We warn the reader that our convention differs from the twisted
slope in [24, p4735] in which T ′ is replaced by 2T ′, and by the definition of the
slope in [72, Equation (1.5)] by a factor of n/2.

Definition 2.3. A test-configuration for p : (X,L)→ (Y, T ) is a scheme X together
with

(i) a flat map π : X → P1,
(ii) a relatively ample line bundle L → X ,
(iii) a C∗-action on X lifting to L and covering the natural action on P1,
(iv) an equivariant map p : X → Y extending the map p : X → Y on the general

fibre, with Y given the trivial action,
(v) a C∗-equivariant isomorphism π−1(P1\0) ∼= (X × C, Lr), where C∗-acts triv-

ially on X and in the natural way on C.

We call r the exponent of the test-configuration. For a semi-test-configuration we
merely require that L is relatively semi -ample. Abusing notation, we shall denote
a test-configuration by p : (X ,L)→ (Y, T ).

Definition 2.4 (Donaldson-Futaki invariant). Let p : (X ,L) → (Y, T ) be a
test-configuration of exponent r. Then the Donaldson-Futaki invariant is defined
to be

DFp(X ,L) =
n

n+ 1
µp(X,L

r)Ln+1 + Ln.(KX/P1 + T ) (2.1)

where KX is the degree two part of the singular Todd class of X [34, p354]. Again,
if X is a normal variety then it can be replaced with the canonical Weil-divisor.

Remark 2.5. The Donaldson-Futaki invariant can be defined in at least two other
ways. One way is to use asymptotics of Hilbert and weight polynomials, as we will
discuss below in Section 2.2. Another, used by many including the authors [26,
Section 2.1], is to consider only normal varieties X and to require that the total
space X of a test-configuration also be normal to ensure the relative canonical divi-
sor KX/P1 exists (say as a Weil-divisor) so that the intersection-theoretic quantity
on the right-hand-side of (2.1) is defined.

Before defining K-stability, we need to know what it means for a test-configuration
to be trivial. Fix an (equivariant) resolution of indeterminacy of the natural bira-
tional map f : (X × P1, L) 99K (X ,L) as follows.

Y

X × P1 X

q (2.2)
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Definition 2.6 (Dervan). [24, Definition 2.5, Remark 3.11] The minimum norm
is defined to be

‖(X ,L)‖m = Ln.q∗L− nr−1

n+ 1
Ln+1,

which is easily checked to be independent of choice of resolution.

Remark 2.7. The minimum norm was independently introduced by Boucksom-
Hisamoto-Jonsson [16, Definition 7.6], who called it the “non-Archimedean (I − J)
functional”. The same quantity also appeared in the work of Lejmi-Székelyhidi
in a somewhat different situation [58, p416]. The definition is motivated by an
analogous functional on the space of Kähler metrics. However, one can also show
that it is Lipschitz equivalent to the L1-norm introduced by Donaldson [28, p470],
see [16, Theorem 7.9] or [22, Theorem 1.5] for an analytic proof when X is a smooth
variety.

The justification for the use of the word “norm” is as follows. Note that the nor-
malisation of a test-configuration for X is a test-configuration for the normalisation
of X.

Lemma 2.8. Assume X is a variety. A test-configuration normalises to the trivial
test-configuration if and only if its minimum norm is zero.

Proof. This is proven in both [24, Theorem 4.7] and [16, Corollary B] when X itself
is normal. But the minimum norm is preserved by normalisation, as is clear from
its intersection theoretic definition, hence we can reduce to the normal case. �

With this in place, we can define K-stability for maps.

Definition 2.9 (K-stability). We say that p : (X,L)→ (Y, T ) is

(i) K-semistable if DFp(X ,L) ≥ 0 for all test-configurations for p;
(ii) K-stable if DFp(X ,L) > 0 for all test-configurations for p with ‖(X ,L)‖m > 0;

(iii) uniformly K-stable if there exists an ε > 0 such that for all test-configurations
(X ,L) for p we have

DFp(X ,L) ≥ ε‖(X ,L)‖m.

Remark 2.10 (Scaling). A map p : (X,L) → (Y, T ) is K-semistable if and only
if for any m > 0 the map p : (X,L⊗m) → (Y, T ) is K-semistable (with similar
statements for K-stability and uniform K-stability). For this reason one can allow
L to be a Q-line bundle. The definition also extends to the case when T is a Q-line
bundle directly.

Remark 2.11 (Absolute case). If Y is a single point then p : (X,L)→ (Y, T ) is
K-semistable if and only if (X,L) is K-semistable in the usual sense (say as defined
by Donaldson [27, Definition 2.12]).

Remark 2.12 (Twisted K-stability). The quantity DFp(X , L) is precisely the
twisted Donaldson-Futaki invariant with respect to the line bundle p∗T as consid-
ered in [24, 76]. Thus if (X,L) is twisted K-semistable (resp. K-stable or uniformly
K-stable) with respect to p∗T then the same is true of p : (X,L)→ (Y, T ). The con-
verse, however, is not immediate since in principle there could be test-configurations
for (X,L) that do not come with a morphism to Y extending p. However, as we will
see in Section 3.4, this is not an issue for uniform K-stability, and thus (X,L) is uni-
formly twisted K-stable with respect to p∗T if and only if p is uniformly K-stable.
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To fix ideas we will in this paper only consider this stronger notion of K-stability
(in which we require the map to extend to the central fibre). However it may turn
out in the future that one wants to relax this slightly (say by allowing the function
to obtain some singularities) which may well occur when one wishes to relate this
with canonical Kähler metrics.

It is worth pointing out that in [24] (which was motivated by [58]), the corre-
sponding notion of “twisted Hilbert stability” does not appear to be a genuine GIT
notion, instead it arises as a sort of stability notion for the linear system |p∗T |.
Somewhat surprisingly however, the resulting numerical invariant is equal to the
one that appears in the GIT setup we will consider below. This notion of Hilbert
stability for linear systems is described in more detail in [25, Section 4].

Remark 2.13. It is clear that

uniformly K-stable⇒ K-stable⇒ K-semistable.

Even when Y is a point, there are examples of K-semistable varieties which are
not K-stable. We expect that K-stability is not equivalent to uniform K-stability,
though no such example is known. Moreover, uniform K-stability should be the
correct moduli notion for higher dimensional maps, at least for forming separated
moduli. Moreover, we expect that uniform K-stability is a Zariski open condition
in flat families of maps, which is an essential condition for forming moduli spaces.
Forming a proper moduli space appears to be much more subtle.

A variant of these notions would be a notion of filtration K-stability for maps, ex-
tending the definition of Székelyhidi in the absolute case [78, Definition 4]. However
in the absolute case, it is not hard to see that uniform K-stability implies filtration
K-stability. Since this is only a condition on the norms, this would presumably
hold in the case of maps as well. Thus the various examples of uniformly K-stable
maps we provide would likely also be examples of filtration K-stable maps.

The extension to pairs is as follows. Given a Q-Weil divisor D on X, we will
denote by D the closure C∗.D ⊂ X , which is a Q-Weil divisor.

Definition 2.14 (Log K-stability). The log Donaldson-Futaki invariant of p :
((X ,D),L)→ (Y, T ) is the intersection number

DFp((X ,D);L) =
n

n+ 1
µD+p∗T (X,L)Ln+1 + Ln.(KX/P1 +D + p∗T ).

We then define log K-semistability, log K-stability and uniform log-K-stability ex-
actly as before.

In the absolute case, log K-stability is due to Donaldson [29, Section 6].

Remark 2.15 (Singularities). Using the relationship with twisted K-stability,
we know from [24, Theorem 3.28] that if p : ((X,D), L) → (Y, T ) is K-semistable
then (X,D) has semi-log canonical singularities (see Definitions 3.1 and 5.2).

Remark 2.16 (Calabi-Yau and General Type maps). Again using the termi-
nology of Definitions 3.1 and 5.2, from the relationship with twisted K-stability, [24,
Theorem 1.2, Theorem 3.28] tells us that if p : ((X,D), L)→ (Y, T ) is a Calabi-Yau
map (by which we mean KX + p∗T is numerically trivial, with L arbitrary) then p
is K-stable (or uniformly K-stable) if and only if (X,D) has Kawamata log terminal
singularities. Moreover if p : ((X,D);L)) → (Y, T ) is is canonically polarised (by
which we mean L = KX + D + p∗T is ample) then p is K-stable (or uniformly
K-stable, K-semistable) if and only if (X,D) has semi-log canonical singularities.
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2.2. Hilbert Stability for maps. We start by recalling the Hilbert-Mumford
criterion from Geometric Invariant Theory (GIT). Suppose Z ⊂ PN is a projective
scheme that is invariant under the action of a reductive subgroup G ⊂ SL(N + 1).
Fixing z ∈ Z, for each one-parameter subgroup λ ↪→ G there is a limit z0 :=
limt→0 λ(t).z in Z. Then z0 is fixed by λ, so picking a non-zero point ẑ0 ∈ CN+1

lying on the line above z0, the one-parameter subgroup λ acts as

λ(t).ẑ0 = t−µ(z,λ)ẑ0

for some integer µ(z, λ) called the Mumford weight. When λ ↪→ GL(N + 1) we
compose with an action that scales CN+1 with some weight to obtain a rational

one-parameter subgroup λ̂ ↪→ SL(N + 1) that has the same action on Z, and set

µ(λ, z) = µ(λ̂, z). (2.3)

The Hilbert-Mumford numerical criterion [62, Theorem 2.1] states that the point
z ∈ Z is

(i) semistable if µ(z, λ) ≥ 0 for all one-parameter subgroups λ,
(ii) stable if µ(z, λ) > 0 for all non-trivial one-parameter subgroups λ,
(iii) polystable if µ(z, λ) ≥ 0 for all one-parameter subgroups λ, with equality if

and only if λ fixes z.

