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Abstract. Answering a question asked by Agol and Wise, we show that a
desired stronger form of Wise’s malnormal special quotient theorem does not
hold. The counterexamples are generalizations of triangle groups, built using
the Ramanujan graphs constructed by Lubotzky–Phillips–Sarnak.

1. Introduction

Consider the following notorious question in geometric group theory (see for
example [Gro87, 5.3.B], [Bes, Question 1.15]).

Question 1.1. Is every hyperbolic group residually finite?

“Dehn filling” is a powerful technique for constructing hyperbolic groups. A
group pair (G,P) is a group G together with a finite collection P of subgroups of
G. The subgroups P are referred to as peripheral groups of the pair. A Dehn filling
of a group pair is a quotient

G(N1, . . . ,Nn) ∶= G/⟪∪iNi⟫
where, for each i, the subgroup Ni is normal in Pi. If each Ni is finite index in Pi,
the filling is said to be peripherally finite or PF. We say that a property Π holds for
all sufficiently long Dehn fillings of (G,P) if there is a finite subset B ⊆ G∖1 so that,
whenever Ni ∩B = ∅ for all i, the corresponding Dehn filling G(N1, . . . ,Nn) has Π.
If all sufficiently long Dehn fillings either satisfy Π or are not PF, we say Π holds
for all sufficiently long PF Dehn fillings. The archetypal Dehn filling theorem is a
far-reaching generalization of Thurston’s famous Hyperbolic Dehn Filling theorem
to the group-theoretic context. In the context of PF fillings of hyperbolic groups,
it has the following consequence (see Definition 2.6 for the definition of almost
malnormal).

Theorem 1.2 ( [Osi07] (cf. [GM08])). Let G be hyperbolic, and let P = {P1, . . . , Pn}
be an almost malnormal collection of quasiconvex subgroups. All sufficiently long
PF Dehn fillings

G(N1, . . . ,Nn) ∶= G/⟪∪iNi⟫
are infinite and hyperbolic.

Even if one starts with a residually finite hyperbolic group (even a free group) G,
there is no reason to believe that the resulting Dehn fillings G(N1, . . . ,Nn) should
be residually finite. (Compare [Kap05, Theorem 8.1], in which it is shown that an
infinite hyperbolic proper quotient G of a linear group Γ need not be linear; this
applies, for instance, if G is a Dehn filling of Γ.) Theorem 1.2 therefore seems like
a promising candidate for constructing non-residually-finite hyperbolic groups.
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These considerations made the work of Wise and his coauthors on virtually spe-
cial groups all the more surprising. A nonpositively curved cube complex X is
special if there is a locally isometric immersion to the Salvetti complex associated
to some right-angled Artin group. A group is special if it is the fundamental group
of a compact special cube complex. A group is virtually special if it has a spe-
cial subgroup of finite index. Virtually special groups have numerous attractive
properties. For example, they are virtually subgroups of right-angled Artin groups,
which are linear. It follows that virtually special groups are linear, and therefore
residually finite. In addition, an infinite virtually special group has a subgroup of
finite index with infinite abelianization.

One of the most important theorems about virtually special groups is Wise’s
Malnormal Special Quotient Theorem, which can be thought of as a Dehn filling
result. In order to state it, we need one additional piece of terminology about Dehn
fillings of a group pair (G,P).

We say that a property Π holds for a positive fraction of all Dehn fillings if, for
each i, there is a subgroup Ṗi < Pi of finite index so that, whenever Ni < Ṗi for
all i, the corresponding Dehn filling G(N1, . . . ,Nn) has Π. The Malnormal Special
Quotient theorem can now be stated as follows [Wis] (cf. [AGM16]).

Theorem 1.3 (Wise’s Malnormal Special Quotient Theorem). Let G be hyperbolic
and virtually special, and let P = {P1, . . . , Pn} be an almost malnormal collection
of quasiconvex subgroups. A positive fraction of all Dehn fillings

G(N1, . . . ,Nn) ∶= G/⟪∪iNi⟫
are hyperbolic and virtually special.

