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Abstract: The goal of the present paper is to explain, based on properties of the confor-
mal loop ensembles CLEκ (both with simple and non-simple loops, i.e., for the whole
range κ ∈ (8/3, 8)), how to derive the connection probabilities in domains with four
marked boundary points for a conditioned version of CLEκ which can be interpreted as a
CLEκ with wired/free/wired/free boundary conditions on four boundary arcs (the wired
parts being viewed as portions of to-be-completed loops). In particular, in the case of a
square, we prove that the probability that the two wired sides of the square hook up so
that they create one single loop is equal to 1/(1 − 2 cos(4π/κ)). Comparing this with
the corresponding connection probabilities for discrete O(N ) models. For instance, indi-
cates that if a dilute O(N ) model (respectively a critical FK(q)-percolation model on the
square lattice) has a non-trivial conformally invariant scaling limit, then necessarily this
scaling limit is CLEκ where κ is the value in (8/3, 4] such that −2 cos(4π/κ) is equal
to N (resp. the value in [4, 8) such that −2 cos(4π/κ) is equal to

√
q). On the one hand,

Our arguments and computations build on Dubédat’s SLE commutation relations (as
developed and used by Dubédat, Zhan or Bauer-Bernard-Kytölä) and on the other hand,
on the construction and properties of the conformal loop ensembles and their relation
to Brownian loop-soups, restriction measures, and the Gaussian free field (as recently
derived in works with Sheffield and with Qian).
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1. Introduction

1.1. A motivation from discrete models. The fact that if critical bond percolation on the
square lattice possesses a conformally invariant scaling limit (recall that establishing
this is still an open question), then the only possible candidate for the scaling limit of the
interfaces is the Schramm–Loewner evolution (SLEκ ) with parameter κ = 6 was first
pointed out by Oded Schramm [44,45] in 1999 using the following simple argument:
First, the (by now classical) argument based on the conformal Markov property shows
that this scaling limit would have to be an SLEκ path for some κ > 0. It then remains to
pin down the actual value of κ: To do so, consider an SLEκ in a square from the bottom
left corner to the top left corner, and note that one can compute the probability that it
hits the right-hand side of the square along the way. It turns out that κ = 6 is the only
value for which this probability is equal to 1/2. On the other hand, for discrete critical
bond percolation on a (quasi)-square [0, n+1]×[0, n] portion of the square grid, duality
shows that the probability that there exists a left-to-right open crossing (which means
that the discrete percolation interface analog of the previous SLEκ hits the right-hand
side of the square) is equal to 1/2 for all N ≥ 1, and one can therefore deduce that
this hitting probability should still be 1/2 in the scaling limit. One can then conclude
that SLE6 is the only possible candidate for a conformally invariant scaling limit of the
percolation interface.

Note that SLE6 also possesses other properties (for instance the locality property
derived in [27]) that also imply that it is the only possible conformally invariant scaling
limit for critical percolation interfaces without referring to any discrete crossing prob-
ability, but the above argument is already short, direct and convincing. Recall that it is
known by thework of Smirnov [52] that critical site percolation on the triangular lattice is
indeed conformally invariant in the scaling limit, and that discrete percolation interfaces
do converge to SLE6 (see for instance [58] for a survey of the actual non-trivial proof of
the convergence of the interfaces once one controls crossing probabilities). Recall also
that describing the scaling limit of critical percolation on other planar lattices is still an
open problem.

Two of the most natural and classical classes of discrete models that are supposed to
give rise to SLE curves in the scaling limit are the O(N ) models (both the dense and the
dilute versions) and the critical bond FK(q)-percolation models (we will briefly recall
the definition of these models in “Appendix A”). On the square lattice, exactly three of
these models have been proved to indeed converge to an SLE-based scaling limit: The
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Ising model (which is the O(1) model, where the interfaces converge to SLE3 paths),
the FK-percolation models for q = 2 (this is the FK model related to the Ising model,
where the interfaces converge to SLE16/3 paths)—see [7,21] and the references therein,
or [54] for a survey, and the FK(q)-percolation model in the limit q = 0+ (this is the
uniform spanning tree model, and its boundary Peano curve is shown to converge to
SLE8)—see [29]. See also [52] (and [5,58]) for site percolation on the triangular lattice
that can be viewed as an O(0) model on the hexagonal grid that gives rise to SLE6
paths.

It has been conjectured (see for instance [16,20,43]), based on the identification be-
tween exponents, probabilities or dimensions that one can rigorously compute for SLE
processes on the one hand and the corresponding quantities that had been previously pre-
dicted using methods from theoretical physics (conformal field theory, quantum gravity
or Coulomb gas methods, see for instance [6,40]) for the asymptotic behavior of the dis-
crete models on the other hand, that the O(N ) models have a non-trivial and conformally
invariant scaling limit for all N ∈ (0, 2] and that this scaling limit should be related to
SLEκ curves for N = −2 cos(4π/κ), where κ ∈ (8/3, 4] if one considers the dilute
O(N ) model and where κ ∈ (4, 8) if one considers the dense O(N ) model. Similarly, the
scaling limit of the critical FK(q)-percolation model interfaces should be non-trivial for
q ∈ (0, 4] and described by SLEκ curves, for

√
q = −2 cos(4π/κ), where κ ∈ [4, 8)

(mind of course that cos(4π/κ) is negative for all κ ∈ (8/3, 8)).

1.2. Content of the present paper. Recall that a CLEκ (conformal loop ensemble) for
κ ∈ (8/3, 8) is a particular random collection of loops in a simply connected planar
domain such that the loops in a CLEκ are SLEκ type loops. While the SLEκ curves
can be argued (via the conformal Markov property) to be the only possible conformally
invariant scaling limit of single interfaces for a wide family of discrete interfaces for
lattice models with well-chosen boundary conditions (that involve choosing two special
points on the boundary of the domain, and choosing one boundary arc to be “wired”
while the other one is “free”), theCLEκ can be argued to be the only possible conformally
invariant scaling limit for the joint law of all of the macroscopic interfaces for the same
models with “uniform” free boundary conditions. For the aforementioned lattice models
(FK(q)-percolation and O(N )), this convergence to CLE has now been proved for the
very same cases as for individual interfaces, see [4,5,23,29].

The results of the present paper on CLEκ connection probabilities provide a gener-
alization of Schramm’s original argument for percolation that we outlined above to all
of these models. More specifically, for all κ ∈ (8/3, 8), we will first explain how to
define the law of a CLEκ in a conformal rectangle, with “wired” boundary conditions
on two opposite sides of the rectangle. The idea is to start with the usual CLEκ and to
partially discover it starting from two boundary points; in other words, our CLEκ with
free/wired/free/wired boundary conditionswill be defined as a conditioned version of the
usual CLEκ . The wired portions of the boundary should be thought of as the discovered
parts of partially discovered loops of an usual CLEκ (see Fig. 1).

Then, for these CLEκ with two wired boundary arcs, it turns out that the probability
that the two wired pieces are part of the same loop (see Fig. 2) is a conformally invariant
(κ-dependent) function of the domain with its two boundary arcs. It therefore suffices to
determine it for CLEκ in rectangles [0, L] × [0, 1] with wired boundary conditions on
the two vertical sides. As we shall explain below, Dubédat’s commutation relations (see
[3,9–11,63–65]) show that for some explicit function Yκ (L) (see Sect. 4), the probability
that the two vertical sides of the rectangle are part of the same CLEκ loop is of the form
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Fig. 1. Discovering a simple CLE starting from two boundary points and creating a CLE with two wired
boundary arcs (sketch). In this example, the two wired boundary arcs are not part of the same loops

Fig. 2. A square with wired vertical boundaries, and a sketch of the two possible connection configurations,
together with the remaining outermost CLE loops

Yκ(L)

Yκ(L) + θκYκ (1/L)

for some unknown value θκ . The goal of the present paper will be to determine the value
θκ for the entire range κ ∈ (8/3, 8):

Theorem 1. The constant θκ is equal to −2 cos(4π/κ). In other words, when one con-
siders a conformal square (i.e., L = 1), the probability that the boundary arcs hook up
into one single loop is equal to 1/(1 − 2 cos(4π/κ)).

While in the present introduction, we put some emphasis on the connection probabili-
ties (wewill also sometimes use equivalently the term hook-up probability) of conformal
squares, we should emphasize that we will actually derive Theorem 1 by estimating the
asymptotics of the connection probabilities of very long rectangles (when L → ∞).