Roughly speaking, the GIT quotient Z // G parameterises polystable orbits.
We apply this now to define Hilbert stability for maps. Let p : (X,L)→ (Y,M)

be a morphism between polarised varieties and assume that M is very ample. Let
n = dimX, and r be large enough so that Lr is very ample. Let Vr be a fixed
vector space of dimension h0(X,Lr), let W = H0(Y,M) and fix an isomorphism
H0(X,Lr) ' Vr. Then the graph Γp of p is a subscheme

Γp ⊂ X × Y ⊂ P(Vr)× P(W ) ⊂ P(Vr ⊗W ).

Thus Γp defines a point in an appropriate Hilbert scheme

[Γp] ∈ Hilb = Hilb(P(Vr ⊗W ))

of P(Vr⊗W ). There is ambiguity given by possibly different choice of isomorphism
H0(X,Lr) ' Vr, and so we are interested in the orbit of [Γp] under the natural
GL(Vr) action. (Observe that as we are thinking of Y as fixed, there is no additional
action coming from the automorphism group of W ).

Remark 2.17. When dimX = 1 this is the setup considered by Baldwin-Swinarski
[13, Section 3] who use Geometric Invariant Theory to produce the moduli space
of stable maps from curves.

We recall briefly the construction of the Hilbert scheme. For sufficiently large
integer k consider the exact sequence

0→ H0(P(Vr ⊗W ), IΓp(k))→ Sk(Vr ⊗W )→ H0(Γp,OP(Vr⊗W )(k)|Γp)→ 0

where IΓp is ideal sheaf defining Γp. We think of this as a point in the Grassmannian

of the fixed vector space Sk(Vr ⊗W ), and Hilb(Vr ⊗W ) as the locus inside this
Grassmannian that parameterises such subschemes. So by the Plücker embedding

[Γp] ∈ Hilb(Vr ⊗W ) ⊂ Grass(Sk(Vr ⊗W )) ⊂ P(ΛhSk(Vr ⊗W )) =: P (2.4)

where h := dimH0(P(Vr ⊗W ), IΓp(k)). Clearly the natural action of GL(Vr) on
P preserves Hilb(Vr ⊗W ), and thus we are in precisely the setup of the Hilbert-
Mumford criterion described above.
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Definition 2.18 (Hilbert-stability of a map). We say that the map p is Hilbert-
stable at level r if for all sufficiently large k, the point [Γp] in (2.4) is stable with
respect to the action of GL(Vr). We say p is asymptotically Hilbert-stable if it is
Hilbert-stable at level r for all r sufficiently large. (Asymptotic) Hilbert-semistability
and Hilbert-polystability of p are defined similarly.

2.3. Donaldson-Futaki invariant as a leading term of a Mumford-weight.
Suppose now that p : (X ,L) → (Y,M) is a test-configuration for p. It is not hard
to see that the restriction of the test-configuration over C ⊂ P1 gives rise to a one-
parameter subgroup λ ↪→ GL(Vr) whose limit Γp0 = limt→0 λ(t).Γp is the graph of
the map p : X0 → Y , and thus Γp0 is equivariantly isomorphic to X0. (Conversely
such a one-parameter subgroup clearly defines a test-configuration, see for example
[72, Proposition 3.7] in the absolute case Y = {pt}).

To discuss this further it is useful to have some notation. So set

h(r, k) = dimH0(X,Lrk ⊗Mk) = dimH0(X0,Lk0 ⊗Mk),

w(r, k) = wt(H0(X0,Lk0 ⊗Mk)),

ĥ(r) = dimH0(X,Lr) = dimH0(X0,Lr0),

ŵ(r) = wt(H0(X0,Lr0)),

where the equality of the Hilbert polynomials arises from flatness and wt(H0(X0,Lk0⊗
Hk) denotes the total weight of the C∗-action on H0(X0,Lk0 ⊗Mk) induced from
the action on (X0,L0 ⊗M). Also set

w̃(r, k) := w(r, k)ĥ(r)− ŵ(r)kh(r, k)

Lemma 2.19. The Mumford-weight of the one-parameter subgroup λ ↪→ GL(Vr)
induced by the test-configuration (X ,L)→ (Y,M) is given by

µ([Γp], λ) =
w̃(r, k)

ĥ(r)
.

Proof. By the definition of the Plücker embedding used in (2.4), the line in ΛhSk(Vr⊗
W ) over the point [Γp0 ] is naturally isomorphic to

Λ := ΛmaxH0(Γp0 ,OP(Vr⊗W )(k)|Γp0 )⊗ ΛmaxSk(Vr ⊗W )∗.

Under the idenfitication between Γp0 and X0 the line bundle OP(Vr⊗W )(1) pulls
back to Lr ⊗ p∗M . Hence

Λ ' ΛmaxH0(X0,Lk0 ⊗ p∗Mk)⊗ ΛmaxSk(Vr ⊗W )∗. (2.5)

We can compose λ with the action that scales the vector space Vr by some weight

α ∈ Q to get a new rational one-parameter subgroup λ̂ ↪→ SL(Vr). But the induced

weight of λ̂ on Vr is precisely ŵ(r) + αĥ(r), and thus to ensure ŵ(r) + αĥ(r) = 0
we must have

α := − ŵ(r)

ĥ(r)
.

Observe that this in particular implies that λ̂ factors through both SL(ΛhSk(Vr⊗
W )) and moreover acts with zero weight on ΛmaxSk(Vr ⊗W ). Hence using (2.3)
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and then (2.5)

µ(λ, [γ]) = µ(λ̂, [γ]) = w(r, k) + αkh(r, k) =
w̃(r, k)

ĥ(r)
,

where the factor of k arises as if one adds a constant c to the weights of a C∗-action
on a general (Z,LZ), this changes the total weight on H0(Z,LlZ) by cl. The result
follows. �

All of the above quantities are polynomials in r and k. Thus we can write

w̃(r, k) =

n+1∑
i=1

ei(r)k
i. (2.6)

It is convenient now to set M = H⊗2 and consider the map q : (X,L)→ (Y,H)
induced from p : (X,L) → (Y,M) (the factor of two is to make the formulae
cleaner).

Proposition 2.20 (DFp as the leading term of a Mumford-weight). There
is an expansion

en+1(r) = DFq(X ,L)r2n +O(r2n−1). (2.7)

It is convenient to start with a preliminary statement:

Lemma 2.21. For r, k � 0 have

h(r, k) = χ(X,Lrk ⊗Mk),

w(mr, k) = χ(X ,Lmk ⊗Mk)− χ(X,Lmrk ⊗Mk),

ĥ(r) = χ(X,Lr),

ŵ(mr) = χ(X ,Lm)− χ(X,Lmr),

where the Euler characteristics are computed on the compactified family X → P1.

Proof. For the dimensions of the vector spaces, this follows from Riemann-Roch.
For the weights, this is due in various forms to the first author, Donaldson, Odaka
and Wang [24, 28, 64, 82]. �

Proof of Proposition 2.20. It is clear that r 7→ en+1(r) is a polynomial in r of degree
at most 2n+ 1. We claim now that the degree 2n+ 1 term actually vanishes. It is
clearer to work with w(mr, k), considering r fixed and varying m and k. First note
that

w̃(mr, k) = w(mr, k)ĥ(mr)− ŵ(mr)kh(mr, k),

= (χ(X ,Lmk ⊗Mk)− χ(X,Lmrk ⊗Mk))χ(X,Lmr)

− (χ(X ,Lm)− χ(X,Lmr))χ(X,Lmrk ⊗Mk)

by Lemma 2.21. Thus by asymptotic Riemann-Roch and using additive notation

en+1(mr) =
(mL+M)n+1

(n+ 1)!
χ(X,Lmr)− (χ(X ,Lmr)− χ(X,Lmr))

(mrL+M)n

n!
.

From this one sees the degree 2n+ 1 term in m vanishes, as claimed.
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To make the calculation more explicit, and using the variable l for clarity, denote

ĥ(l) = dimH0(X,Ll) = a0l
n + â1l

n−1 +O(ln−2),

ŵ(l) = wt(H0(X0,Ll0)) = b0l
n+1 + b̂1l

n +O(ln−1).

Define also

aq =
Ln−1.H

(n− 1)!
, bq =

Ln.H
n!

,

which arise in a simple manner from the Hilbert and weight polynomials defining
w̃(r, k). It is now clear that en+1(r) admits an expansion

en+1(r) =
b0(a1 + aq)− (b1 + bq)a0

a0
r2n +O(r2n−1),

thus it suffices to show that this equals the Donaldson-Futaki invariant of q :
(X ,L) → (Y,H). But this is immediate by Fulton’s asymptotic Riemann-Roch
for singular schemes [34, Corollary 18.3.1 (a)], which states that

χ(X ,Ll) =
Ln+1

(n+ 1)!
ln+1 +

Ln.KX
2n!

ln +O(ln−1),

where KX is the degree two part of the (singular) Todd class as usual, together
with Ln.KP1 = −2Ln.

�

Remark 2.22. The term en+1(r) governs Chow stability of the map p, where one
uses GIT with respect to the Chow line bundle on the Hilbert scheme. This is
precisely as in the absolute case, see for example [72, Theorem 3.9]. Thus one can
think of the Donaldson-Futaki invariant as the leading order term in asymptotic
Chow stability.

Remark 2.23. Equation (2.7) can also be used as the Donaldson-Futaki invariant
(thus avoiding intersection theory). This is the approach taken by Donaldson [27,
Definition 2.12] who was the first to define this invariant (in the absolute case) in
this level of generality.