Thus, remarkably, in the context of virtually special groups, Dehn fillings can
be performed that preserve residual finiteness. This was one of the most important
ingredients in Agol’s celebrated proof of the Virtual Haken conjecture [Ago13].

Nevertheless, the Malnormal Special Quotient Theorem does not completely rule
out the possibility of constructing a non-residually finite hyperbolic group using
Dehn filling, since it only applies to a positive fraction of all possible Dehn fillings.
As a result of Theorem 1.2, all sufficiently long PF Dehn fillings of a virtually
special group are infinite and hyperbolic, but only a positive fraction of them are
guaranteed to be virtually special (and hence residually finite). One is therefore
led to wonder whether the Malnormal Special Quotient Theorem can be given such
a form. This led Ian Agol [Ago14, Problem 14] and Daniel Wise [Wis14, Problem
13.16] to ask the following question in their 2014 ICM talks.

Question 1.4. Let G be hyperbolic and virtually special, and let P = {P1, . . . , Pn}
be an almost malnormal collection of quasiconvex subgroups. Are all sufficiently
long PF Dehn fillings

G(N1, . . . ,Nn) ∶= G/⟪∪iNi⟫
virtually special?

The purpose of the current note is to show that this question has a negative
answer in some simple situations, meaning that the Malnormal Special Quotient
Theorem is in some sense as strong as it can be.

Our examples will be k–fold triangle groups (discussed at length in Sections 2
and 3). We briefly give the definition now. Let k ≥ 2, and let G be a free product
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of three copies of Z/k.1 The collection P = {P12, P13, P23} consists of three two-
fold free products of copies of Z/k obtained each by omitting one of the copies.
Fix a surjection G → Z/k taking each free factor isomorphically to the target, and
let G0 be the kernel. The collection P0 = {P12,0, P13,0, P23,0} is the collection of
intersections of elements of P with G0. Each Pij,0 can be identified with a free
group Fk−1 on k − 1 generators and with a subgroup of index k in Z/k ∗Z/k.

In Section 2, we define, for normal subgroups of finite index in Pij,0 notions
of rotundness (large girth for some associated graph), and expansiveness (good
expansion for the associated graph). See Definition 2.10 for the precise definitions.
For the group G0 just described, we prove:

Theorem 1.5. If, for each i ∈ {1,2,3}, the subgroup Nij,0 ⊲̇ Pij,0 ≅ Fk−1 is rotund
and expansive, then G0(N12,0,N13,0,N23,0) is hyperbolic and has property (T).

In fact (see Theorem 2.11) rotundness alone suffices for hyperbolicity; that some
lower bound on girth suffices can also be seen from Theorem 1.2.

In Section 4, we use the Ramanujan graphs constructed in [LPS88] to show the
following proposition (note that the group Pij,0 is free of rank k − 1).

Proposition 1.6. There exists k ≥ 18 and, for each 1 ≤ i < j ≤ 3, a sequence
{Kij,n}n∈N of normal, rotund, expansive subgroups of Pij,0 so that ⋂n∈NKij,n = {1}.

Note that each group Pij,0 in the statement of the Proposition is free of rank
k − 1, and that the resulting graphs are k–valent. The possible k include p + 1 for
any prime p ≥ 17 so that p ≡ 1 (mod 4).

Corollary 1.7. The answer to Question 1.4 is ‘no’.

Proof. Fix a k as in Proposition 1.6. The pair (G0,P0) we have just described
satisfies:

(1) G0 is free, hence hyperbolic.
(2) The elements of P0 are quasiconvex.
(3) P0 is a malnormal collection.