One can note that the connection probability in a square first decreases from 1 to 1/3
when κ increases from 8/3 to 4 (this is the regime where the CLEκ consists of simple
disjoint loops), and then increases again from 1/3 to 1, when κ increases from 4 to 8
(which is the regime of non-simple loops). Hence, the hook-up probability in a square
with the alternating boundary conditions is always at least 1/3.
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Deriving Theorem 1 is the core of our paper and the proofs will make no reference
to discrete models. The result for conformal squares has nevertheless some implications
about the conjectural relation between conformal loop ensembles and discrete models
that we now briefly discuss: One can compare it with the fact that for discrete O(N ) mod-
els (on any lattice with some symmetries) and for the critical FK(q) percolation model
on Z2, the corresponding discrete connection probabilities in a square (or some other
given symmetric shape if one considers a lattice other than Z2) are equal to 1/(1 + N )

and 1/(1 +
√

q), independently of the size of the square, just because of a symme-
try/duality argument (we will recall this in “Appendix A”). This can be viewed as the
natural generalization to those models of the crossing probability of squares feature of
critical percolation (which is the special case q = 1, and for percolation, boundary con-
ditions do not matter). Hence, one gets the following conditional results, that generalize
Schramm’s 1999 statement for critical percolation and SLE6 that we outlined at the very
beginning of this introduction (note also that Theorem 7 in [15] shows rigorously that
if an FK(q)-model scaling limit for q < 4 has a conformally invariant scaling limit, it
would be boundary touching i.e., the value of κ would have to be greater than 4):

• If a dilute O(N ) model has a non-trivial and conformally invariant scaling limit
consisting of simple loops, then necessarily N ∈ (0, 2] and the scaling limit has to
be CLEκ for the value of κ ∈ (8/3, 4] such that N = −2 cos(4π/κ).

• If a dense O(N ) model has a non-trivial and conformally invariant scaling limit
consisting of non-simple loops, then necessarily N ∈ (0, 2] and the scaling limit has
to be CLEκ for the value of κ ∈ [4, 8) such that N = −2 cos(4π/κ).

• If a critical FK(q)-model on Z2 has a non-trivial conformally invariant scaling limit,
then necessarily q ∈ (0, 4] and the scaling limit has to be CLEκ for the value of
κ ∈ [4, 8) such that

√
q = −2 cos(4π/κ).

1.3. Brief discussion of the related literature. Let us briefly discuss the relationship
between the present contribution and some of the closely related results in the existing
literature:

• Connection probabilities and related questions for families of SLE paths have been
the focus of a number of interesting mathematical works by Dubédat, Zhan, Bauer-
Bernard-Kytölä and others (see for instance [3,9–11,24,25,63–65] and the references
therein) that are very much relevant and related to the present paper, and that we
will in fact use. Let us now very briefly explain where our contribution lies with
respect to these references. In these papers, the main focus is on the description
and classification of the joint law of “commuting” SLE curves (i.e., that satisfy the
appropriate multiple-strands generalization of the conformal Markov property that
characterize SLE curves), that start from a given even number of boundary points of a
simply connected domain (this classification is provided by Dubédat’s commutation
relations). In the particular case where one looks at four boundary points a1, . . . , a4
and assumes that all of the SLE curves are locally absolutely continuous with respect
to SLEκ curves for the same value of κ , these commutation relations allow one to
describe all of the possible laws of these curves up until the curves hit each other. If
one applies this to our precise setup, these results state that one has (for each value
of κ) exactly a one-parameter family of possible candidates for the joint law of the
four strands of our CLEκ with two wired boundary conditions. Basically, one has two
extremal solutions such that for the first one, the strand started from a1 always ends
up at a2, while for the second one, it ends up at a4 (in each of these cases, the law
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of the pair of strands, or of the individual strands are known under several names:
intermediate SLE processes, hypergeometric SLEs, bichordal SLE processes). In our
setting, these extremal solutions describe the law of the strands, when one conditions
on one or the other of the two connection events. In particular, if one assumes the value
of the connection probability in a square, then these commutation ideas provide the
exact form of the connection probability in terms of the aspect-ratio of the rectangle
(and because these connection probabilities allow one to define a martingale when
one explores one strand, it also provides the exact description of the driving function
of one strand), wewill come back to this in Sect. 4. The purpose of the present paper is
to provide an actual computation of this connection probability in conformal squares
for our wired/free/wired/free boundary conditions, uniquely via CLE considerations
and no conjectural relation to discrete models, which (we believe) is a new input.

• The hook-up probability in squares can be derived by other means for some special
values of κ . The fact that it is equal to 1/2 for CLE6 is a direct consequence of the
locality properties of SLE6. The fact that the hook-up probability is also equal to 1/2
when κ = 3 can be viewed as a consequence of the combination of the fact that CLE3
is the scaling limit of the Ising model [4] and the symmetries in the Ising model (this
observation already appears in [3,9]—at that time the case κ = 3 was a conditional
result since it had not yet been established that the Ising model converges to SLE3
which is now established, see also the recent paper [62]). Similarly, the fact that the
hook-up probability is equal to 1/(1 +

√
2) in the special case where κ = 16/3 can

be viewed as a consequence of the fact [22,23] that CLE16/3 is proved to be the
scaling limit of the FK(2) model (see “Appendix A” for why the crossing probability
for this discrete model is 1/(1 +

√
2)). Also, the fact that the hook-up probability

tends to 1 as κ → 8/3+ and κ → 8− could be inferred directly from the Brownian
loop-soup description from [51] for the κ → 8/3+ case, and from the relation to
uniform spanning trees when κ → 8− (see [29]). As we will explain in Sect. 3, the
fact that the connection probability is 1/3 in the case where κ = 4 can be worked
out using the relation between CLE4 and the Gaussian Free Field.

• The CLE percolation approach that we developed with Sheffield [36] gives a con-
tinuous version of the relation between FK-percolation and the corresponding Potts
models in terms of conformal loop ensembles CLEκ and CLE16/κ . In [38], combin-
ing the results of [36] with ideas from Liouville quantum gravity (LQG), we provide
another way to get the (conjectural) relation

√
q = −2 cos(4π/κ) out of CLEκ con-

siderations only (this time without any reference to discrete crossing probabilities).
Note that this other CLE/LQG approach does not directly yield the value of the con-
nection probabilities or the relation to the dilute O(N )models, and that it is somewhat
more elaborate than the present one. It is also related to the body of work from recent
years that relate such questions to structures in randomgeometries/randommaps (that
can be viewed as trying to put some of the theoretical physics considerations onto
firm mathematical ground), see for example [17,18,50] and the references therein.

Let us now make some further bibliographic comments on the conjectural relation
with discrete models:

• It is interesting to see that the q = 4 and N = 2 thresholds for the nature of the
phase transition of FK(q) percolation and O(N ) models show up from this CLEκ

computation, via the fact that the lowest possible CLEκ hook-up probability in con-
formal squares is 1/3. Note that q = 4 has been recently proved (rigorously and
based on the study of discrete models) to be the threshold for existence of a continu-
ous phase transition for FK(q)-percolation models on Z2 [14,15]. In particular, [14]
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shows rigorously that the scaling limit of the critical FK(q) model’s interfaces are
trivial when q>4 (which is of course a much stronger statement than the conditional
“then necessarily q ∈ (0, 4]” in the FK-part of our statement above).

• As we have already mentioned, these relations between q and κ , and between N and
κ have appeared in numerous papers before. But, to the best of our knowledge, except
for the specific particular cases of κ that we have already mentioned, they were not
based on rigorous SLE-type considerations. More precisely, the argument was the
following: If these models have a conformally invariant scaling limit, then it must be
described by an SLEκ for some κ . In order to identifywhich value of κ is the right one,
the idea in those papers was to match some computation of probabilities of events for
SLE (or of critical exponents, or of dimensions) with the corresponding values that
were predicted to be the correct ones for the scaling limit of the discrete model, based
on theoretical physics considerations (see for instance [43] for the FK(q) conjecture
based on the physics dimension predictions; another approach is related to the discrete
parafermionic observable for FK models—see [53] or [13] for a detailed discussion
andmore references—where the spin is defined as σ = 1−(2/π) arccos(

√
q/2), and

that is conjectured to correspond in the scaling limit to some SLE martingale, see for
instance [61]). In the present paper,we identify the candidate value of κ using a feature
that is rigorously known to hold in the discretemodel (and therefore in its scaling limit,
if it exists). So, in away, one could view it as an SLE/CLEderivation of the conjectural
relation between the latticemodels and the corresponding conformal field theory (i.e.,
a relation between the q or N and the central charge c = (6−κ)(3κ −8)/(2κ)which
can be derived via the SLE restriction property [28] or the loop-soup construction of
CLE [51]).

• In relation with the CLE percolation item mentioned above, let us just stress that the
relation (2/κ) + (2/κ̃) = 1 between the values κ ∈ (8/3, 4) and κ̃ ∈ (4, 8) that have
the same connection probability is not at all the same as the κκ ′ = 16 duality relation
between SLEκ and SLEκ ′ from [10,63] or the Edwards–Sokal coupling between
CLEκ and CLEκ ′ derived in [36]. It is however possible to combine the present work
(or the results of [38]) with the CLE percolation results of [36]—this for instance
indicates based on CLE considerations only that if the scaling limit of the critical
FK-percolation model for q = 3 on Z2 is non-trivial and conformally invariant, then
(modulo some a priori arm exponents estimates) the scaling limit of the critical Potts
model for q = 3 would exist as well and could be described in terms of CLEκ for
the value of κ ∈ (8/3, 4] such that

√
q = −2 cos(4πκ/16) = −2 cos(πκ/4) i.e.,

κ = 10/3.