There is an analogous calculation when one has a divisor D ⊂ X, which leads
to the log Donaldson-Futaki invariant being the leading order term of certain
Mumford-weights, computed on a product of Hilbert schemes (see for example [25,
Theorem 4.9]). An interesting point is that this relies on D being a divisor; if Z
has codimension at least two, then the leading order term of the Mumford weight
is unaffected for dimensional reasons. Thus while it makes sense to ask for a map
p : ((X,Z);L) → (Y,H) to be asymptotically Hilbert stable for Z an arbitrary
subscheme of X, the same question for K-stability does not unless Z is a divisor.

For completeness, we show that the minimum norm can also be defined in this
way. Choose r such that Lr is very ample. For each D ∈ |Lr|, and each test-
configuration p : X → D we obtain a test-configuration for (D,L) by setting the
total space D to be the closure of the orbit of D, i.e. D = C∗.D. As above, we
obtain a polynomial for k � 0

wt(H0(D0,Ll0)) = b0,Dl
n +O(ln−1).

One can show that b0,D is in fact constant outside a Zariski closed subset of D [58,

Lemma 9], so we set b̃0 to equal this general value.
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Lemma 2.24 (Minimum norm). [24, Remark 3.11] The minimum norm of p :
(X ,L)→ (Y,H) is given by

‖(X ,L)‖m =
n!

r

(
b̃0 − nb0

)
.

The minimum norm also arises as a limit of certain finite dimensional Mumford
weights [25, Theorem 4.9].

3. Stability criteria

This section provides several situations in which one can show a map is uniformly
K-stable, proving Theorem 1.2. These results apply when X has log canonical
singularities, and in particular hold when X is smooth. It is straightforward to
extend the results to pairs. For ease of exposition, we shall only consider the log
canonical case in this section, so in particular throughout we assume X is normal.

Definition 3.1. Let X be a Q-Gorenstein normal variety, and let f : Y → X be a
resolution of singularities. Write

KY − f∗KX ≡
∑

aiEi,

where Ei are the components of the exceptional divisor. We say X is

(i) log canonical if ai ≥ −1 for all i,
(ii) Kawamata log terminal if if ai > −1 for all i.

One can prove analogous results to those of this section in the semi-log canonical
setting (see Definition 5.2), where X is no longer irreducible, as follows. Let Xν →
X be the normalisation, and let F̄ be the conductor divisor (see Definition 5.1).
Then uniform K-stability of p : (X,L) → (Y,H) is implied by uniform K-stability
of pν : ((Xν , F̄ );L) → (Y,H) (this follows, for example, by [16, Remark 3.19]).
Thus the above result for pairs implies the analogue of the above result for semi-log
canonical varieties.

3.1. Odaka’s blowing up formalism. Remark that the Donaldson-Futaki invari-
ant and the minimum norm are unchanged by modifying the line bundle L on X
by adding a multiple of π∗OP1(1). When dealing with these invariants in prac-
tice, it is often convenient to remove this ambiguity by choosing a more canonical
choice of L. A useful way of doing this is by using Odaka’s blowing-up formalism
[64]; this has the added benefit of giving a concrete geometric interpretation of the
test-configurations.

Note that one obtains resolutions of indeterminacy, as in equation (2.2), by
blowing up so-called flag ideals on X × P1, which are simply ideal sheaves of the
form

I = I0 + I1(t) + . . .+ (tN ),

where t is the co-ordinate on P1. Set B = BlI(X × P1) to be this blow-up with
exceptional divisor E.

Proposition 3.2. A map p : (X,L)→ (Y, T ) is uniformly K-stable if and only if it
is uniformly K-stable with respect to semi-test-configurations of the form (B, rL−
E), where r ≥ 1 is such that rL− E is relatively semi-ample and B is normal.
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Proof. This is essentially proved in [24, Corollary 3.3] in the setting of “twisted
K-stability” using the strategy of Odaka [64]. There it is proved that if there is a
test-configuration satisfying

DFp(X ,L) < ε‖(X ,L)‖m,

then there is a (B, rL− E) as above, not a priori admitting a map to Y , with

DFp(B, rL− E) < ε‖(B, rL− E)‖m

as a formal intersection number. However since there is a natural map B → X×P1,
by composition it is clear that there is a map B → Y extending the usual map on
the general fibre. �

Remark 3.3. Note that, from Lemma 2.6 the Donaldson-Futaki invariant of such
a semi-test-configuration is given up to a dimensional constant as

‖(B, rL− E)‖m = (rL− E)n.(L+ nr−1E).

The main advantage of this formalism is the following concrete bounds on the
intersection numbers defining the Donaldson-Futaki invariant.

Lemma 3.4. [66, Proposition 4.3, Theorem 2.6] [63, Equation (3)] [23, Lemma
3.7] Suppose I 6= (tm) for any m, and let R be a nef line bundle on X. With all
notation as above, the following intersection theoretic inequalities hold:

(i) (rL− E)n.R ≤ 0,
(ii) (rL− E)n.E > 0,

(iii) (rL− E)n.(rL+ nE) > 0.

Remark in particular that (iii) implies the minimum norm is strictly positive
for non-trivial semi-test-configurations. We will need an improved version of this
(which is proved in [25, Lemma 4.40] when n = 2).

Proposition 3.5. With all notation as above, we have

(rL− E)n.(rL+ (n− 1)E) ≥ 0.

Proof. Note that Ln+1 = 0 since X is n-dimensional, while Ln.E = 0 since I has
codimension two support in X × P1. A combinatorial formula then gives

(rL− E)n.(rL+ (n− 1)E) = −E.E.

n−1∑
j=1

(n− j)(rL)j−1.(rL− E)n−j

 .

Now, −E is relatively ample for the blowup map. Thus −E.E is an effective cycle
with support contained in the central fibre of B, and hence each term of the sum is
non-negative by (relative) semi-ampleness of rL and rL− E. �

Remark 3.6. Although the improvement on Lemma 3.4 (iii) seems minor, it is
crucial to proving the results in the present section. Essentially the above says that,
instead of the minimum norm just being positive, it is positive in an “effective” way:

‖(B, rL− E)‖m ≥ c−1(rL− E)n.E,

where c is independent of the test-configuration.
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3.2. Kodaira embeddings.

Theorem 3.7. Assume that X is log canonical. Then any Kodaira embedding

(X,L) ↪
L⊗k−−−→ (PNk ,OP(1))

is a uniformly K-stable map for k � 0.

Proof. We use the blowing up formalism of Section 3.1. Let (B, rL−E) be a semi-
test-configuration as above. Since X is log canonical, by inversion of adjunction
and Lemma 3.4 (ii) we have

(rL− E)n.KB/X×P1 ≥ 0,

hence by Remark 3.3 it suffices to show that

DFp(B, rL− E) ≥ n

n+ 1
µkL(X, rL)(rL− E)n+1 + (rL− E)n.(KX + kL)

≥ ε(rL− E)n.(L+ nr−1E) = ε‖(B, rL− E)‖m
for some ε > 0 and k � 0. For notational convenience, denote µ := µ(X,L), so that

µkL(X, rL) = r−1µ − r−1k. Setting k̂ = k
2(n+1) , the Donaldson-Futaki invariant

can be rewritten as

(rL− E)n.

(
nr−1

n+ 1
(µ− k)(rL− E) +KX + kL

)
,

= (rL− E)n.

(
nr−1µ

n+ 1
(rL− E) +KX + 2k̂r−1(rL+ nE)

)
,

≥ (rL− E)n.

(
nr−1µ

n+ 1
(rL− E) +KX + 2k̂r−1E

)
,

= (rL− E)n.

((
nµ

n+ 1
L+KX + k̂r−1E

)
+ r−1

(
k̂ − n

n+ 1

)
E

)
,

where we have used Proposition 3.5 to go from the second to the third line.
We deal with the two terms separately. For the first term, note that

(rL− E)n.E ≥ (rL− E)n.(−n−1rL)

by Lemma 3.4 (iii), so that

(rL− E)n.

(
nµ

n+ 1
L+KX + k̂r−1E

)
≥ (rL− E)n.

(
nµ

n+ 1
L+KX − k̂n−1L

)
,

which is positive proved − nµ
n+1L−KX + k̂n−1L is nef by Lemma 3.4 (i). Certainly

the class is nef for k̂ (or equivalently k) sufficiently large.

For the second term, note that by Lemma 3.4 (ii) and (iii), for k̂ ≥ 1 we have

(rL− E)n.

(
r−1

(
k̂ − n

n+ 1

)
E

)
≥ 1

n+ 1
(rL− E)n.r−1E, (3.1)

≥ 1

n(n+ 1)
(rL− E)n.(L+ nr−1E), (3.2)

as required. �
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Remark 3.8. The same proof shows that the identity map (X,L)→ (X,Lk) is a
uniformly K-stable map for k � 0. This can also be obtained from a combination
of the above and the factorisation properties of K-stability of maps, which we shall
prove as Theorem 3.17 (i).

It is natural to ask how k depends on (X,L), and whether or not the above
construction can be performed in families. Our next result shows that this is the
case, at least when X is smooth, if one instead embeds using powers of certain
adjoint bundles mL+ 2KX .

Theorem 3.9. Consider the set S of smooth polarised varieties with values {dimX =
n, vol(X) = Ln, Ln−1.KX , L

n−2.K2
X , . . . ,K

n
X} fixed. For all m � 0, there is a

k = k(m) such that for all (X,L) ∈ S the map

(X,mL+ 2KX) ↪
(mL+2KX)⊗k

′

−−−−−−−−−−→ (PNk′ ,OP(1))

is uniformly K-stable for all k′ ≥ k.