Suppose the answer were ‘yes’. Then for some j, the quotientG0(K12,j ,K13,j ,K23,j)
is an infinite virtually special group; in particular it has a finite index subgroup with
infinite abelianization [AM15]. This contradicts property (T). �

It is interesting to point out that the solution to this group theoretic problem
relies essentially on number theory, via the construction in [LPS88].

Question 1.8. Are the examples from Corollary 1.7 virtually torsion-free? Resid-
ually finite? Linear?

1.1. Conventions. We use the notation A <̇ B to indicate that A is finite index
in B, and A ⊲̇ B to indicate that A is a finite index normal subgroup of B. If G is
a group and S ⊂ G, we use the notation ⟪S⟫ to denote the normal closure of S in
G.

1By Z/k we mean the cyclic group of order k.
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2. k–fold triangle groups

In this section, we describe a generalization of the classical triangle groups which
we will use to prove the main result of the paper (Corollary 1.7). To motivate, let
us recall first the classical (hyperbolic) triangle groups.

Let l ≥m ≥ r ≥ 2 be integers, so that 1
l
+ 1
m
+ 1
r
< 1. Then there exists an essentially

unique hyperbolic triangle with angles π
l
, π
m
, and π

r
. The group generated by

reflections in the sides of this triangle is a cocompact lattice in SO(2,1), with
group presentation given by the Poincaré polyhedron theorem:

(1) ∆(l,m, r) = ⟨x1, x2, x3 ∣ x2
1 = x2

2 = x2
3 = (x1x2)l = (x2x3)m = (x1x3)r = 1⟩

The group of orientation-preserving elements in ∆(l,m, r) has index 2, and the
following presentation:

(2) ∆0(l,m, r) = ⟨a1, a2, a3 ∣ al1 = am2 = am3 = a1a2a3 = 1⟩

Both ∆(l,m, r) and ∆0(l,m, r) are often called triangle groups. Sometimes ∆0 is
called an ordinary triangle group or a von Dyck group.

Let us propose a generalization of the triangle groups, generated by elements of
order k instead of involutions. We first fix parent groups G and G0, which generalize
the orbifold fundamental groups of a mirrored ideal triangle and a pair of pants,
respectively. We also specify some peripheral subgroups.

Definition 2.1 (The parent groups). Fix k ≥ 2. Let G be the free product of three
copies of Z/k,

G = ⟨x1, x2, x3 ∣ xk1 = xk2 = xk3⟩.
For i < j, let Pij = ⟨xi, xj⟩ < G. Let G0 be the kernel of the map G → Z/k taking
xi to 1̄ for each i. For i < j let Pij,0 = Pij ∩G0. Then G0 is free of rank 2k − 2, and
each Pij,0 is a free factor of rank k − 1.

Definition 2.2 (Ordinary triangle groups). Let L ⊲̇ P12,0,M ⊲̇ P13,0, and R ⊲̇ P23,0.
Let K0 be the normal closure of L∪M ∪R in G0, and define the (ordinary) k–fold
triangle group:

G0(L,M,R) = G0/K0.

We will often omit the word ‘ordinary’. Notice that the 2–fold triangle groups
are the classical triangle groups, where we take L = ⟨(x1x2)l⟩, M = ⟨(x1x3)m⟩, and
R = ⟨(x2x3)r⟩.

Likewise, for L, M , R normal subgroups in the Pij < G, we can define analogues
of the triangle groups ∆(l,m, r).
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Definition 2.3 (Extended triangle groups). Suppose that L ⊲̇ P12, M ⊲̇ P13, and
R ⊲̇ P23. Let K be the normal closure of L ∪M ∪ R in G. Then we define the
extended k–fold triangle group:

G(L,M,R) = G/K.

We next note that, if the subgroup L, M , R are normal subgroups of both the
Pij and the Pij,0, then the ordinary triangle groups and extended triangle groups
are related as one expects.

Lemma 2.4. Suppose that L ⊲̇ P12 and L < P12,0, that M ⊲̇ P13 and M < P13,0,
and that R ⊲̇ P23 and R < P23,0. Then the normal closure of L ∪M ∪R in G0 is
equal to K.