1.4. Structure of the paper. Let us describe the structure of the paper, and explain where
we use which results from other papers:

In Sect. 2, we will first recall some background material about CLEs and their prop-
erties, and then define what we will call CLEκ with two wired boundary arcs when
κ ∈ (8/3, 4) ∪ (4, 8). As we will explain, this builds on the shoulders of some previous
work: The definition and conformal invariance of CLEs from [34,49,51], the exploration
features of CLE as studied in [36,59], and last but not least, the conformal invariance
of hook-up probabilities as derived in [37]. This is a section where we use directly and
indirectly various background material from earlier papers on CLE. Those readers who
want to focus on the computational part of the derivation of Theorem 1 can choose to
take the (rather intuitive) results of that section for granted.
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In Sect. 3, which can be viewed as a brief interlude, we discuss the special case of
CLE4, and explain how it is possible to prove Theorem 1 in that case, using the coupling
between the Gaussian free field and CLE4 (from [31], see also [2]).

In Sect. 4,we briefly surveywhat the aforementionedworks on commutation relations
[3,9–11,63–65] imply in our setup of wired CLEs.

In Sect. 5, we describe the main steps of our proofs of Theorem 1, separately in the
cases κ ∈ (8/3, 4) and κ ∈ (4, 8), that allow us to reduce the determination of the
connection probability to actual concrete estimates of probabilities of events that we
then derive in Sects. 6 and 7. In the case of simple CLEs, the arguments in Sect. 5 will
rely on the loop-soup construction of CLEκ , and more specifically on the decomposition
of loop-soup clusters and the relation to restriction measures, as studied in [41,42]. The
actual computations in Sects. 6 and 7 will involve some considerations involving SLE
and hypergeometric functions.

We conclude with two short appendices, recalling very briefly some basics about
O(N ) models and their connection probabilities, and about the properties of hypergeo-
metric functions that we are using in our proofs.

2. Defining CLE with Two Wired Boundary Arcs

2.1. The case where κ ∈ (4, 8). We first explain how to define the CLEκ with two wired
boundary arcs in the case where κ ∈ (4, 8). Let us first quickly recall some features of
the CLEκ itself for κ ∈ (4, 8)—the reader may wish to consult [36] for more details
and further references. For our purpose, it will be sufficient to focus on their non-nested
versions.

Conformal loop ensembleswere proposed in [49] as the natural candidates that should
describe the joint law of outermost interfaces in a number of critical models from sta-
tistical physics in their scaling limit. Sheffield’s construction in [49] is based on the
target-invariance (see [9,48]) of special variants of SLEκ , the SLEκ(κ − 6) processes.
In the case where κ ∈ (4, 8), the definition of these SLEκ(κ − 6) processes is rather
direct (see [36,49,59] for background).

Their target-invariance propertymakes it possible to define for each simply connected
domain D and each given boundary point x , a branching tree of such SLEκ(κ − 6)
processes, starting from some point x (that is referred to as the root of the branching
tree) and that targets all points in D. Branches of the tree trace loops along the way, so
that this branching tree defines a random collection of loops, that Sheffield called CLEκ .

Note that with this construction, the law of this CLEκ seems to depend on the choice
of the root. However, when κ ∈ (4, 8), one can show that this is not the case (and more
generally, that the law of CLEκ is invariant under any given conformal automorphism of
D) as a direct consequence of the reversibility properties of SLEκ(κ −6) processes. This
reversibility for non-simple SLE paths is a non-trivial fact, that has been established in
[34] using the connection with the Gaussian free field (GFF) and more precisely via the
“imaginary geometry” approach developed in [32–35]. However, with this (non-trivial)
fact in hand, constructing the CLE and deriving its properties is a rather easy task. We
refer to [36,37] for more details and references.

When κ ∈ (4, 8), the CLEκ is a collection of non-simple SLEκ -type loops in D.
Some of them do touch each other, and some of them do touch the boundary of the
domain. For the purpose of the present paper, it will be in fact sufficient to focus on the
set of CLEκ loops that do touch ∂ D.
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wt

ot

Dt

Fig. 3. Sketch of the beginning of the SLEκ (κ − 6) arc of the branching tree (for non-simple CLEs) from −1
to 1 in the unit disk. The bold simple arc from ot to wt denotes the “wired” portion of Dt

An important feature of this case where κ ∈ (4, 8) is that the branching tree is in
fact a simple deterministic function of the CLE that it constructs. For instance, if one
chooses two distinct boundary points x and x ′ and the counterclockwise boundary arc ∂

of D from x to x ′, one can look at the collection of all the CLE loops that touch this arc.
One can define the path obtained by starting from x and that moves along ∂ and each
time it meets a CLE loop for the first time on this arc, it goes around it clockwise. In this
way, one obtains a continuous path from x to x ′. If one reparametrizes this path by its
“size” seen from x ′ (and therefore excises from it all the parts that are in fact “hidden”
from x ′ at the moment at which they are drawn), one obtains exactly the branch from x
to x ′ in the SLEκ (κ − 6) tree (that is an SLEκ (κ − 6) from x to x ′).

The branching tree description allows one to define immediately what one can refer to
as CLEκ with one wired boundary arc. Suppose that one grows an SLEκ(κ − 6) process
γ in a simply connected domain D, starting from the boundary point x and targeting
some other boundary point x ′, and that one stops this branch of the branching SLE tree
at a (deterministic or stopping) time t . We will say in the sequel that the exploration
at time t is in the middle of tracing a loop if at time t , it has started to draw a portion
CLE loop that is visible from x ′ (see Fig. 3). In this κ ∈ (4, 8) case, this just means that
γ (t) /∈ ∂ . Suppose that t is such a time. We will write wt = γ (t) and ot will denote the
point of the CLE loop that wt is part of that γ did hit first (so in this κ ∈ (4, 8) case, it is
the last point on ∂ that γ has visited before t). We can then ask what is the conditional
distribution of the CLEκ in the component Dt of D\γ [0, t]which has x ′ on its boundary.
If we map Dt conformally onto the upper half-plane via the conformal transformation
gt with {gt (ot ), gt (wt )} = {0, 1} and gt (x ′) = ∞ (which one of ot or wt is mapped
onto 0 depends on whether the loop containing wt is being traced counterclockwise
or clockwise), then the SLEκ (κ − 6) features and the properties of the conformal loop
ensembles immediately show that the image under gt of this conditional distribution can
be described as follows (this works for all κ ∈ (4, 8)):

• First finish the currently traced loop by sampling an ordinary SLEκ inH from 1 to 0.
• Then sample independent CLEs in the connected components of the complement of
the SLE that are “outside” of the loop obtained by concatenating the SLE with the
segment [0, 1].
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Fig. 4. Exploring CLEs from both sides and creating the CLEs with two wired boundaries

This is what we will call the law of CLE inH with one wired boundary arc on [0, 1]. By
conformal invariance, this can then also be defined for any simply connected domain D
with a given boundary arc.

We can now move to the definition of CLE with two wired boundary arcs: If we are
in the same setup as above, we can trace the branch of the SLEκ (κ − 6) tree that joins x
with x ′ by starting at x , or by starting at x ′ (so, we can consider both the SLEκ (κ − 6)
from x to x ′ and its time-reversal; note that this time-reversal will “move clockwise”
along ∂ and collect the CLE loops along the way, so that there is some chiral change
when one takes the time-reversal).

We can stop both the forward path and its time-reversal at some stopping times during
which they are both tracing loops, and in such a way that the two paths have not yet
hooked up (which when the union of the two paths form the entire SLEκ (κ − 6)); we
allow them to hit each other though—this can happen before they hook-up because the
CLE loops are not all disjoint. More precisely, we let t be a stopping time defined for
the natural filtration of the first exploration, and then we let s be a stopping time for the
filtration generated by the second exploration, possibly augmented by the knowledge
of the first exploration until t . We denote the remaining to be explored domain by Dt,s
and the four marked boundary points corresponding to the special points of each of the
explorations by (wt , ot , o′

s, w
′
s) with obvious notation (see Fig. 4).

Then, [37, Lemma 3.1] states that the conditional distribution of the part of the CLE
that lies in Dt,s is conformally invariant with respect to the configuration (Dt,s, wt , ot ,

o′
s, w

′
s). Note that this is now a configuration consisting of loops in Dt,s and of two

disjoints arcs (that correspond to the missing parts of the loops the wt and o′
s are part of)

in Dt,s . Let us insist on the fact that this conformal invariance statement is not trivial to
prove, even if it may at first glance seem intuitively obvious (one should keep in mind
that the definitions of CLE themselves are not straightforward at all). This conditional
distribution is what we will refer to as the CLEκ in Dt,s with the wired boundary arcs
wt ot and o′

sw
′
s .

2.2. CLE background in the case κ ∈ (8/3, 4). When κ ∈ (8/3, 4), the construction
of the CLEκ with two wired boundary arcs is a little more complicated due to the
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fact that the SLEκ (κ − 6) path is not a deterministic function of the CLEκ . In the
present subsection, we recall (in a rather narrative way) some relevant background on
SLEκ (κ − 6) exploration trees in this case (we again refer to [36,51,59] for references
and details). We will also discuss some features involving Brownian loop-soups that will
be useful later in the paper.

When κ ∈ (8/3, 4), one can still define the CLEκ via an SLEκ (κ − 6) branching
tree rooted at some boundary point x , but there are several points that we would like to
emphasize:

– In order to define the SLEκ (κ − 6) processes, one has to use Lévy compensation
and/or side-swapping. In other words, one has to choose a side-swapping parameter
β ∈ [−1, 1] (that will eventually describe the probability for each individual CLE
loop to be traced clockwise or counterclockwise by the exploration tree). So, for
each κ ∈ (8/3, 4), one has a one-parameter family of SLEβ

κ (κ − 6) processes. In the
sequel, we will work only with the totally asymmetric cases β = 1 and β = −1 (in
the former case, the loops are all traced counterclockwise and in the latter case, they
are all traced clockwise).