Proof. This is essentially a consequence of the various results towards Fujita’s con-
jecture. We use Demailly’s result, which states that there exists an m′ such that
for all (X,L) ∈ S, the line bundle mL + 2KX is very ample for all m ≥ m′ [21,
Corollary 2]. We shall work only with such m.

The condition in the proof of Theorem 3.7 that needs to be satisfied is that the
line bundle

− n

n+ 1
µ(X,mL+ 2KX)(mL+ 2KX)−KX + k̂n−1(mL+ 2KX)

is nef for m� 0 and k̂ � 0, where explicitly

µ(X,mL+ 2KX) =
−KX .(mL+ 2KX)n−1

(mL+ 2KX)n
.

Grouping terms, this line bundle is(
− n

n+ 1
µ(X,mL+ 2KX) + k̂n−1 − 1

)
(mL+ 2KX) +mL.

Note that for m� 0, independent of (X,L) ∈ S, we have µ(X,mL+ 2KX) ≤ 1.

Hence for any such m, the number − n
n+1µ(X,mL + 2KX) + k̂n−1 − 1 is positive

for all k̂ � 0 (or equivalently k � 0). Thus the result follows since mL + 2KX is
very ample, hence nef.

�

This is a sort of boundedness result for K-stable maps. A version of the Fujita
conjecture for log canonical varieties would extend the above proof to the singular
setting. Of course, in the singular case for any geometric application of the above
it is crucial to obtain bounds on the Cartier index of L. For example, a typical
case is when L = ±KX (so S just fixes the dimension and the volume), where to
obtain some boundedness result the main difficulty is to bound the Cartier index of
±KX . The point of the above Corollary is that, once one has a bounded family of
varieties, it is essentially automatic that one obtains a bounded family of K-stable
maps.
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One can easily generalise Theorem 3.7 as follows, using the notion of “J-stability”
introduced by Lejmi-Székelyhidi [58]. We use the reformulation of [25, Proposition
4.29]. Denote

γT (X,L) =
Ln−1.T

Ln
. (3.3)

Definition 3.10. Consider a variety X with line bundles L, T where T is ample.
We say that ((X,T );L) is uniformly J-stable if there exists an ε > 0 such that for
each test-configuration (X ,L), we have

JT (X ,L) = − n

n+ 1
γT (X,L)Ln+1 + Ln.T ≥ ε‖(X ,L)‖m,

calculated on a resolution of indeterminacy.

Remark 3.11. When X is smooth and T is ample, uniform J-stability is conjec-
turally equivalent to the existence of a solution to Λωα = c, where c ∈ R, α ∈ c1(T )
is a fixed Kähler form and ω ∈ c1(L) [58, Conjecture 1].

Theorem 3.12. Suppose X is log canonical, ((X,T );L) is uniformly J-stable and
T is semi-ample. Then

(X,L)
T⊗k−−−→ (PN

′
k ,OP(1))

is a uniformly K-stable map for all k � 0. Conversely, if ((X,T );L) is J-unstable,
then the Kodaira embedding above is a K-unstable map.

Proof. The proof is essentially identical to that of Theorem 3.7, by noting that for
a blow-up test-configuration we have

DFp(B, rL− E) = JKX+kT (B, rL− E) + (rL− E)n.KB/X×P1 ,

and using the linearity property

JaH+bM (B, rL− E) = aJH(B, rL− E) + aJM (B, rL− E). (3.4)

�

It is fairly simple to give explicit criteria for uniform J-stability [58, 25, 42], so
from the above we obtain further examples of stable maps.

3.3. Numerical Properties, and Variation. Here we prove some results regard-
ing the behaviour of uniform K-stability on the various cones of line bundles of X
and Y . These results rely on the uniform lower bound on the Donaldson-Futaki
invariant, it seems much more challenging to prove them assuming only that the
map is K-stable. Firstly, we show that uniform K-stability is a numerical condition
on L and T :

Theorem 3.13. Uniform K-stability of p : (X,L) → (Y, T ) depends only on the
numerical class of L, T .

Proof. This is obvious for T . For L, this a consequence of the blowing up formalism
of Section 3.1. Suppose L′ ≡num L. If p : (X,L)→ (Y, T ), then for all ε > 0 there
is a semi-test-configuration (B, rL−E) with DFp(B, rL−E) < ε‖(B, rL−E)‖m. By
definition of a semi-test-configuration, rL− E is relatively semiample. Perturbing
slightly one can assume rL − E is actually relatively ample, while preserving the
inequality DF(B, rL − E) < ε‖(B, rL − E)‖m. But then as relative ampleness is a
numerical condition, (B, rL′ − E) is a test-configuration for p′ : (X,L′) → (Y, T )
and one still has DFp(B, rL′ − E) < ε‖(B, rL′ − E)‖m, as required. �
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Remark 3.14. Given the above, it is natural to ask if there is a definition of K-
stability of maps when L ∈ AmpR(X) and T ∈ PicR(Y ). In fact more generally
one can give a definition that makes sense for L replaced a Kähler class with X a
smooth Kähler manifold and Y a complex manifold, and T replaced with a Bott-
Chern class, by a straightforward variant of the Kähler version of K-stability defined
in [26, 74].

We next prove an openness result for uniformly K-stable maps.

Theorem 3.15. Let p : (X,L) → (Y,H) be a uniformly K-stable map. Then
stability of a map is an open condition in PicQ Y .

Proof. We use the blowing up formalism of Section 3.1, and follow the notation
used there and in Definition 3.10. Following this notation, note that

JL(B, rL− E) = ‖(B, rL− E)‖m.
Fix some T ∈ PicQ(Y ). Since PicQ(Y ) is a finite dimensional vector space, from the
definition of uniform K-stability, it is clear that it suffices to establish that there
exists a c = c(T ) ∈ R independent of (B, rL− E) such that

−cJL(B, rL− E) ≤ JT (B, rL− E) ≤ cJL(B, rL− E).

We first establish the second inequality. By the linearity property noted in
equation (3.4), it is enough to show that for c� 0 we have

JcL−T (B, rL− E) ≥ 0.

In fact our argument will still hold if we replace T with −T , so will give the first
inequality as well.

By definition and using γcL−T (X,L) = c− γT (X,L) we have

JcL−T (B, rL− E) = (rL− E)n.

(
− nr

−1

n+ 1
γcL−T (X,L)(rL− E) + cL− T

)
,

= (rL− E)n.

(
r−1

n+ 1
γcL−H(rL+ (n− 1)E)−

− γTL− T +
1

n+ 1
(c− γT )E

)
.

For c � 0 we have γcL−T (X,L) > 0 so the first term is non-negative by the key
result Proposition 3.5. The remaining terms sum to a non-negative number by a
combination of Lemma 3.4 (iii) and Lemma 3.4 (i).

�

Remark 3.16. The above result also shows that uniform J-stability in the sense
of Definition 3.10 is an open condition as one varies T . Remark again that the
improvement in Proposition 3.5 compared to Lemma 3.4 (iii) is crucial in proving
the above: knowing only Lemma 3.4 (iii), the proof breaks down.

3.4. Factorisation, compositions, naturality. Here we prove:

Theorem 3.17. Let (X,L)
p−→ (Z, q∗T )

q−→ (Y, T ) be maps.

(i) If p◦ q : (X,L)→ (Y, T ) is K-stable (resp. K-semistable, uniformly K-stable),
then X → Z is K-stable (resp. K-semistable, uniformly K-stable). If q : Z →
Y is an isomorphism, then the converse is true. Thus the automorphism group
of Y acts on the space of stable maps to Y .
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(ii) If p : (X ,L)→ (Z, q∗T ) is uniformly K-stable, then so is q◦p : (X,L)→ (Y, T ).

Proof.
(i) Note that if p : (X ,L) → (Z, q∗T ) is a test-configuration for p : (X,L) →

(Z, q∗T ), then q ◦ p : (X ,L) → (Y, T ) is a test-configuration for q ◦ p : (X,L) →
(Y, T ). The result follows easily from this.

(ii) Let p : (X ,L) → (Y, T ) be a test-configuration for p ◦ q : (X ,L) → (Y, T )
which satisfies

DFq◦p(X ,L) < ε‖(X ,L)‖m.
Take an equivariant resolution of indeterminacy as in equation (2.2):

Y

X × P1 X

h
f

g

(3.5)

The line bundle f∗L is relatively semi-ample over P1. Letting E be the excep-
tional divisor of f , the line bundle L − δE is relatively ample for δ sufficiently
small. The natural map h ◦ p : (Y,L − δE) → (Z, q∗T ) gives a test-configuration
for q ◦ p : (X ,L) → (Z, q∗T ). Moreover, for δ sufficiently small, by continuity of
the intersection numbers defining the Donaldson-Futaki invariant and the minimum
norm, we have DFp(Y,L−δE) < ε‖(Y,L−δE)‖m. Since this argument works for all
ε sufficiently small, this contradicts the uniform K-stability of p : (X ,L)→ (Z, q∗T ),
proving the result.

�

The same argument gives the following, as promised in Remark 2.12:

Corollary 3.18. A map p : (X,L) → (Y, T ) is uniformly K-stable if and only if
(X,L) is uniformly twisted K-stable with respect to p∗T .

Proof. The definition of twisted K-stability of (X,L) involves taking a resolution
of indeterminacy of a test-configuration Y → X as in (3.5) above, and defining

DFT (X ,L) :=
n

n+ 1
µT (X,Lr)Ln+1 + Ln.(KX/P1 + f∗T ).