Proof. Clearly K0 = ⟪L ∪M ∪ R⟫G0 < K = ⟪L ∪M ∪ R⟫G. But we can write
K0 =KL,0KM,0KR,0, and K =KLKMKR where KL,0 = ⟪L⟫G0 , KL = ⟪L⟫G, and so
on. Thus it suffices to show, for example, that KL,0 =KL, that the normal closures
of L in G and G0 coincide. Since ⟨x1⟩ maps onto G/G0, it is enough to show that
x−1

1 KL,0x1 =KL,0. Consider a generator z = x−1yx ofKL,0, where y ∈ L, and x ∈ G0.
Then x−1

1 xx1 ∈ G0, since G0 ⊲ G, and x−1
1 yx1 ∈ L, since L ⊲ P12 = ⟨x1, x2⟩ < G. Thus

x−1
1 zx1 ∈KL,0. Since z was arbitrary, we have shown that KL,0 is normal in G, and

so equal to KL, as desired. �

Corollary 2.5. If the ordinary and extended triangle groups are both defined, then
G0(L,M,R) is a subgroup of index k in G(L,M,R).

2.1. Malnormality.

Definition 2.6. Let H be a group, and Q a collection of subgroups of H. Then
Q is malnormal if whenever h ∈ H, Q,Q′ ∈ Q, and Q ∩ hQ′g−1 is nontrivial, then
Q = Q′ and h ∈ Q.

The collection is almost malnormal if whenever h ∈H, Q,Q′ ∈ Q, and Q∩hQ′h−1

is infinite, then Q = Q′ and h ∈ Q.

We make the following observation, whose (easy) proof is left to the reader.

Lemma 2.7. With the notation of Definition 2.1, the collection P = {P12, P13, P23}
is almost malnormal in G, and P0 = {P12,0, P13,0, P23,0} is malnormal in G0.

Both G and G0 are virtually free, and thus virtually special locally quasiconvex.
In particular, the pairs (G,P) and (G0,P0) both satisfy the hypotheses of Theorem
1.3 and Question 1.4.

2.2. Geometric conditions on graphs and triangle groups.

Definition 2.8. Let Γ be a graph. The girth of Γ is the length of the shortest
circuit in Γ.

Definition 2.9. If Γ is a connected k–regular graph, we define the Laplacian in
terms of the adjacency matrix A:

δ = I − 1

k
A.

With this normalization, the spectrum of δ always contains 0 and lies in the interval
[0,2]. We define λ1(Γ) to be the smallest positive eigenvalue of δ.
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For each pair i < j, the group Pij acts on the regular k–valent tree Tk with
quotient equal to a single edge. For definiteness we fix a planar embedding of this
tree, and an oriented edge e0. Let xi act on this tree by rotating around i(e0) and
let xj act by rotating around t(e0). In this way we make Tk into a Bass-Serre tree
for the Pij , considered as a free product. Any finite index subgroup N of Pij acts
on Tk with a finite quotient graph N/Tk .
Definition 2.10. Let N ⊲̇ Pij,0 < Pij ≅ (Z/k) ∗ (Z/k). We say that N is rotund
if girth(N/Tk ) > 6. We say that N is expansive if λ1(N/Tk ) > 1

2
.

These characterizations of subgroups as rotund or expansive depend on the par-
ticular action of Pij,0 on Tk given. Here is a more precise version of Theorem
1.5.

Theorem 2.11. Let G0, Pij,0, L,M,R be as in Definition 2.2.
(1) If L,M,R are rotund, then G0(L,M,R) is hyperbolic.
(2) If L,M,R are rotund and expansive, then G0(L,M,R) has property (T).

Theorem 2.11 will be proved in Section 3. In Section 4 we will produce many
examples of rotund expansive L,M,R, proving Proposition 1.6.