– The target-invariance of these processes enable us, for each choice of the root, to
define the SLEβ

κ (κ − 6) branching tree, and the collection of loops that it traces. In
order to prove that the law of this collection of loops does not depend on the choice
of the root, the proof in [51] uses the Brownian loop-soup in D introduced in [30],
which is a natural Poisson point process of Brownian loops in D, with intensity given
by a constant c times a certain natural measure on Brownian loops.

Loop-soups will be useful in the present paper too, so we give a few more details
about those: The loops in a loop-soup can be thought of as being independent, so that
they can overlap and therefore create clusters of Brownian loops. The fact that the outer
boundaries of loop-soup clusterswould give rise to randomcollections of SLE-type loops
that behave nicely under perturbations of the domains that they are defined in had been
outlined in [55]. As it turns out, it has then been proved in [51] that: (a) for all c ≤ 1, if one
considers the outermost boundaries of these Brownian loop-soup clusters, one obtains
a countable conformally invariant collection of mutually disjoint simple loops and (b)
that for all x , this collection of loops coincides with the CLEκ defined by the branching
tree construction where κ ∈ (8/3, 4) is given by the relation c = (6− κ)(3κ − 8)/(2κ)

(this intensity c is exactly the central charge appearing in CFT). Since the loop-soup
construction of CLEκ does not involve any boundary root, this therefore proves that the
law of the CLEκ defined by the branching tree construction is indeed independent of
the root of the tree. The fact that one has these two different descriptions of the same
CLEκ (via the Brownian loop-soup or via branching SLEκ(κ − 6) processes) is useful
when one tries to derive further properties of the conformal loop ensembles, and in the
present paper, we will in fact use both these constructions in our proofs.

The branching tree description allows one to define (just as in the case κ ∈ (4, 8))
the CLEκ with one wired boundary arc. See Fig. 5.

One can view the SLEκ(κ − 6) processes as being constructed via a Poisson point
process of “SLEκ bubbles” with intensity given by the so-called CLEκ bubble measure
(or more precisely with intensity given by this measure times the Lebesgue measure
on [0,∞), so that these bubbles are ordered according to their arrival time u j ), see
[36,59] for background. The bubble measure in the upper half-plane is the appropriately
rescaled limit as ε → 0 of the law of SLEκ from ε to 0 in the upper half-plane. The
pinned configuration is then obtained from the bubble configurations by adding in an
independent CLEκ in the outside of the bubble. So, the measure on pinned configuration
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Fig. 5. Sketch of an SLE−1
κ (κ − 6) from −1 to 1 in the unit disk stopped while tracing a loop. The bold arc

denotes the “wired” portion of Dt . The arrow indicates the “inside” part of the partially traced simple loop
which corresponds to this wired part. (Note that the trunk of this SLE−1

κ (κ −6) is in fact a boundary-touching
non-simple curve, but it is drawn here as a simple curve to simplify the understanding of this sketch)

can be viewed as the appropriately renormalized limit as ε → 0 of the law of ε times
the wired CLEκ .

If one combines this description of the SLEβ
κ (κ − 6) processes with the Markovian

property of CLE described in [51], one can readily obtain the following result: Consider
two simply connected domains D and D′ with D′ ⊂ D, a boundary point x of D that
is at positive distance from D\D′, and another boundary point (or prime end) x ′ on
∂ D ∩ ∂ D′. Let us first sample an SLEβ

κ (κ − 6) (that we call η) from x to x ′ in D, that
is coupled with a CLEκ (that we denote by C) in D. Then, just as for the CLE spatial
Markovian property described in [51], we consider the domain obtained by removing
from D′ all the CLE loops (and their interior) that do not entirely stay in D′, and we
consider D̃ to be the connected component of the obtained set that has x (and also x ′)
on its boundary. The CLE spatial Markovian property, states that the conditional law
(given D̃) of the set C̃ of CLE loops in C that do stay entirely in D̃, is exactly that of a
CLE in D̃. One can then wonder if η can be viewed as an SLEβ

κ (κ − 6) process in D̃ as
well. As it turns out, if τ denotes the time at which η hits D\D̃, the conditional law of
(ηt , t ≤ τ) is indeed that of an SLEβ

κ (κ −6) process from x to x ′ in D̃ coupled to C̃, and
stopped at its first hitting of D\D̃. (We leave the details of the proof to the interested
reader). This is illustrated in Fig. 6 and will be useful later in the paper (in the proof of
Lemma 4).

As explained for instance in [51] or [59], one can also use procedures other than these
SLEβ

κ (κ−6) exploration tree to discover the loops of a CLEκ in a “Markovian”way. This
includes for instance deterministic explorations such as discovering one after the other
and in their order of appearance, all the CLE loops that intersect a given deterministic
curve that starts on the boundary; for example in the unit disk, start from 1, and trace
one after the other all loops that intersect the segment [−1, 1] starting from 1, until one
hits the imaginary axis. This last procedure will sometimes jump along the real axis,
but the CLE property will ensure that the previously defined wired CLE describes also
the conditional law of the CLE when one stops the exploration in the middle of a loop.
Such an exploration can be quite useful for κ ∈ (8/3, 4) because it is a deterministic
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Fig. 6. The beginning of the SLE1κ (κ −6) in exploring the CLE in D (left figure) is also that of an SLE1κ (κ −6)
exploring the CLE loops in D̃ (right figure), where D̃ has been obtained by restriction

function of the CLE (which is actually not the case for the branching tree exploration
when κ ∈ (8/3, 4), see [37]).

Let us finally review some results about the decomposition of Brownian loop-soup
clusters from [41,42] when they are partially discovered by an SLEβ

κ (κ −6) exploration:
Consider a CLEκ C for κ ∈ (8/3, 4] in the unit disk, that was obtained from a Brownian
loop-soupLwith intensity c (as explained in [51]), and start exploring from x the branch
of the SLEβ

κ (κ−6) tree coupled to this CLE (in such away that the tree and the loop-soup
are conditionally independent given the CLE) from the boundary point −1 targeting 1,
and stop it at some stopping time t , when one has partially but not fully traced a CLE
loop. Then, we have just explained in the previous paragraphs that in the remaining to
be discovered domain Dt , the conditional distribution of the CLE is that of a wired CLE
(wired on the already traced part ∂t of the loop that one is tracing at time t). As explained
in [41], one can then also derive the following aspects of the conditional distribution of
the loop-soup itself in Dt (see Fig. 7 for a sketch):

• The outer boundary of the union of all the Brownian loops that do intersect ∂t form
a one-sided restriction measure with exponent α = (6 − κ)/(2κ) attached to ∂t (see
[28,56] for background and definitions about restriction measures).

• The set of Brownian loops in Dt that do not intersect ∂t form an independent loop-
soup in Dt .

This result is stated in [41] for the case of the deterministic Markovian explorations (that
discover the loops that intersect a given deterministic path), but it is easy to apply the
results of Section 5.2 of [41] about partially explored “pinned CLE” configurations to
deduce the former statement about SLEβ

κ (κ − 6) explorations. Indeed, recall that we
know on the one side from the aforementioned results from [51,59] that SLEβ

κ (κ − 6)
processes can be built from a Poisson point process of SLEκ bubbles, and we know on
the other side from [42] that the conditional distribution of the Brownian loops given the
CLE that they generate is composed of independent samples inside each CLE loop. This
shows that in order to obtain the previous decomposition result, it is enough to derive
the corresponding result for partially explored bubbles; these are exactly the statements
in Section 5.2 of [41].
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Fig. 7. An exploration of theCLEwith the encounteredBrownian loops (left). Adding the remainingBrownian
loops completes the CLE (right)

2.3. CLE with two “wired” boundary arcs for κ ∈ (8/3, 4). When κ ∈ (8/3, 4), the
exploration tree is not a deterministic function of the CLE (see [37]) that it constructs,
so that it is less clear how to properly define the joint law of two explorations of the
same CLE starting from different two points x and x ′, which is what we want to do in
order to define CLE with two wired arcs. One natural option would be to consider two
explorations that are conditionally independent given the CLE, and to try control how
they are correlated. We will instead (though this could be shown to be an equivalent
definition) build on some results from [36] about the loop-trunk decomposition of these
SLEκ(κ − 6) processes and their relations to CLE. The idea is now the following (here
we suppose that κ ∈ (8/3, 4) is fixed and we choose to work with SLE−1

κ (κ − 6)):

– First start an SLE−1
κ (κ − 6) exploration γ (coupled with a CLE C from x targeting

x ′ as before, and stop it at some stopping time t (at which it is tracing a loop). The
conditional law of the CLE given that branch is then given by the CLE in Dt with
one wired boundary arc (joining wt and ot ). Let us call F the σ -field generated by
the SLE−1

κ (κ − 6) up to this time.
– Then, we can choose to complete the loop that this SLE−1

κ (κ − 6) is tracing at time
t . This provides some additional information that is not contained in F . Then in the
new and smaller remaining domain D̂t ⊂ Dt , the conditional law of the CLE loops
Ĉ in that domain is that of an ordinary CLEκ .