By the argument of Theorem 3.17, by perturbing we can assume (X ,L) itself admits
a map to (X,L), hence a map to (Y, T ) by composing. This invariant clearly equals
the Donaldson-Futaki invariant of p : (X,L)→ (Y,H), hence uniform K-stability of
p implies uniform twisted K-stability of (X,L) with respect to p∗T . The converse
is obvious. �

4. Fibrations

Let f : U → Y be a flat proper morphism between schemes of constant relative
dimension d and LU be a line bundle on U that is relatively ample over Y . We
recall the construction of the CM-line bundle (see [31, Section 2] for a more detailed
account). The Knudson-Mumford expansion [48, Theorem 4] provides line bundles
λi for i = 0, . . . , d on Y and a natural polynomial expansion

det(π!L
k
U ) ' λ( k

d+1)
d+1 ⊗ λ

(kd)
d ⊗ · · · ⊗ λ0 for k ≥ 0.
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Moreover the λi commute with base-change. The CM-line bundle [70, Definition
1] with respect to LU is defined to be

LCM = λ
dµ+d(d+1)
d+1 ⊗ λ−2(d+1)

d (4.1)

where µ = µ(Uy, LU |Uy ) is the slope of any fibre of U (and the reader is warned
our convention for µ differs to that of [31]).

Now suppose p : B → Y is a morphism from a normal projective variety B and
consider the fibre product

X := B ×Y U U

B Y

p

f f

p

Remark 4.1. The reader should have in mind here the case that Y is some kind
of moduli space of varieties or schemes with a universal family U . Then p : B → Y
carries the same data as the fibre product X → B, which is a fibration whose fibres
vary in the moduli space Y .

Fixing an ample line bundle LB on B, for m sufficiently large the line bundle

LX := p∗LU ⊗ f∗LmB
on X is ample. We wish to relate K-stability of (X,LX) with K-stability of the
morphism

p : (B,H)→ (Y, δLCM )

for some suitable constant δ = δ(m) > 0 and m � 0. To this end, suppose that
(B,LB, p) is a test-configuration for p and set

X := B ×Y U U

B Y

p

f f

p

and

LX := p∗LU ⊗ f∗LmB .

Lemma 4.2. For m sufficiently large (X , LX ) is a test-configuration for (X,L).

Proof. As flatness commutes with basechange, the fact that U is flat over Y and
B is flat over P1 imply that X is also flat over P1. The C∗-action on B lifts to
(X , LX ), and the properties needed to make this data a test-configuration are all
easily verified. �

Now let V = LnXb where Xb is a fibre of X → B over some (resp. any) point
b ∈ B (so V is the volume of the fibre) and set

δ =
1

(n− b+ 1)V
.

Proposition 4.3. It holds that

DF (X ,LX ) = V

(
n

b

)
DFδp∗LCM (B,LB)mb +O(mb−1). (4.2)
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Corollary 4.4. For m sufficiently large, if (X,LX) is a K-semistable variety then
p : (B,LB)→ (Y, δLCM ) is a K-semistable map.

Proof of Proposition 4.3. Let dimB = b and dimX = n and set

µ := µ(Xb, LX |Xb) = −
KXb .L

n−b−1
Xb

Ln−bXb

where Xb denotes a (resp. any) fibre of X → B, which has dimension n − b. The
CM line bundle commutes with base change, so p∗LCM is precisely the CM line
bundle of the fibration f : X → B computed with p∗LU . The first Chern class
of the CM line bundle is easily calculated with Grothendieck-Riemann-Roch [34,
Corollary 18.3.1 (c)], which gives [31, p2]

c1(p∗LCM ) = f∗[(n−b)µc1(p∗LU )n−b+1 +(n−b+1)c1(KX/B)c1(p∗LU )n−b]. (4.3)

Here c1(KX/B) is the cycle which is the degree two part of the relative singu-
lar Todd class [34, p354]. Our first task is to calculate µ(X,LX) asymptotically
for large m. To ease exposition we shall drop the pullback and use additive no-
tation, so LX = LU + mLB . Then LnX = (LU + mLB)m =

(
n
b

)
mbLbBL

n−b
U +(

n
b−1

)
mb−1Lb−1

B Ln+1−b
U +O(mb−2) and similarly for Ln−1

X . Algebraic manipulation
and the projection formula yields

µ(X,LX) =
−KX .L

n−1
X

LnX
= λ0 + λ1m

−1 +O(m−2) (4.4)

where

λ0 =
n− b
n

µ

λ1 = − b

n(LbB)
(δLb−1

B p∗LCM + Lb−1
B KB) =

b

n
µT (B,LB)

where T = δp∗LCM . A similar calculation yields the desired Donaldson-Futaki
invariant, which by definition is equal to

DF (X ,LX ) =
n

n+ 1
µ(X,L)Ln+1

X +KX/P1LnX

=
n

n+ 1
(λ0 + λ1m

−1 +O(m−2))Ln+1
X +KX/P1LnX .

Expand Ln+1
X = (p∗LU + mf∗LB)n+1 and extract the top two powers of m, and

similarly for LnX . Algebraic manipulation yields that the mb+1 term in DF (X ,LX )
vanishes, and the O(mb) term is(
n

b

)(
LbBKX/P1p∗Ln−bU +

b

b+ 1
µT (B,LB)Lb+1

B p∗Ln−bU +
µ(n− b)
n+ 1− b

LnBp∗Ln+1−b
U

)
.

Along with the observation that KX/P1 = KX/B + KB/P1 , an application of the
projection formula along with the formula for c1(p∗LCM ) (4.3) yields (4.2). �

Alternative Proof of Proposition 4.3. We sketch a proof that does not require Grothen-
dieck-Riemann-Roch. Again dimX = n and dimB = b. First observe that if E is
a vector bundle of rank rE on (B,LB) then the Euler-characteristic satisfies

χ(E ⊗ LpB) = rEχ(Lp) +
pb−1

(b− 1)!

∫
B

c1(E)c1(L)b−1 +O(pb−1).



STABLE MAPS IN HIGHER DIMENSIONS 23

(This can be seen by assuming LB to be very ample and taking hyperplane sections,
but of course can also be seen from Grothendieck-Riemann-Roch). Thus if Ek is a
sequence of vector bundles of rank rk then

χ(Ek ⊗ L⊗mk) = rkχ(LmkB ) +
mb−1kb−1

(b− 1)!

∫
B

c1(Ek)c1(Lb−1) +O(mb−2)

where the O(mb−2) term also depends on k. Now let Ek = π!(L
⊗k
U ) for large k.

The using the notation from (4.1) there are line bundles λi on Y such that

det(Ek) = λ
( k
n−b+1)
n−b+1 ⊗ λ

( k
n−b)
n−b ⊗ · · · ⊗ λ0.

Hence by the projection formula

χ(LkX) = χ(p∗LkU ⊗ π∗LmkB ) = χ(π!p
∗LkU ⊗ LmkB )

= rkχ(LmkB ) +
mb−1kb−1

(b− 1)!

∫
B

c1(p∗Ek)c1(Lb−1
B ) +O(mb−2)

= rkχ(LmkB ) +
mb−1kb−1

(b− 1)!

((
k

n− b+ 1

)∫
B

c1(p∗λn−b+1)c1(LB)b−1

)
+
mb−1kb−1

(b− 1)!

((
k

n− b

)∫
B

c1(p∗λn−b)c1(LB)b−1

)
+O(kn−2) +O(mb−2).

Now rk = rank(Ek) is the Hilbert-polynomial of the fibre of U → Y , and so one
can extract the mb term and mb−1 term in the top two leading order terms of
χ(LkX) in k. Algebraic manipulation then gives the expansion of the slope µ(X,L)
is as stated as in (4.4). The proof for the Donaldson-Futaki invariant is a similar
calculation on the total space X , and is left to the reader. �

Remark 4.5. In the above we do not assume that LCM has any positivity, and in
fact there are examples for which it is negative [31, Example 5.2]. This is the only
case we know where K-stability of a map p : (X,L) → (Y, T ) may be interesting
without any positivity assumptions on T .

Remark 4.6 (Converse). The converse to Corollary 4.4 clearly requires some
stability hypothesis of the fibres of X (as can be seen if X is a product). We
speculate that with some such hypothesis (for instance if one assumes they are
canonically polarised or uniformly K-stable) then stability of X → C is equivalent
to stability of the map p : C → Y (either assuming canonical polarisations, or
otherwise taking m to be sufficiently large).

The two difficulties in proving such a statement are (i) the fact that a priori there
can be test-configurations for X that have limits that are not themselves fibrations
and (ii) how large m must be taken should be uniform over all test-configurations
for X that need to be considered. This may be related to the fact that if a KSBA
stable variety admits a fibration to a stable base with stable fibres then this fibration
structure deforms uniquely for small deformations [68].

Remark 4.7 (Stacks). As the reader is surely aware, in general moduli spaces do
not come with universal families due to the presence of automorphisms. But one
can run the same argument as above (which is purely formal) if Y is instead taken
to be a Deligne-Mumford stack. The main difference is that a test-configuration
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for a morphism B → Y will itself be a stack, but one can define the Donaldson-
Futaki invariant in precisely the same way as before (for instance using the same
intersection formula (2.1)).

For example, if B is a curve and Y = Mg the (proper) moduli stack of stable
curves (of some fixed genus say) then X → B is a fibered surface whose stability
is related to stability of the map p : B → Y . For another example, Y could be
the KSBA moduli stack of canonically polarised semi-log-canonical varieties. By
definition of a morphism of stacks, from a map B → Y one obtains a family X → B
whose fibres are KSBA stable varieties. Thus if B → Y is a K-unstable map (of
stacks), (X,LX) is K-unstable for m� 0, without any further hypotheses needed.
This suggests that for the study of stability of fibrations, the more useful notion of
K-stability of maps should allow maps to stacks.