3. Triangular complexes of groups

In this section, we give the geometric framework necessary to understand why
the groups discussed in the last section answer Question 1.4. In particular, we will
prove Theorem 2.11.

The virtually free group G can usefully be thought of as a complex of groups
in two ways, both shown in Figure 1. On the left, we see G as the fundamental

Z/k Z/k

Z/k
Z/k

Z/kZ/k

P12

P13 P23

Figure 1. G as a graph of finite cyclic groups, and as a triangle of groups.

group of a graph (a tripod) of finite groups G. On the right, we see G as a triangle
of groups D, with cyclic edge groups, and vertex groups equal to the peripheral
groups. Both complexes of groups are developable in the sense of [BH99, III.C].
This means in the second case that there is an action of G on a simply connected
complex (the development) with quotient D, and the complex-of-groups data can
be recovered from the action. Likewise G is the quotient of a Bass–Serre tree T
by the natural action of G. Here is a way to recover the development in this case:
Each Pij ∈ P has a minimal invariant subtree TPij in G̃. The development D̃ of D, is
homeomorphic to a complex which is obtained from T by coning off each translate
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of any TPij . The link of a vertex in D̃ can be identified with the Bass-Serre tree of
Z/k ∗Z/k (see Lemma 4.2 below).

Likewise, the free group G0 is the fundamental group of a graph G0 and a complex
of groups D0, both shown in Figure 2. Here the vertex groups of D0 are the elements
of P0. The development of the complex of groups is also D̃. The link of a vertex of
D0 is a graph with two vertices joined by k edges.

P12,0

P13,0 P23,0

Figure 2. G0 is the fundamental group of the graph on the left,
and also the fundamental group of the complex of groups with
underlying complex Y on the right. The case k = 3 is shown.

Now fix a k–fold triangle group G0(L,M,R) as in Definition 2.2. We obtain
a complex of groups structure D0(L,M,R) for G0(L,M,R) in terms of the one
for G0, by replacing the vertex groups (elements of P0) with their finite quotients
P12,0/L, P13,0/M , and P23,0/R.

Bridson and Haefliger give a criterion which implies that a given complex of
groups is developable.

Theorem 3.1. [BH99, Theorem III.C.4.17] If a complex of groups is non-positively
curved it is developable. Moreover, if the local developments are CAT(−1) then the
development is CAT(−1).

To say that a complex of groups is non-positively curved is precisely to say that
the local developments are non-positively curved. This condition depends on how
we metrize the cells of the complex. In our case, we can metrize the triangles as
hyperbolic triangles with some constant angle θ. The local development at a vertex
marked by a group Pij,0/N where N ⊲ Pij,0 ⊲ Z/k ∗ Z/k is the hyperbolic cone on
the graph N/Tk , where this graph has been metrized so each edge has length θ. If
θ ⋅ girth(N/Tk ) ≥ 2π, this local development is locally CAT(−1). In particular it
will satisfy the nonpositive curvature hypothesis in Theorem 3.1.

Proposition 3.2. Suppose that L, M , and R are rotund.
(1) D0(L,M,R) is developable, and the development is contractible;
(2) G0(L,M,R) is hyperbolic; and
(3) The link of any vertex of the development of D0(L,M,R) is isomorphic to

N/Tk where N ∈ {L,M,R}.

Proof. The local development of D0(L,M,R) at a vertex is as described in item
(3). Thus if D0(L,M,R) is in fact developable, item (3) will follow.
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Let n ≥ 7 be the minimum girth of the graphs N/Tk where N ∈ {L,M,R}.
Metrizing the triangles of D0(L,M,R) by equilateral hyperbolic triangles with an-
gle 2π/n, we can verify the conditions of Theorem 3.1 as discussed above, and
see that D0(L,M,R) is developable, establishing the first part of item (1). The
development X is moreover locally (and hence globally) CAT(−1) and thus con-
tractible. Moreover the group G0(L,M,R) acts properly cocompactly on X. Thus
G0(L,M,R) is hyperbolic, establishing item (2). �

To deduce property (T) when the normal subgroups are expansive, we need the
following criterion.