– Then, in D̂t , we trace nowanSLE1
κ (κ−6) exploration path of this CLE Ĉ starting from

x ′ (targeting ot ). Note that this SLE1
κ(κ −6) is now going in the “opposite direction”,

which is why we choose β = 1 instead of β = −1 for it). This exploration is what
we choose to be our second exploration path γ ′ starting from x ′.
Note however that the two following important points need to be stressed:

– When we observe γ up to time t and then γ ′ up to some stopping time s, we then look
at the joint law of these two processes but have “forgotten” about the additional infor-
mation that is provided in the second step. In other words, we look at the conditional
law of γ ′ given F .

– When γ ′ does hit the loop that γ was tracing at time t (and this does happen almost
surely at some time τ ′, because γ ′ is targeting ot ), then we choose to continue γ ′ by
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Fig. 8. Exploring CLEs from both sides and creating the CLEs with two wired boundaries

justmoving along thatCLEκ loop counterclockwise (which is the opposite orientation
than γ ).

Hence, when we are looking at a configuration of (Dt,s, wt , ot , o′
s, w

′
s), we do not

know for sure whether τ ′ < s or not. This corresponds exactly to the question whether
γ at time t and γ ′ at time s are tracing the same loop of C or not.

Building on the loop-trunk decomposition of [36], it is explained in Section 3.2 of
[37] (this is Lemma 3.5 in [36], with the role of β = 1 and β = −1 reversed, which
just corresponds to looking at a symmetric image of the CLE) that the conditional
probability of the fact that γ at time t and γ ′ at time s are exploring the same loop is a
conformally invariant function of (Dt,s, wt , ot , o′

s, w
′
s). More generally (see Sect. 2.4),

the law of the whole configuration of loops in Dt,s is then a conformal invariant function
of (Dt,s, wt , ot , o′

s, w
′
s). This is what we call the CLEκ in Dt,s with two wired boundary

arcs.
One reason to prefer to work with the totally asymmetric explorations in the present

paper is that when β �∈ {−1, 1}, the information about the direction in which γ and γ ′
are tracing their respective loops can provide a bias about the fact that these two loops
are the same or not (indeed, in the loop-trunk setup from [37] γ and γ ′ trace them in the
same orientation, then they can not be the same loop). We will see a similar feature in
our analysis of the κ = 4 case.

2.4. A general remark. Finally, we can note that for all κ ∈ (8/3, 8)\{4}, if we give
ourselves a positive L , it is possible to choose t and s in such a way that with probability
one, Dt,s can be mapped conformally onto the rectangle [0, L] × [0, 1] in such a way
that the four marked boundary points get mapped onto the four corners of the rectangle
(for instance, choose first any t and then explore the second strand until the first time
s at which Dt,s is conformally equivalent to such a rectangle—we know that s exists
because the two explorations will eventually hook up). For all given L and each κ , this
allows one to define a law PL on configurations in [0, L]× [0, 1] such that for any (s, t)
as described in the previous paragraphs, the conditional law of the CLE in Dt,s is the
conformal image of PL where L is the value such that Dt,s and the four boundary points
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Fig. 9. The two connection possibilities for the partially explored simple CLE from Fig. 8

get mapped to the four corners of the rectangle. We will call these distributions PL the
CLE with wired boundary conditions on the two vertical boundaries of the rectangle,
and PD,a1,a2,a3,a4 will denote the law of the configuration in a simply connected domain
with four distinct marked boundary points a1, . . . , a4.

The law PL can be described in two steps:

• One can first complete the strands that start from the four corners. This will complete
the loop(s) (which turns out to be one loop or two loops, depending on how the strands
hook-up) that one had partially discovered, see Fig. 9. Note that we have however
not (yet) described at this point how to sample them.

• Then, in the remaining domain (outside of the traced loops), one samples independent
CLEs.

Hence, in order to fully describe PL , it is in fact sufficient to describe the law of
the strands. Let us already mention that Dubédat’s commutation relation arguments (or
bichordal SLE arguments) that we will recall in the next section will do this to a certain
extent. They for instance imply that once one knows the hook-up probabilities (i.e., the
probability that the four strands hook-up in the way to create one loop, as a function
of L , see Fig. 9 for the two possible options), then one can deduce the joint law of the
strands. The main purpose of this paper is actually to determine this hook-up probability.

3. The Special Case κ = 4 and the GFF

The reader may have noticed that we have not yet discussed the definition of CLE4
with two wired boundary arcs. Let us briefly do this in the present section, and show
how Theorem 1 can be derived directly and easily when κ = 4, using the relationship
between CLE4 and the GFF.

When one defines CLE4 via an SLE4(−2) branching tree, one necessarily has to
use a symmetric side-swapping version (i.e., for β = 0)—see for example [36] and the
references therein, so that the previous setup with SLE−1

κ (κ − 6) processes does not
apply. In the present section, we will only use the SLE0,0

4 (−2) explorations (i.e., with
μ = 0 in the terminology of [36]) and refer to them simply as SLE4(−2) processes.
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Recall that SLE4 can be viewed as a level line of the Gaussian Free Field [12,46]. The
corresponding coupling of CLE4 with the GFF was introduced by Miller and Sheffield
( [31], see also [2] for details) and can be described as follows: Sample one CLE4 in a
simply connected domain D, and toss an independent fair Bernoulli coin ε j ∈ {−1, 1}
for each CLE loop γ j . Then, in the domains encircled by each of these loops, sample an
independent GFF � j with zero boundary conditions on γ j (the GFF � j is equal to 0 in
the outside of γ j ). Then, for a certain explicit choice of λ > 0, the field

� :=
∑

j

(2ε jλ + � j )

is exactly a GFF in D. Furthermore, the CLE4 and the labels (ε j ) are deterministic
functions of the obtained field, and the side-swapping exploration of the CLE can be
viewed as a deterministic function of the CLE and of the labels (ε j ) (see [2,36] for
details).

One way to describe the joint exploration of a CLE4 from two distinct starting points
in such a way that it does not provide a hook-up bias due to the information about
the orientation of the partially explored loops (when one then defines the CLE4 with
two wired boundary arcs) goes as follows: We consider that the two symmetric side-
swapping SLE4(−2) explorations that are conditionally independent given the CLE4.
This can be achieved by using two independent i.i.d. collections (ε j ) and (ε′

j ) and to

view the SLE0
4(−2) processes as deterministic functions of the two corresponding GFFs

(see [36] and the references therein). One can then stop these two explorations along the
way as described above. The discussion below will in fact show that the conditional law
of the CLE4 in the remaining domain Dt,s is conformally invariant, and this is what we
can then call the CLE4 with two wired boundary arcs.

We can also assume that we have chosen to stop our explorations at times t and s,
in such a way that (Dt,s, wt , ot , w

′
s, o′

s) is a conformal square (we can for instance do
this by first stopping the first exploration at some deterministic time, and then stop the
second one at the first time s at which the configuration is a conformal square, and to
restrict ourselves to the case where the two explorations are disjoint). Let us denote by
E1 the event that the four strands are then hooked up so that they create a single CLE4
loop (of the original CLE4), and by E2 the event that the four boundary strands are
hooked up in the way that will create two disjoint CLE4 loops.

Let us couple theCLE4 with a thirdGFF� as above, by using yet another independent
collection (ε̄ j ) of labels (so, the three collections (ε̄ j ), (ε j ) and (ε′

j ) are independent,
conditionally on the CLE). On top of the partial discovery of the CLE4, we can also
discover the corresponding boundary values of �. In other words, we can also discover
whether on the two wired arcs, the GFF boundary values are +2λ or −2λ. Let Ẽ denote
the event that these boundary values are the same on both arcs.

Now we can note that P[Ẽ |E1] = 1 and P[Ẽ |E2] = 1/2 because of the rules that
determine the GFF given the CLE (i.e., the coin flips are i.i.d. fair Bernoulli). On the
other hand, it is known [2,31] that the CLE4 is a deterministic function of the GFF,
so that conditioning on the joint information of the CLE and the GFF is the same as
conditioning on the GFF only.

But, on the event Ẽ where the two boundary values on the partially explored strand
are equal, we are looking at a GFF in a conformal square with boundary conditions
2λ, 0, 2λ, 0 or −2λ, 0,−2λ, 0 on the four arcs. Hence, by symmetry,

P[E1|Ẽ] = P[E2|Ẽ] = 1/2.
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This implies that

P[E1] = P[Ẽ ∩ E1] = P[Ẽ]P[E1|Ẽ] = P[Ẽ]P[E2|Ẽ]
= P[Ẽ ∩ E2] = P[E2]

2
= 1 − P[E1]

2

and that the hook-up probability P[E1] in the conformal square is indeed 1/3 (i.e.,
θ = 2).

Note that in this special case, we see that the marginal distributions of the four strands
are in fact ordinary SLE4(ρ1, ρ2) processes (as opposed to the cases where κ �= 4, where
they turn out to be intermediate SLEs). This is also related to the fact that the hook-up
probabilities that we will discuss in the next section take a very simple form in that
case (which was already observed in the aforementioned papers by Dubédat or Bauer-
Bernard-Kytölä).