Remark 4.8 (Projective bundles). Another examples of a fibration that has
attracted significant interest from the point of view of K-stability and canonical
Kähler metrics is that of the projectivisation P(E) of a vector bundle E over (B,LB)
(for instance [10, 8, 9, 17, 43, 46, 47, 59, 71]).

From the point of view of this paper it makes sense to consider the moduli stack
M of projective space (of course the coarse moduli space of M is a single point,
but the stack which is clearly not Deligne-Mumford is much richer). Then any
projective bundle P(E) → B is induced by a map p : B → M which must be
K-semistable if (P(E),mLB +OP(E)(1)) is K-semistable for m� 0. This is slightly
different, but presumably related to, requiring that (B,LB) be stable and that E
be a stable vector bundle, which are the kind of hypothesis usually made in the
references above.

Remark 4.9 (Comparison with Abramovich-Vistoli). The compactification
of the moduli space of stable fibred surfaces X → B is considered by Abramovich-
Vistoli in [2, 3]. In that paper the authors compactify the space of fibrations
X → B by stable curves over a one dimensional base B such that the induced
map B → Mg is a stable map (in the sense of Kontsevich). The points in the

boundary of their moduli space consist of certain maps B̃ →Mg where Mg is the

moduli stack of curves, and B̃ is a curve endowed with additional stack structure.
This further suggests that it is interesting to consider K-stability of maps whose
domain is a stack. We refer to [73] for prior work towards K-stability for certain
Deligne-Mumford stacks in the absolute case. The generalisation to pairs is taken
up in [11].

5. Moduli spaces of maps

5.1. Preliminaries on semi-log canonical pairs. We recall some definitions and
results we which require from the minimal model program. Most importantly, we
shall define semi-log canonical (or slc) varieties, which are the higher dimensional
analogue of nodal curves.

As such varieties are typically not irreducible, the most effective way to study
them is through their normalisation. Recall that a nodal curve C is encoded by the
triple (C̄, F̄ , τ), where C̄ is its normalisation, F̄ is the preimage of the nodes and
τ : F̄ → F̄ is the involution which determines which pairs of points are identified
in C. We will use a similar technique to study slc varieties, following closely ideas
of Kollár [55, Section 5].
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Definition 5.1. Let (Y,D) be a pair consisting of a normal variety Y and an
effective Q-Weil divisor D such that KX +D is Q-Cartier. Let f : Y → X be a log
resolution of singularities, so that f−1

∗ D∪E has simple normal crossing singularities.
Write

KY − f∗(KX +D) =
∑

aiEi,

where either Ei is exceptional or the proper transform of a component of D. We
say (X,D) is log canonical if ai ≥ −1 for all i.

Now let X be an equidimensional Q-Gorenstein projective variety. We say X is
demi-normal if it satisfies Serre’s S2 condition and is nodal in codimension one. For
a demi-normal variety X, denote by π : X̄ → X its normalisation. The preimage
of the double normal crossing locus of X is called the conductor of π and denoted
F̄ . We say that X is semi-log canonical if (X̄, F̄ ) is log canonical.

The map F̄ → F induces an involution between the normalisations τ : F̄ ν → F̄ ν ,
which is fixed point free in codimension one [55, p189]. For this it is essential to
work on the normalisation of F̄ : there are examples in which a point in F has three
preimages in F̄ , so no involution can exist [55, p189]. Then as in the curve case, the
triple (X̄, F̄ , τ) determines X [55, Theorem 5.13]. Moreover, we have [55, Equation
(5.7.5)]

π∗(KX + F ) ∼Q KX̄ + F̄ . (5.1)

We will require a similar technique for pairs, so let D be a Q-Weil divisor on
X whose support does not contain any codimension one component of the singular
locus of X. Then D is Q-Cartier in codimensione one, so we can define D̄ as the
closure of the pullback π∗D on the Q-Cartier locus.

Definition 5.2. We say a pair (X,D) is semi-log canonical if KX +D is Q-Cartier
and (X̄, D̄ + F̄ ) is log canonical.

The analogue of equation (5.1) for pairs states that

π∗(KX +D) ∼Q KX̄ + F̄ + D̄.

In order to recover (X,D) from its normalisation, we need to consider the cor-
responding involution. Choose m such that mD is integral and m(KX̄ + F̄ + D̄)
is Cartier. For σ : F̄ ν → X̄ the induced map, one defines an effective Q-Cartier
divisor on the normalisation F̄ ν called the different, denoted Diff F̄ ν (D̄), in such a
way that:

(i) mDiff F̄ ν (D) is integral and m(KF̄ ν + Diff F̄ ν (D̄)) is Cartier,
(ii) σ∗π∗(KX +D) ∼Q σ

∗(KX̄ + F̄ + D̄) ∼Q KF̄ ν + DiffF ν (D̄).

We refer to [55, Section 5.11] for further details. Again, the key point is that
Diff F̄ ν (D̄) is a τ -invariant divisor, and the data (X̄, F̄ + D̄) together with the
involution τ of (F̄ ν ,Diff F̄ ν (D̄)) determines (X,D) [55, Theorem 5.38]. A simple
consequence of the definition is the following.

Lemma 5.3. Suppose KX +D is ample. Then so is KF̄ ν + DiffF ν (D̄).

Proof. This follows immediately from the formula defining the different, noting that
π ◦ σ is finite. �

We will also need some information on the singularities of the pair (F̄ ν ,Diff F̄ ν (D̄)).

Proposition 5.4. Suppose (X,D) is slc. Then the pair (F̄ ν ,Diff F̄ ν (D̄)) is log
canonical.
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Proof. This follows from adjunction, since (X̄, D̄ + F̄ ) is log canonical. �

5.2. Moduli. Let X be a variety and let D be a divisor such that the pair (X,D)
is slc. In this section we construct a moduli space of stable maps p : ((X,D);L)→
(Y,H) such that L = KX +D+ p∗H is an ample Q-Cartier divisor. We sometimes
abbreviate this data to (X,D) and simply call this a “stable map”. Remark 2.16
ensures that these are simply canonically polarised uniformly K-stable maps. It
will be important in our construction that D is a genuine Weil divisor, rather than
merely a Q-Weil divisor.

Remark 5.5. For technical reasons, we require that H is “sufficiently ample”.
Precisely, fixing an arbitrary ample line bundle M on Y , we will require that H
satisfies H − 2nM is ample, where n = dimX. For example, this applies for
H = (2n+ 1)M .

Our main result is as follows.

Theorem 5.6. The moduli functor of stable maps is coarsely represented by a
separated projective scheme.

The construction of this moduli space is due to Kontsevich in the case n = 1
and Alexeev in the case n = 2 [6, 5]. Our proof uses several deep results from
the minimal model program, and follows Alexeev’s strategy in the case n = 2. The
main differences compared with Alexeev’s work arise due to the progress made in the
minimal model program over the last twenty years. In particular the moduli space
we construct has a slightly different scheme structure to the space constructed by
Alexeev. His construction was restricted to components of the moduli space where
the general element is irreducible, as one cannot apply the minimal model progrem
näıvely to slc pairs in general [53], which leads us to use Kollár’s gluing theory.
Moreover by applying Kollár’s theory of hulls [52], we are able to give the modul
space a unique scheme structure.

We emphasise that we are not really proving any new technical results in the
minimal model program. Instead, our work can be seen as a new application of
the existing techniques. In the absolute case Y = {pt}, our construction reduces to
the construction of the moduli space of stable slc models, originating in the work
of Kollár-Shepherd Barron [57] and Alexeev [4, 5], and we refer to [38, 54] for a
survey of this construction in this case.

We begin with the definition of the moduli functor of stable maps, which reduces
to [54, Definition 29] in the absolute case Y = {pt}.

Let (X ,D)→ S×Y be a family, flat over S, whose fibres over S are stable maps.
For a coherent sheaf F on X , denote by F [m] the reflexive hull of F⊗m. Since there
is a subscheme Z ⊂ X satisfying Z ∩ Xs has codimension two for all s ∈ S and
(ωX/S⊗D⊗p∗H)⊗m is locally free on X\Z for each m, this sheaf admits a reflexive
hull. It is not true in general that one has an isomorphism

(ωX/S ⊗OX (D)⊗ p∗H)[m]|Xs ∼= (ωXs ⊗OXs(Ds)⊗ (p∗H)s)
[m], (5.2)

and the main subtlety in the definition of the moduli functor is to impose a condition
on the admissible families such that this property holds.
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Definition 5.7. Fix an integer valued function h(m). We define the moduli functor
of stable maps to be:

M(S) =



Projective morphisms (X ,D)→ S × Y such that:

(i) X → S and D → S are flat,

(ii) the fibres over each s ∈ S are stable maps,

(iii) the Hilbert function of each fibre

χ(Xs, (ωXs ⊗OX (Ds)⊗H)[m]) = h(m) is fixed,

(iv) (ωX/S ⊗OX (D)⊗ p∗H)[m] is flat over S for all m ∈ Z>0,

(v) (ωX/S ⊗OX (D)⊗ p∗H)[m] commutes with arbitrary base change,

modulo isomorphisms over S.


with morphisms given by taking the pullback.

Remark 5.8. Here two families (X ,D) → S × Y and (X ′,D′) → S × Y are
isomorphic over S if there exists an isomorphism (X ,D)→ Y ∼= (X ′,D′)→ Y over
S.

Condition (v) is an adaptation of Kollár’s condition to our setting. It means
that, for a family X → S as above and an arbitrary morphism α : T → S, for all
m ∈ Z we have

α∗X(ωX/S ⊗OX (D)⊗ p∗H)
[m]
X/S
∼= (ωX/T ⊗OXT (D)⊗ p∗H)[m].