Theorem 3.3. [BŚ97, Corollary 1] Let Γ ↷ Z properly and cocompactly, where Z
is a contractible simplicial 2–complex so that for every vertex v of Z, the link Zv of
v is connected and satisfies λ1(Zv) > 1

2
. Then Γ has Property (T).

Proposition 3.4. If L, M , and R are rotund and expansive, then G0(L,M,R)
has property (T).

Proof. Since L, M , and R are rotund, the group G0(L,M,R) acts properly and
cocompactly on the development D0(L,M,R), which is a contractible complex with
each link isomorphic to N/Tk for N ∈ {L,M,R}. Since L,M,R are expansive, we
have λ1(link(v)) > 1

2
for each vertex v. We can thus apply Theorem 3.3 to conclude

that G0(L,M,R) has property (T). �

Propositions 3.2 and 3.4 together imply Theorem 2.11.

4. Finding good expanders

In this section we prove Proposition 1.6, about the existence of the expanders
we need. The proposition is phrased in terms of a subgroup N , normal and finite
index in P0 ⊲ P ≅ Z/k ∗ Z/k, where P0 is defined to be the kernel of the map
Z/k ∗ Z/k → Z/k taking each generator to 1̄ ∈ Z/k. In applying the results of this
section we identify P0 with one of the Pij,0 described before. For Tk equal to the
Bass-Serre tree associated to the free splitting of P , we are interested in the girth
and first eigenvalue of the graphs N/Tk . We proceed by identifying P0 with a
certain arithmetic subgroup of PGL2(Qp). (We should emphasize that none of the
results of the next two subsections are really new, but we want to include enough
of the ideas from [LPS88, Lub94] so that the reader gets the flavor of what is going
on.)

4.1. The setup. If T is a tree, we let Aut+(T ) < Aut(T ) be the subgroup of index
at most two consisting of those φ which move a point (hence every point) an even
distance. Note that Aut+(T ) acts on T without inversions, and Γ/T is bipartite
for any Γ < Aut+(T ). The first lemma is an easy corollary of the fact that T is
contractible.

Lemma 4.1. Let T be a locally finite tree and D,∆ two discrete torsion-free sub-
groups of Aut+(T ) so that the graphs D/T and ∆/T are isomorphic. Then D and
∆ are conjugate in Aut(T ).

The second lemma is also standard.



GENERALIZED TRIANGLE GROUPS, EXPANDERS,AND A PROBLEM OF AGOL AND WISE9

Lemma 4.2. Let k ∈ Z+, and let P = Z/k∗Z/k, and let T be the Bass-Serre tree for
the free splitting of P . (In other words vertices are in one-to-one correspondence
with left cosets of the free factors, and if A1 is the first and A2 the second free
factor, each gA1 is connected to gA2 by an edge.) Let P0 be the kernel of the map
P → Z/k which is the identity on each free factor.

(1) T is a k–regular tree.
(2) P0

/T consists of 2 vertices connected by k edges.

Let p be a prime and Tp+1 be the regular (p + 1)–valent tree, and let Qp be the
field of p–adic numbers. Then PGL2(Qp) acts on the Bruhat–Tits tree Tp+1, as
explained in [Ser80].

Our goal now is to find an arithmetic subgroup ∆ of PSL2(Qp) < PGL2(Qp) <
Aut(Tp+1), so that the quotient ∆/Tp+1 ≅ P0

/T , the graph from Lemma 4.2, with
k = p + 1. Lemma 4.1 implies that ∆ is conjugate to P0 in Aut(Tp+1).