4. Consequences of Dubédat’s Commutation Relations

Let us consider again the general case κ ∈ (8/3, 8), and let us now review what the
results on commutation relations from [3,9–11,63–65] imply for our CLEs with two
wired boundary arcs and for the hook-up probability as a function of the aspect-ratio
of the considered conformal rectangle. It will be somewhat more handy to work in the
upper half-plane instead of the rectangle (i.e., to first map conformally the rectangle
(0, L) × (0, 1) onto the upper half-plane via a Schwarz–Christoffel transformation that
maps the two vertical sides onto (−∞, 0) and (1− x, 1)). Let us define H(x) = Hκ(x)

for x ∈ (0, 1) to be the probability that for a CLEκ in the upper half-plane H with two
wired boundary arcs on (−∞, 0) and (1 − x, 1), the two wired arcs are joined in such
a way that they form one single loop (in other words, the strand starting from 0 ends at
1 − x). In the sequel, we will use this cross-ratio x of (∞, 0, 1 − x, 1) in H instead of
the aspect ratio L of the (conformal) rectangle. Recall that the cross-ratio x(L) and L
are related to L by the formula

L = F(1/2, 1/2, 1; 1 − k2)

2F(1/2, 1/2, 1; k2)
,

where x = (1 − k)2/(1 + k)2 and F denotes the hypergeometric function 2F1 (we will
keep this notation throughout the paper—see “Appendix B” for the definition and the
properties of these functions that we will use in this paper). More generally, we will refer
to x as the cross-ratio of (D, x1, x2, x3, x4) if one canmap conformally this configuration
onto (H,∞, 0, 1 − x, 1).

In the CLEκ setup that we consider here (and in all three cases κ ∈ (8/3, 4), κ = 4
and κ ∈ (4, 8), for each choice of a simply connected domain D with four distinct
boundary points a1, . . . , a4∈ ∂ D ordered counterclockwise, we have argued in the
previous sections that the distributions PD,a1,...,a4 that we defined provide a distribution
on pairs of SLE paths that join these four boundary points with the following properties:

• They are conformally invariant. That is, if � is a conformal transformation, then
the law of the image of PD,a1,...,a4 under � is P�(D),�(a1),...,�(a4). In particular, the
probability that a1 hooks up with a4 is in fact a function H(x) of the cross-ratio x of
(D, a1, a2.a3, a4).
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• For any given ai , if one discovers the entire strand γi that emanates from ai (and
therefore its endpoint a j ), then the conditional distribution of the other remaining
strand is just an SLEκ joining the two remaining marked point in D\γi (this is due to
the fact that after completing one strand, one is left with only one CLE exploration).

Hence, if one conditions PD,a1,...,a4 on the event that a1 is connected to a2 (and therefore
that a3 is connected to a4), one gets a distribution on pairs of paths (γ, γ ′) joining a1
to a2 and a3 to a4 respectively, such that (i) conditionally on γ , the law of γ ′ is that
of SLEκ in D\γ , and (ii) conditionally on γ ′, the law of γ is that of SLEκ in D\γ ′. It
is possible to see (and this has been done using several methods) that the law on pairs
(γ, γ ′) is uniquely characterized by this last property (this is the resampling property of
bichordal SLE as studied and used in [32–35]).

This explains why PD,a1,...,a4 is fully determined once one knows the hook-up prob-
ability function H(x). In fact, it suffices to know the value of H(x0) for one single value
x0 ∈ (0, 1) in order to deduce the entire function H . Indeed, if one knows PD,a1,...,a4
for one given choice of (D, a1, . . . , a4), then H is determined because the hook-up
probability evolves as a martingale when one lets one strand evolve, we know the law
of the evolution of this strand, and the boundary values at 0 and 1.

Considerations of this type are in fact included in some form in the papers cited above
that introduce and study commutation relations for SLE paths and their consequences
(note that these in fact actually study a somewhat more general class of questions—in the
present setup, we for instance already know from the construction that our commuting
strands will eventually hook-up and create one or two loops, which is a non-trivial
feature). Then, it follows from these arguments that H is of the form

H(x) = Z(x)

Z(x) + θ Z(1 − x)
(4.1)

for some positive θ , where

Z(x) := x2/κ (1 − x)1−6/κ f (x), (4.2)

and where here and in the remainder of this paper, f will denote the hypergeometric
function

f (x) := F

(
4

κ
, 1 − 4

κ
,
8

κ
; x

)
(4.3)

(see for instance [11, Section 4] or [3, Section 8] about “4-SLE”). Recall (see the short
“Appendix B” where we will briefly recall basics about hypergeometric functions) that
f (0) = 1 and note that since 8/κ − (4/κ + 1− 4/κ) = 8/κ − 1 > 0, this function f is
continuous at 1 with

f (1) = �(8/κ)�(8/κ − 1)

�(4/κ)�(12/κ − 1)
.

Another way to phrase/interpret this in the previous setup is that the above-mentioned
papers describe the law of the bichordal SLEs, which are the conditional distributions of
PD,a1,...,a4 given one hook-up event (or given the other one), but not the actual probability
of these hook-up events. In other words, in order to determine the function H , it only
remains to identity the value of θ in terms of κ . Note that knowing the value of θ

is equivalent to knowing the connection probability for a conformal square (i.e., for
x = 1/2) (as H(1/2) = 1/(1 + θ)).
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0 1 ε 1

Fig. 10. Sketch of the event D(ε)

Note that that as x → 0,

Z(x) ∼ x2/κ and Z(1 − x) ∼ x1−6/κ f (1).

Hence, because 1 − 6/κ < 2/κ , it follows that H(x) ∼ x8/κ−1/(θ f (1)) as x → 0. In
other words,

θ−1 = f (1) lim
x→0

(
x1−8/κ H(x)

)
. (4.4)

The strategy of our proof of Theorem 1 i.e., of the fact that θ = −2 cos(4π/κ), will be to
determine the right-hand side of (4.4), which therefore also gives the value of θ . In other
words, we will in fact estimate precisely the asymptotics of the hook-up probability in
very thin conformal rectangles.We have just argued that H(x) decays like some constant
times x8/κ−1 as x → 0, and our goal will be to determine the value of this constant.

5. First Main Steps of the Proof of Theorem 1

We now describe the main steps of the proof of Theorem 1 in the cases κ ∈ (4, 8) and
κ ∈ (8/3, 4] separately. We will defer the proofs of two more computational lemmas
to the next sections, in order to highlight here the arguments that reduce the proof of
Theorem 1 to these concrete computations involving SLE and Bessel processes.

5.1. Case of non-simple CLEs. Let us start with the case of CLEκ when κ ∈ (4, 8).
Consider a conditioned CLEκ in the upper half-plane with only one wired boundary arc
on R−. Recall that the law of this conditioned CLEκ can be sampled from using the
following steps:

• Sample an SLEκ γ from 0 to ∞ in order to complete the partially discovered loop
that runs on R−, and then

• Sample independent CLEκ ’s in the remaining connected components that are “out-
side” of this loop.

We now fix ε > 0 very small and define the event D(ε) that γ ∩ [1 − ε, 1] �= ∅ (see
Fig. 10). The probability of D(ε) can be explicitly computed (it is in fact the formula
that was already used by Schramm [44] in his argument mentioned at the beginning of
the introduction); it is a generalization of Cardy’s formula for SLEκ almost identical to
that determined in [27]—see for instance [43, Lemma 6.6] or [57, Section 3]):

P[D(ε)] =
∫ ∞
1/ε y−4/κ (1 + y)−4/κdy

∫ ∞
0 y−4/κ (1 + y)−4/κdy

.
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0 1 ε
1

wt

ot

Fig. 11. Sketch of the event B(ε)

Clearly, as ε → 0,

P[D(ε)] ∼ ε8/κ−1

(8/κ − 1)
∫ ∞
0 y−4/κ (1 + y)−4/κdy

∼ �(4/κ)

�(1 − 4/κ)�(8/κ)
ε8/κ−1. (5.1)

The idea is now to evaluate the asymptotic behavior of P[D(ε)] as ε → 0 using a
different two-step procedure that will involve hook-up probabilities: Let us move along
the segment [1−ε, 1] from left to right, and each time we meet a loop of the conditioned
CLEκ for the first time, we trace it in the clockwise direction before continuing to move
along the horizontal segment. This defines a continuous path wt starting from 1− ε and
ending at 1 or at 0 (if the curve γ hits [1 − ε, 1], then w will trace γ backwards). The
last point ot on [1 − ε, 1] that w did visit before time t corresponds to the beginning of
the loop that is being traced at time t . We stop this path at the first time τ (if it exists) at
which the cross-ratio cτ corresponding to (∞, 0, wτ , oτ ) in the unbounded connected
component of the complement of w[0, τ ] in the upper half-plane reaches x = ε7/8. We
call B(ε) the event that such a time exists (see Fig. 11).

The following lemma will enable us to relate the asymptotic behavior of H(x) as
x → 0 to that of P[B(ε)]:
Lemma 2. One has D(ε) ⊂ B(ε). Furthermore, if D′(ε) denotes the event that the
partially explored loop at time τ (in the definition of B(ε)) does in fact correspond to a
portion of γ , then the conditional probability of D′(ε) given D(ε) tends to 1 as ε → 0.