Here XT = X ×T S is the fibre product, while by OXT (D) we mean the pullback
of the sheaf OX (D) to XT . Remark that when T = s ∈ S with αT the inclusion,
Kollár’s condition ensures the isomorphism (5.2) exists.

Remark 5.9. The last two conditions in the definition of the moduli functor are
automatic over a reduced base, see [54, Definition 28] and the preceding discussion.
Note that the extra term p∗H in the various sheaves in the last two conditions in
the definition of the moduli functor plays no role, since it is a locally free on Y .
However it seems more convenient to include it in order to apply results in the
literature directly.

To prove Theorem 5.6, we follow the usual strategy of proving various properties
of the moduli functor. Namely, we will prove separatedness, properness, local
closedness, boundedness and the finiteness of the automorphism group. Applying
the general theory of [45, 51] will then result in the representability of the moduli
functor as a separated alegraic space of finite type; we then appeal to a result of
Alexeev to obtain projectivity [5, Theorem 4.2].

We begin by proving separatedness of the moduli functor, which means that for
each family over a punctured curve C0, a possible extension to C is unique.

Proposition 5.10. The moduli functor of stable maps is separated.

Proof. The proof is identical to the case Y = {pt}, however as we are not aware
reference for this in the general slc setting we include the proof.

Let (C, 0) be a pointed curve, and let (X ,D) → C × Y and (X ′,D′) → C × Y
be two families of stable maps which are isomorphic away from 0 ∈ C. We wish to
show (X0,D0)→ Y is isomorphic to (X ′0,D′0)→ Y , where by stability KX0

+D0 and
KX ′0 +D′0 are relatively ample. It is enough to show that the isomorphism between
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(X ,D) and (X ′,D′) over the punctured curve C0 extends to an isomorphism over
all of C, as once this has been prove the maps to Y must be equal since they agree
over the preimage of C \ {0} which is open.

As each fibre of the families is slc, inversion of adjunction applies to give that the
pairs (X ,X0 +D) and (X ′,X ′0 +D′) are themselves slc [68, Lemma 2.12] [44]. Thus
it suffices to show that the slc pairs (X ,X0 +D) and (X ′,X ′0 +D′) are isomorphic.

We now reduce to the normal case for pairs. Take the normalisations ν : X̄ →
X and ν′ : X̄ ′ → X ′ with conductors F̄ , F̄ ′. The pairs (X̄ , X̄0 + D̄ + F̄ ) and

(X̄ ′, X̄0
′

+ D̄′ + F̄ ′) are lc pairs which are both canonical models of a common
resolution. Thus they are isomorphic by uniqueness of canonical models for lc pairs
[56, Theorem 3.52]. But (X ,X0 + D) and (X ′,X ′0 + D′) are determined by their
normalisations together with the involutions τ : (F̄ ν ,Diff F̄ ν (D̄))→ (F̄ ν ,Diff F̄ ν (D̄))
and τ ′ : (F̄ ′ν ,Diff F̄ ′ν (D̄′))→ (F̄ ′ν ,Diff F̄ ′ν (D̄′)). Remark that the involutions agree,
as they are morphisms which agree away from 0 ∈ C, which has codimension one
preimage in the conductors. Thus (X ,X0 + D) and (X ′,X ′0 + D′) are isomorphic,
as required. �

Remark 5.11. The reason one cannot prove separatedness directly using the ar-
gument in the irreducible case is that the canonical ring of an slc variety is not
finitely generated in general [53].

To prove properness, we will first need the following, which is proved in an
essentially identical way to the surface case [5, Lemma 2.23].

Lemma 5.12. Let p : (X,D) → (Y,M) be such that X is slc and KX + D is
p-ample. Then KX + D + p∗H is ample, where H is “sufficiently ample” in the
sense of Remark 5.5.

Proof. We show KX +D + 2np∗M is nef, which implies the statement by relative
ampleness of KX + D and the fact that H − 2nM is ample by the definition of
sufficient ampleness given in Remark 5.5.

Suppose not, so that there is a curve C such that (KX + D + 2np∗M).C < 0.
As KX +D is relatively ample and p∗M is semi-ample, C cannot map to a point.
By Fujino’s version [33] of Mori’s theorem on the length of extremal rays [60] for
slc varieties, we know that (KX +D).C ≥ −2n. As C does not map to a point, we
have p∗H.C = H.p∗C ≥ 1, hence (KX +D + 2np∗M).C ≥ 0, as required. �

We now proceed to the proof of properness. Recall this entails proving that for
an arbitrary family of stable maps over a smooth punctured curve C0 ⊂ C, there
exists an extension to some C ′, where C ′ → C is a finite map branched over 0.

Proposition 5.13. The moduli functor of stable maps is proper.

Proof. This is a variant of [40, Theorem 1.5] which is proven in the absolute case
Y = {pt}. We split the proof into two cases: the first when the general fibre is log
canonical (in particular, irreducible), the second is the slc case. Again, the reason
is that the log canonical ring of an slc pair may not be finitely generated [53], so a
different argument is needed using Kollár’s gluing theory.

(i) (the general fibre is log canonical)
We apply the valuative criterion for properness, so let (C, 0) be a smooth pointed

curve and (X 0,D0) → C0 × Y be a family of stable maps. We can complete this
to some family (X ,D)→ C, which may not admit a map to Y extending the given
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one away from 0. By semistable reduction [56, Theorem 7.17], there exists a finite

map C ′ → C, branched over 0 ∈ C, and a resolution X̃ → X ′ν → C ′ with X ′ν the

normalisation of X ′ = X ×C C ′ such that X̃0 + D̃ is a reduced relatively snc divisor,
where D̃ is the pullback. Passing to a resolution of indeterminacy of the induced
rational map X̃ 99K C ′ × Y if necessary, we can assume that X̃ itself admits a
morphism to C ′ × Y . The important point is that the relative log canonical model
of (X̃ 0, D̃0)→ C ′0 × Y is (X 0,D0)→ C ′0 × Y .

Consider the log smooth, hence dlt, pair (X̃, X̃0 +D̃). By the fundamental result
of Hacon-Xu [40, Theorem 1.1] on the existence of log canonical closures, since the

relative log canonical model of (X̃ 0, D̃0) over C ′0 × Y exists, and (X̃, X̃0 + D̃) is

a dlt pair, the relative log canonical model of (X̃, X̃0 + D̃) also exists. Write this
model as (X̄ , X̄0 + D̄) → C ′ × Y . Since (X̄ , X̄0 + D̄) is log canonical, adjunction
implies (X̄0, D̄0) is semi-log canonical. As KX0

+ D̄0 is ample over Y , Lemma 5.12
and Remark 5.5 imply that (X̄0, D̄0) → Y is a stable map. By Remark 5.9, since
we are working over a reduced base, the final two conditions in definition of the
moduli functor are satsified. Thus (X̄ , D̄)→ C ′ × Y is the family we seek.

(ii) (the general case)
Assume we have a family (X 0,D0)→ C0×Y where all fibres over C0 are stable

maps. Let ν : (X̄ 0, D̄0) = ∪j(X̄ 0
j , D̄0

j ) → (X 0,D0) be the normalisation, where X̄ 0
j

are the connected components, and let F̄ 0 = ∪jF̄ 0
j be the conductor. Let τ0 be

the involution of the normalisation of F̄ 0, so that the data (X̄ 0, F̄ 0 + D̄0) together
with the involution τ0 : (F̄ 0,ν ,Diff F̄ 0,ν (D̄0)) → (F̄ 0,ν ,Diff F̄ 0,ν (D̄0)) determines
(X 0,D0)→ C0 × Y .

By (i), after passing to a base change of C, each (X̄ 0
j , F̄

0
j + D̄0

j ) admits a log

canonical closure (X̄j , F̄j + D̄j)→ C ′ × Y extending (X̄ 0
j , F̄

0
j + D̄0

j )→ C ′0 × Y . In

particular, (X̄j,0, F̄j,0 + D̄j,0) is log canonical for each j.
Set X̄ = ∪jX̄ 0

j , and let F̄ be the closure of F̄ 0 in X̄. We need to extend the

involution to the normalisation of F̄ . Since (F̄n,Diff F̄n(D̄n))→ C × Y is a family
of stable varieties, the fibre over 0 ∈ C must be unique. Thus the existence of the
involution over C0 implies the existence of the involution over C, as in [40, Theorem
1.5, Step 2].

Next, following [40, Section 7, Step 3], we apply Kollár’s gluing theory [55,
Section 5]. A direct application of [40, Section 7, Step 3] gives that (X̄, F̄ , D̄, τ) is

the gluing data of some (X̂ , D̂)→ C ′, and what remains to be proved is that (X̂ , D̂)
actually admits a map to C ′ × Y . But the map to Y exists for precisely the same
reason that the map to C ′ exists, which is the universal property of (X̂ , D̂) as defined
by Kollár [55, Definition 9.4]. Indeed, the induced map (F̄ ν ,Diff F̄ ν (D̄)) → Y is

τ -invariant, hence (X̂ , D̂) admits a map to C ′ × Y as required.

Summing up, we obtain a stable map (X̂0, D̂0)→ Y as required. �

Next we show that each stable map has finite automorphism group.

Definition 5.14. We define the automorphism group Aut(p) of a map p : (X,L)→
(Y,H) to be the automorphisms of (X,L), which cover p.

From another point of view, these are isomorphisms of the graph Γp ⊂ X × Y
of p that lift to the polarisation L|Γp = (KX +D + p∗H)|Γp . The following is due
to Alexeev [5, Theorem 3.23 (3)].
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Proposition 5.15. The moduli functor of stable maps has finite automorphism
group.