We will take suitable congruence subgroups ∆(i) of ∆; the isomorphism tak-
ing ∆ to P0 will take these congruence subgroups to the groups L,M,R specified
in Theorem 2.11. The fact that the graphs ∆(i)/T are Ramanujan will come
from [Lub94, Section 7.3, Theorem 7.3.12], using the solution of Deligne to the
Ramanujan–Peterson conjecture. We will see that in fact, one can choose the sub-
groups ∆(i) to be nested with ⋂i∆(i) = {1}, so that the girth of ∆(i)/T goes to
infinity.

4.2. Constructing ∆. Fix p prime, with p ≡ 1 (mod 4) and p ≥ 17.
Recall the classical four square theorem of Jacobi [HW79, Theorem 386]:

Theorem 4.3. (Jacobi) Let n ∈ Z+, and define

r4(n) = #{(x0, x1, x2, x3) ∈ Z4 ∣∑x2
j = n} .

Then
r4(n) = 8 ∑

d∣n,4∤d
d.

In particular since p is prime, r4(p) = 8(p + 1). We are assuming p ≡ 1 (mod 4),
so for any four integers whose squares sum to p, exactly three are even. Thus if we
take

(3) S = {(x0, x1, x2, x3) ∈ Z4 ∣ x0 > 0 odd, ∑x2
j = p} ,

then #S = p + 1.
Next we claim (again using p ≡ 1 (mod 4)) that there exists ε ∈ Zp ⊆ Qp so that

ε2 = −1. Indeed it is well-known that such an ε exists in Z/p, and by the Hensel
Lemma it can be lifted to Zp. For every α ∈ S, associate the matrix

(4) α̃ = ( x0 + εx1 x2 + εx3

−x2 + εx3 x0 − εx1
) ∈M2(Qp).

Note that det(α̃) = p; we abuse notation by also thinking of α̃ as an element of
PGL2(Qp). Let Γ be the subgroup generated by S̃ = {α̃ ∣ α ∈ S}.

Lemma 4.4. Γ is a discrete cocompact subgroup of PGL2(Qp).

This is actually a special case of Theorem 7.3.12 of [Lub94]. Let us explain this
special case in some detail.
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Let H be the Hamiltonian quaternion algebra; for a commutative ring R, we
have

H(R) = {a0 + a1i + a2j + a3k ∣ ai ∈ R},

the associative R–algebra generated by symbols i, j, k, satisfying the relations
i2 = j2 = k2 = −1 and ij = k = −ji. Let H∗(R) be the group of invertible elements
in H(R).

Since Z[ 1
p
] is discrete in R × Qp, there are discrete embeddings H(Z[ 1

p
]) ↪

H(R) ×H(Qp), and H∗(Z[ 1
p
])/center ↪ (H∗(R)/center) × (H∗(Qp)/center). Now

H∗(R)/center = RP3 is compact, while H(Qp) ≅ M2(Qp) (i.e., H splits over Qp,
hence H∗(Qp)/center ≅ PGL2(Qp); the map

a0 + a1i + a2j + a3k ↦ ( a0 + εa1 a2 + εa3

−a2 + εa3 a0 − εa1
)

gives the explicit isomorphism). Since H∗(R)/center is compact, the projection of
Γ0 = H∗(Z[ 1

p
])/center to H∗(Qp)/center = PGL2(Qp) gives a discrete subgroup!

(This despite the fact that Z[ 1
p
] projected to Qp is dense.)