Proof. Recall that we are working with a CLEκ in the upper half-plane with wired
boundary conditions on R−, which consists of an SLEκ that we will denote by γ and a
family of further loops to the right of it. When one explores the CLEκ loops of such a
wired CLEκ that touch [1− ε, 1] starting from 1− ε, and tracing them in the clockwise
direction one after the other, then in the configuration where γ intersects this segment
(i.e., when D(ε) holds), at some point, one has to trace an arc of the loop that γ is part
of, and that connects a point in [1−ε, 1] to a point that lies inR−, as depicted in Fig. 12.
Just before this time, the cross-ratio ct tends to 1 because wt approaches R−, which
implies that it did reach ε7/8 beforehand. Hence, D(ε) is indeed a subset of B(ε).

Suppose now that we are in the case where B(ε) holds but not D′(ε). Then, at the time
σ at which one has completed the loop that one was tracing at time τ , the conditional
distribution in the remaining to be explored domain will be again a CLEκ with just
one wired boundary arc on R−. The conditional probability that D(ε) still holds will
therefore be smaller than the unconditional probability that D(ε) holds because the cross-
ratio corresponding to the four points (oσ , 1,∞, 0) at that time is necessarily smaller
than ε (see Fig. 13). In other words,

P[D(ε)\D′(ε)] ≤ P[B(ε)] × P[D(ε)].
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0 1 ε 1

wt

ot

Fig. 12. The two bold boundary parts get very close

0 1 ε 1

oσ

Fig. 13. At such a time, the conditional probability that D(ε) holds is smaller than the unconditional probability

It finally remains to note that P[B(ε)] → 0 as ε → 0, as a consequence of the bound
P[B(ε)] × H(ε7/8) ≤ P[D(ε)] and our previous estimates of H and P[D(ε)]. Hence,
the conditional probability of D′(ε) given D(ε) tends to 1 as ε → 0, which concludes
the proof. ��

The previous lemma implies in particular that

P[D(ε)]
P[B(ε)] = P[D(ε)|B(ε)] ∼ P[D′(ε)|B(ε)] = H(ε7/8) (5.2)

as ε → 0. The proof of Theorem 1 for κ ∈ (4, 8) will then be complete if we prove the
following estimate:

Lemma 3. As ε → 0,

P[B(ε)] ∼ �(4/κ)

�(2 − 8/κ)�(12/κ − 1)
× (ε1/8)8/κ−1.

Indeed, combining this lemma with (5.1) and (5.2) shows that as x = ε7/8 → 0,

H(x) ∼ P[D(ε)]
P[B(ε)] ∼ ε8/κ−1

(ε1/8)8/κ−1 × �(2 − 8/κ)�(12/κ − 1)

�(1 − 4/κ)�(8/κ)

∼ �(2 − 8/κ)�(12/κ − 1)x8/κ−1

�(1 − 4/κ)�(8/κ)
.

Combining this with (4.4), we see that:

θ−1 = f (1)
�(2 − 8/κ)�(12/κ − 1)

�(1 − 4/κ)�(8/κ)
= �(2 − 8/κ)�(8/κ − 1)

�(1 − 4/κ)�(4/κ)

= sin(4π/κ)

sin(π(8/κ − 1))
= −1

2 cos(4π/κ)

(recalling that �(1 − z)�(z) = π/ sin(π z)).
The proof of Lemma 3 will be presented in Sect. 6.
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0 11 ε

Fig. 14. Sketch of the event C(ε)

5.2. Case of simple CLEs. In the case where κ ∈ (8/3, 4), we are also going to estimate
the asymptotic behavior of H(x) as x → 0, but we need a somewhat different strategy
because SLEκ paths do not hit boundary intervals anymore. The similarity with the case
κ ∈ (4, 8) is that we will again estimate the asymptotic behavior of H(ε) as ε → 0 by
estimating the asymptotic behavior of the probability of another event C(ε), for which
we show that P[C(ε)] ∼ H(ε).

We consider a CLEκ in the upper half-plane, with boundary conditions that are
respectively wired, free, wired and free on R−, [0, 1 − ε], [1 − ε, 1] and [1,∞). So,
we have four strands starting at ∞, 0, 1 − ε and 1, and H(ε) is the probability that the
strand starting from 0 hooks up with the one starting from 1 − ε.

Let us consider an SLEκ path from 0 to∞ in the upper half-plane, and an independent
one-sided restriction measure of exponent α = (6 − κ)/(2κ) attached to the segment
[1 − ε, 1] in the upper half-plane. Let us define C(ε) to be the event that the SLEκ

intersects this restriction sample (see Fig. 14).
The first step in our proof is the following:

Lemma 4. As ε tends to 0, H(ε) ∼ P[C(ε)].
Proof. Let us consider a CLEκ C for κ ∈ (8/3, 4) in the unit disk (with no wired
boundary arc) that has been obtained as the outermost outer boundaries of the clusters
of a Brownian loop-soupL. We will consider two SLEκ(κ −6) explorations of this CLE
as in Sect. 2.3. The first exploration in an SLE−1

κ (κ − 6) that starts from −1 and targets
1, and the second one in an SLE1

κ(κ − 6) that starts from 1 and targets −1.
Let us fix some large constant m and let η = m

√
ε. We start the first Markovian

exploration near −1 targeting 1 and we stop it at the first time t at which the exploration
reaches distance η from−1.We can note that (by conformal invariance of theMarkovian
exploration and by a simple distortion estimate), provided that m has been chosen large
enough, then for all small ε, the probability that the harmonic measure of ∂t in Dt as
seen from 0 is greater than

√
ε is at least 3/4.

After having sampled this first exploration up to time t , we discover the second
exploration from the opposite boundary point 1. Let us define s1 to be the first time
at which this second exploration exits the η-neighborhood of 1, s2 to be that first time
at which the cross-ratio of the corresponding marked points in Dt,s2 is equal to ε, and
finally s = min(s1, s2). We can again note that (provided m has been chosen large
enough, and for all small enough ε), with probability at least 1/2, the cross-ratio of four
marked points in Dt,s1 is greater than ε. Hence, the probability of E(ε) := {s = s2} is
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greater than 1/2 for all small ε. Our definitions of CLEκ with two wired arcs and of the
function H say that given E(ε), the conditional probability of the event U that the four
strands corresponding to the definition of Dt,s hook-up to form one single loop is H(ε).

Our goal is now to estimate this conditional probability P[U |E(ε)] in another way.
First, as we have recalled above, note that conditionally on the first exploration up to
t , the conditional distribution of the Brownian loop-soup in the remaining domain Dt
(with 1 on its boundary) can be decomposed as follows (see [41]): The Brownian loops
that touch ∂t on the one hand (and the union of these loops form a restriction sampleRt
of exponent α = (6− κ)/(2κ) attached to ∂t in Dt ) and the other Brownian loops in Dt
on the other hand (that form an independent Brownian loop-soup in Dt—let us call Ct
the corresponding CLEκ in Dt obtained via the loop-soup clusters of that loop-soup).

Finally, let us denote τ the first time after t at which the first exploration completes
the loop L that it is tracing at time t , and let Dτ and Cτ denote the corresponding domain
and CLE. We can note that we are in the framework of the CLE-exploration-restriction
property explained in Fig. 6: Conditionally on Dt , one considers the CLE Ct in Dt ,
and the independent chord created by the restriction sample Rt , that defines the subset
Dt\Rt of Dt . Then one obtains Dτ by considering the complement in Dt of the union of
Rt with the CLE loops it intersects (and one keeps only the connected component that
has 1 on its boundary). The loops of Cτ are then exactly the loops of Ct that stay in Dτ .
We can note that (by definition) the second exploration is defined to be an SLEκ(κ − 6)
exploration of Dτ (creating the loops of Cτ until the first time at which it hits L (which
is part of the boundary of Dτ ). After the time at which it hits L , it starts tracing that
loop L and will at some time σ̃ then hitsRt . Hence, the exploration-restriction property
applied to Dt and Dt\Rt states that up to σ̃ , the law of this second exploration does
coincide exactly with that of an SLEκ (κ − 6) in Dt (associated with the CLE Ct ).

Hence, on the event where s1 < σ̃ , the second exploration is exactly the same as
the exploration of Ct up to the same time. Here, we can note that when σ ≤ s1, then
necessarily, there exists a Brownian loop in the original loop-soup in the unit disc that
intersects both the η-neighborhood of 1 and −1. The probability of this last event is
easily shown to be bounded by a constant times η4 as η → 0 (because the mass of the
Brownian loops that intersect both these neighborhoods behaves like O(η4)).

Wrapping things up, we see that we can couple the Brownian loops of L in Dt,s with
three (conditionally) independent pieces:

• a Brownian loop-soup in Dt,s ,
• the Brownian loops that touch ∂t and that form a restriction sample of exponent α

attached to ∂t in Dt,s , and
• the Brownian loops that touch ∂ ′

s and that form a restriction sample of exponent α

attached to ∂ ′
s in Dt,s

in such a way that the probability (in this coupling) that the union of these three different
independent pieces does not coincide with the set of Brownian loops of L in Dt,s is
O(η4).