Proof. Alexeev proves this by noting that Aut(p) equals Aut(X, p∗G) for a general
G ∼Q H. As p∗H is semi-ample, the pair (X,G + D) is slc for general G and one
concludes by ampleness of KX +D + p∗H (by Remark 5.5).

One can alternatively adapt the direct proof of Hacon-Xu [39, Lemma 3.4] in the
absolute case Y = {pt} withX normal. First note that one can assume normality by
taking the normalisation and working with automorphisms preserving the conduc-
tor. Next, it suffices to show Aut(p) contains no copies of C∗ or C+. Taking a copy
of either, the closure of orbit of a point x ∈ X gives a curve C ⊂ X. Under these
hypotheses, Hacon-Xu show that for a general x ∈ X, we have (KX + D).C ≤ 0.
The automorphisms of the map p correspond to curves which map to a point in Y .
As KX+D is relatively ample, this gives a contradiction and so Aut(p) is finite. �

We next prove boundedness of the moduli functor. Each stable map defines a
point in a product of Hilbert schemes of subschemes of PN × Y using the natural
polarisation and taking the divisor into account. To prove boundedness, we need
to prove that N can be chosen independent of the map in question. This follows
directly from Alexeev’s proof in the case of surfaces, which we briefly recall.

Proposition 5.16. [5] The set of stable maps is bounded.

Proof. As explained by Alexeev, this follows from the absolute case Y = {pt} for
pairs, which is due to Hacon-McKernan-Xu [37, Theorem 1.1]. We repeat Alexeev’s
argument for the reader’s convenience.

Since p∗H is semiample, the pair (X,G+D) is slc for a general G ∼Q p
∗H. By

[37, Theorem 1.1], it follows that there is an m � 0 such that each (X,G + D)
with fixed Euler characteristic χ(X,m(KX +D+p∗H)) satisfies m(KX +G+p∗H)
is very ample and is without higher cohomology. Here we are using that as line
bundles, KX +D+ p∗H ∼= KX +D+ p∗G. A map p : X → Y is determined by its
graph

Γp ⊂ P(H0(X,m(KX +D + p∗H)))× Y.
Thus each graph is parameterised by a point in a Hilbert scheme of subschemes of
this product. As the Hilbert polynomial of the graph is equal to the fixed quantity
χ(X,m(KX +D+p∗H)), this embeds each graph in a single a Hilbert scheme. The
same argument applies to the divisors, giving the required boundedness. �

The next step in producing the moduli space is to prove the moduli functor is
locally closed. From the previous Proposition, each stable map is parameterised
by a point in some fixed Hilbert scheme of subschemes of PN × Y . To prove local
closedness of the moduli functor, we must show that points in this Hilbert scheme
parameterising stable maps form a locally closed subscheme.

Proposition 5.17. The moduli functor of stable maps is locally closed.

Proof. Fix a subscheme Z ⊂ Hilb(PN × Y )×Hilb(PN × Y ), where the presence of
two Hilbert schemes is due to the presence of divisors. We wish to show that the
locus inside Z parameterising stable maps is locally closed.

Firstly we may replace Z with the locus in Z parameterising graphs of mor-
phisms to Y , since being a graph of a morphism is an open condition [50, p96].
By the flattening decomposition theorem [61, Lecture 8], we then obtain a locally
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closed decomposition of Z such that each component parameterises flat families.
Next, being reduced and S2 are open conditions, and similarly being Gorenstein in
codimension one is an open condition. From here, we obtain that being slc is also
an open condition by a result of Alexeev [1, Appendix A].

We can therefore consider an arbitrary projective family (X ,D)→ S of graphs of
maps to (Y,H) with each fibre satisfying the above properties. By Kollár’s theory
of hulls and husks, the condition that the family satisfies Kollár’s condition is then
locally closed [52, Corollary 25] (see also [54, Theorem 31]). Indeed, one can apply
[52, Corollary 25] directly by Remark 5.9.

The final point to prove is that the polarisation agreeing with KX +D+ p∗H is
a locally closed condition, which is due to Viehweg [81, Lemma 1.19].

�

We now produce the moduli space as an algebraic space. So far we have produced
a locally closed subscheme for which each point parameterises a stable map. These
points are only unique up to the obvious projective transformations, thus we take
a quotient to remove this ambiguity and form a genuine moduli space.

Proposition 5.18. The moduli functor of stable maps is coarsely represented by
a proper, separated algebraic space of finite type.

Proof. From the properties already established, this follows immediately from the
main results of [45, 51].

By the main results of [45, 51], the quotient of a separated algebraic space H
by a reductive group, such that each point has finite stabiliser, exists as a sepa-
rated algebraic space. We take H to be the locally closed subscheme of the Hilbert
scheme produced in Propostion 5.17, and the reductive group to be the automor-
phisms of the corresponding projective space. Separatedness of this scheme follows
from Proposition 5.10, while Proposition 5.15 implies each point has finite sta-
biliser. That the resulting algebraic space is of finite type and proper follows from
the boundedness and properness proved in Proposition 5.16 and Proposition 5.13
respectively.

�

The last point is to show the moduli space produced above is projective. This
follows from Alexeev’s work, which uses the technique of Kollár [49].

Theorem 5.19. [5, Theorem 4.2] The moduli space of stable maps is projective.

Alexeev’s proof appeals to a semipositivity theorem of Kollár which applies for
surfaces [49, Proposition 4.7], the analogous result for higher dimensional pairs is
due to Fujino [32, Theorem 1.12].

A further consequence of this is that the natural analogue of the CM line bundle,
as defined in equation (4.1) in the absolute case, on the moduli space of stable maps
defined in Section 4 is nef, as it is the leading order term in a Knudson-Mumford
expansion of line bundles which are proved to be ample by Alexeev. We expect that
the CM line bundle is actually ample; in the absolute case, this has been proved by
Patakfalvi-Xu [69].

5.3. Enumerative geometry. Given the existence of the moduli space of canon-
ically polarised stable maps M(Y,H), it is natural to ask whether there is an
analogue of Gromov-Witten invariants in higher dimensions. We first briefly recall
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the definition of Gromov-Witten invariants, for which we refer to [35] for further
details.

Let Mg,m(Y,H) be the (proper) Kontsevich moduli space of stable maps with
domain of genus g and m marked points. Then for 1 ≤ i ≤ m one has maps
evi : Mg,m(Y,H)→ Y defined by evi(X, p1, . . . pm) = pi. Through these maps, one

can pullback cycles from Y to Mg,n(Y,H). The moduli space Mg,m(Y,H) admits

a virtual fundamental class [Mg,m(Y,H)]vir, and one defines the Gromov-Witten
invariants by integrating

GW(α1, . . . , αk) =

∫
[Mg,m(Y,H)]vir

α1 · . . . · αk,

where the αk are cycles on Y pulled back via the evaluation maps. The use of the
virtual fundamental class ensures deformation invariance. Through the natural map
π : Mg,m(Y,H)→Mg,m obtained by stabilising, the Gromov-Witten invariant are

computed on the orbifold Mg,m (where one can intersect cycles).
In [6, Question 7.1], Alexeev suggests an definition of Gromov-Witten invari-

ants in higher dimensions, by intersecting the Di to obtain a zero cycle on Y and
mimicking the above definition when the domain is a curve. Here we suggest an
alternative approach.

Consider the moduli space of stable maps p : (X,D) → (Y,H) where X is
n-dimensional and D =

∑m
i=1Di is a Weil divisor. Then the analogue of the

evaluation map sends p : (X,D)→ (Y,H) to Di, which defines a point in a Hilbert
scheme Hilbi of subschemes of Y . Denote this map by evi :M(Y,H)→ Hilbi. The
moduli spaceM of canonically polarised varieties is, in general, highly singular, so
one cannot intersect cycles on it. However, one can intersect line bundles on an
arbitrary scheme. Thus it is natural to take line bundles L1, . . . Lk on M(Y,H)
and H1, . . . ,Hm on Hilbi, where dimM(Y,H) = k +m, and define

GW(L1, . . . Lk, H1, . . . Hm) =

∫
M(Y,H)

L1 · . . . · Lk · ev∗1 H1 · . . . · ev∗mHm.

One can similarly pullback multiple line bundles using the same evaluation map.
A natural choice of line bundle on M(Y,H) is the CM line bundle. Note that a
Q-Cartier divisor on Hilbi defines a line bundle, so one obtains line bundles on
Hilbi by picking certain families of subschemes of Y . Another interesting way to
produce line bundles on Hilbi is to take any line bundle T on Y , and take Hi to be
the induced CM line bundle TCM on Hilbi defined as in equation (4.1).

While this does define a numerical invariant, their geometric interpretation is not
transparent. The line bundles Hi define divisors on Hilbi, and thus define families
of subschemes of Y . The higher dimensional Gromov-Witten invariants may be
related to the count of varieties X intersecting these families of subschemes.

Ideally, one would replace the above with an integral over a virtual fundamental
class, in the hope of making the above invariants deformation invariant. Unfortu-
nately, this seems out of reach with present techniques, essentially because one no
longer obtains a two term obstruction complex when dimX > 1.

The moduli spacesM(Y,H) are constructed rather non-explicitly, and even when
Y is a point there are very few explicit examples of the moduli space. Thus it seems
somewhat hopeless to compute the above invariants in any cases at present. A
variant of the above construction would be to construct a moduli space of K-stable
Fano maps, i.e. with −KX − D − p∗H ample. In the absolute case, the moduli
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space of K-stable Fanos can often be constructed quite explicitly [67], thus it seems
much more reasonable that one could compute the analogous invariants in the Fano
case.
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