Now, our Γ is inside the projection, since every α ∈ S is invertible as an element
of H(Z[ 1

p
]); indeed ∥α∥ = α ⋅ ᾱ = p is invertible in Z[ 1

p
], and α−1 = ᾱ

∥α∥ . (In general
α ∈H(R) is invertible if and only if ∥α∥ is invertible in the ring R.) One can easily
see from (3) and (4) that Γ ⊆ Γ0(2), the mod 2 congruence subgroup of Γ0. This
all explains why Γ is discrete. But it is also cocompact; in fact Γ = Γ0(2), and
every α̃ ∈ S̃ takes the root of the tree (which is the equivalence class of the lattice
Z2
p ⊆ Q2

p; see [Ser80] for this model of the Bruhat-Tits tree) to a sublattice of index
p (since det(α) = p) and there are exactly p + 1 such sublattices – representing the
p+1 neighbors of the root vertex. From this one deduces that Γ acts transitively on
the vertices of the tree Tp+1. In fact Γ acts simply transitively, and is therefore a
free group on p+1

2
generators. (Note ˜̄α = α̃−1 where ᾱ is the quaternionic conjugate,

and so the image of S is a symmetric subset of PGL2(Qp).) Thus Tp+1 can be
identified with the Cayley graph Cay(Γ, S̃). In particular Γ/Tp+1 is a bouquet of
k/2 circles, and hence compact.

Now let ∆ = Γ∩Aut+(Tp+1); this is an index-2 subgroup of Γ which preserves the
2–coloring of the tree. Because Γ = Γ0(2) is free of rank p+1

2
, the rank of ∆ is, by

the Nielsen–Schreier Theorem, 2(p+1
2
− 1)+ 1 = p = k − 1, and there are two orbits of

vertices. In particular, there is an isomorphism Ψ from ∆ to P0 = ker(Z/k ∗Z/k →
Z/k) and an equivariant isomorphism from the tree Tp+1 to the Bass–Serre tree
of Z/k ∗ Z/k. In particular, we can find rotund or expansive subgroups of P0 by
specifying them in ∆, which we now do.

Let q ≠ p be a prime or prime power, so that (
p
−
q
) = −1, i.e., p is not a quadratic

residue mod q. As explained in [Lub94, 7.3.12], in this case Γ0(2q) (the mod 2q
congruence subgroup) preserves the coloring of the tree, so it lies inside ∆.

Moreover, by [Lub94, 7.3.12], the quotients Γ0(2q)/T have the following prop-
erties:

(1) They are k–regular Ramanujan graphs, i.e., λ1(Γ0(2q)/T ) ≥ 1 − 2
√
k−1
k

.
(2) The girth of Γ0(2q)/T is at least 4

3
logp(q).
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So for fixed p and q → ∞ we are finished. (Take for example p = 17, q = 3l and
l →∞ for a nested family.)

Remark 4.5. The graphs Γ0(2q)/T , for q a prime congruent to 1 mod 4, are
really the same as the Ramanujan graphs presented in Lubotzky–Phillips–Sarnak
[LPS88]. But one can make use of many other examples, e.g., for k = pe + 1, those
constructed by Morgenstern [Mor94].

4.3. Other constructions. Another source of examples is provided by a result
communicated to us by Varjù [Var]. Let p be a prime, and k an odd divisor of p−1
or p + 1. Let K be the kernel of a random homomorphism from Pij ≅ Z/k ∗Z/k to
L = SL2(p), and let Γ = K/Tk .

Theorem 4.6 (Varjù). There is an absolute constant c > 0 such that the following
holds. For any odd integer k and for any ε > 0, we have

(1) girth Γ ≥ (1/3 − ε) log ∣Γ∣
log(k−1) , and

(2) λ1(Γ) > 1 − k−c

with probability 1 − ε, provided p is a sufficiently large prime depending on k and ε
and k∣p − 1 or k∣p + 1.

By fixing ε < 1
3
, taking k large enough that 1 − k−c > 1

2
, and letting p tend to

infinity, we obtain examples which are extended k–fold triangle groups. Applying
Theorem 2.11, these give many more examples to show the answer to Question 1.4
is ‘no’.

Remark 4.7. Another construction of negatively curved triangle complexes with
prescribed links is provided by [BŚ97, Theorem 2]. It is possible that these can also
be thought of as Dehn fillings of virtually free groups, in which case these would
provide another route to answering Question 1.4.
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