But if we consider the loop-soup clusters formed by the union of these three indepen-
dent pieces, the probability that ∂t and ∂ ′

s are part of the boundary of the same loop-soup
cluster is equal to P[C(ε)] when s = s2. Indeed, the union of the first two pieces will
form the SLEκ and the third will form an independent restriction sample (see Fig. 15).
Hence, we can conclude that

H(ε)P[E] = P[U ∩ E] = P[C(ε)]P[E] + O(η4).
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Fig. 15. The two explorations with the Brownian loops that they discovered (left). The two wired boundaries
are part of the same loop if a CLEκ loops intersects both restriction samples (up to a small probability)

Recall that P[E(ε)] ≥ 1/2 for all small ε. Furthermore, we know by (4.4) that
H(ε)ε1−8/κ tends to a positive constant as ε → 0. Since η4 = m4ε2 = o(ε8/κ−1), we
can therefore finally conclude that P[C(ε)] ∼ H(ε) as ε → 0. ��

The proof of Theorem 1 for κ ∈ (8/3, 4) will then be complete if we establish the
following estimate:

Lemma 5. As ε → 0,

P[C(ε)] ∼ ε8/κ−1

f (1) × (−2 cos(4π/κ))
.

Indeed, combining this lemma with (4.4) and Lemma 4 then shows that θ = −2
cos(4π/κ). The proof of Lemma 5 will be explained in Sect. 7.

6. Proof of Lemma 3

In the present section,wewill prove Lemma3. Thiswill complete the proof of Theorem1
in the case where κ ∈ (4, 8).

Let us first derive another result that will be useful in our proof, and that deals with
the usual CLEκ (with no wired boundary part) for κ ∈ (4, 8). Note that 8/κ ∈ (1, 2) for
κ ∈ (4, 8) (we will implicitly and repeatedly use this fact in the following arguments).
Let (wt ) be an SLEκ(κ − 6) in H starting from w, with initial marked point o ≥ w,
and targeting ∞. Denote by gt the usual Loewner map from the unbounded connected
component of the complement of w[0, t] in H into H such that gt (z) = z + o(1) as
z → ∞.

Recall that the law of the driving function Wt := gt (wt ) of this Loewner chain can
be sampled from using the following two steps:

• Sample a reflected Bessel process X with dimension d = 3 − 8/κ ∈ (1, 2) started
from (o −w)/

√
κ (at the end of the day, the process

√
κ Xt will be equal to Ot − Wt ,

the difference between the force point and the driving process).
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o = w = 0 b = 1

wt

ot

Fig. 16. Sketch of the SLEκ (κ − 6) for w = o = 0. Here, b = 1, t < Tb and the dashed curve corresponds
to the curve between t and Tb

• Set

Ot = o +
∫ t

0

2√
κ Xs

ds and Wt = Ot − √
κ Xt .

Note that the image under gt of the leftmost point ot on [o,∞) that has not been
swallowed by the Loewner chain before time t is equal to Ot . For each b > o, let Tb
be the first time at which b is swallowed by the Loewner chain (see Fig. 16 for the case
w = o). As the Bessel process dimension d is strictly between 1 and 2, we have that
Tb < ∞ almost surely.

We will also use the local time at the origin of the process O −W , which is a multiple
of the local time at the origin of the Bessel process X . More precisely, we define this
local time as

�t := lim
ε→0

ε8/κ−1N 0→ε
t

where N 0→ε
t denotes the number of upcrossings from 0 to ε by O − W before time t .

Let τε be the first time that O − W hits ε. Due to our particular normalization for the
definition of the local time, the expected value of � at time τε is exactly ε8/κ−1 when
w = o = 0.

The goal of this section is to prove the following fact, that can be viewed as a statement
about the Bessel flow.

Lemma 6. Suppose that w = o = 0. Then

E[�T1 ] = �(4/κ)

�(2 − 8/κ)�(12/κ − 1)
.

Proof. Let us define the more general function L(a, b) to be the expected value of �Tb

when the process is started from w = −a, o = 0. By scaling, we have that

L(a, b) = b8/κ−1L(a/b, 1).

Let us define the function U on [1,∞) so that L(a/b, 1) = U (a/b + 1). With this
notation, our goal is therefore to determine

u1 := L(0, 1) = U (1).
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When the Bessel process evolves away from 0, the local time at zero does not change.
Hence, L(Ot − Wt , gt (1) − Ot ) is a local martingale up to the first hitting time of 0
by O − W . This implies (using the standard arguments for SLE martingales) that U is
smooth on (1,∞) and satisfies

(1 − x)xU ′′(x) +

(
4

κ
+

(
4

κ
− 2

)
x

)
U ′(x) +

4

κ

(
8

κ
− 1

)
U (x) = 0

with boundary conditions

U (1) = u1 and lim
x→∞ U (x) = 0.

In other words (see “Appendix B”), the function U is equal to

U (x) = u1x−4/κ F(4/κ, 1, 12/κ; 1/x)

F(4/κ, 1, 12/κ; 1)
(note that the ODE is exactly Equation (7.2) for the coefficients a = c = 4/κ , b =
1 − 8/κ , so that U is a multiple of the function h1 defined in the “Appendix B”).

Our goal in the next paragraph is to show that

L(0, 1) = L(h, 1) + h8/κ−1 + o(h8/κ−1) as h → 0. (6.1)

This will then enable us to identify u1. Let us define for all positive h,

Yh := 1τh<T1(gτh (1) − Oτh ).

Note that by the monotonicity properties of the Bessel flow, Yh ≤ 1 when one starts with
o = w = 0. Using the Markov property at min(T1, τh) and the additivity of the local
time we see that

L(0, 1) = E[�T1 ] = E[1T1<τh �T1 ] + E[1τh<T1�τh ] + E[L(h, Yh)]
(note that by definition L(h, Yh) = 1τh<T1 L(h, Yh)). Using the scaling property, the fact
that the probability that T1/h < τ1 tends to 0 as h → 0, and the fact thatE[�τh ] = h8/κ−1

(this is where we use our actual normalization in the definition of the local time), we get
that

|E[1T1<τh �T1 ] + E[1τh<T1�τh ] − h8/κ−1|
= E[1T1<τh (�τh − �T1)] ≤ E[1T1<τh �τh ] = h8/κ−1E[1T1/h<τ1�τ1 ] = o(h8/κ−1).

It therefore remains to estimate E[L(h, 1) − L(h, Yh)]. Note that once we condition
on Yh = y, we can use the same flow to couple the realizations that lead to L(h, 1)
and L(h, y) (defined as expected values of local times). The difference between the
two quantities will therefore be due to the configurations in this coupling where the
SLEκ(κ−6) hits the interval [y, 1] for which one then counts the local time accumulated
after that time but before T1. This is an event that has probability bounded by a constant
times (1−y)β for someβ> 0.We remark that it is in fact known thatβ = (κ−4)2/(2κ) >

0, see [39, Theorem 1.8]. For what follows, we will only use that β > 0 and in fact not
need such a precise bound. Hence, for some constant C > 0 and all h > 0 and y < 1,
we have that

|L(h, 1) − L(h, y)| ≤ C(1 − y)β+8/κ−1
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and therefore

|E[L(h, Yh)] − L(h, 1)|
≤ CE[(1 − Yh)β+8/κ−1] ≤ C ′(E[|Oτh |β+8/κ−1] + E[1τh<T1 |1 − gτh (1)|β+8/κ−1])

where C ′ > 0 is a constant. By scaling, we note that

E[|Oτh |β+8/κ−1] = h8/κ−1+βE[|Oτ1 |β+8/κ−1].
On the other hand, it is also easy to see that E[1τh<T1 |1 − gτh (1)|β+8/κ−1]) decays to 0
faster than h8/κ−1+β as well: Typically, τh will be of order h2 (because of scaling), so
that gτh (1) − 1 will be of order h2 as well. Simple estimates about the probability that
τh is exceptionally large or W fluctuates exceptionally on a small time interval allows
us to conclude. Putting the pieces together, we then get indeed (6.1).

This is now enough to pin down the exact value of u1. Indeed (6.1) implies that when
h → 0,

U (1) − U (1 + h) ∼ h8/κ−1.

Since we know that in the right neighborhood of 1, U has to be a linear combination
of F(4/κ, 1 − 8/κ, 2 − 8/κ; 1 − x) and of (x − 1)8/κ F(0, 12/κ − 1, 8/κ; 1 − x), by
looking at the expansion near 1, we conclude that

U (x) = u1F(4/κ, 1 − 8/κ, 2 − 8/κ; 1 − x) − (x − 1)8/κ F(0, 12/κ − 1, 8/κ; 1 − x).

On the other hand, we have seen that U is also a multiple of the function x−4/κ F(4/κ, 1,
12/κ; 1/x), and by comparing this with the connection formula (7.4) that relates these
three hypergeometric functions, we see that −u1 is the ratio of the two coefficients on
the right-hand side of (7.4) for the appropriate choice of a = 4/κ , b = 1 − 8/κ and
c = 4/κ , and we obtain that

u1 = −�(8/κ − 1)�(4/κ)

�(8/κ)�(12/κ − 1)�(1 − 8/κ)

which proves the claim. ��
This lemma will be used in the proof of Lemma 3 via the following corollary:

Corollary 7. Assume that w = b = 0. Then, as y → 0,

P[τy3/4 < Ty] ∼ (y1/4)8/κ−1 × �(4/κ)

�(2 − 8/κ)�(12/κ − 1)
.

Proof. Let us first consider the Poisson point process of excursions (eli ) away from
the origin of the process O − W , indexed by the Bessel local time (with our choice
of normalization). In other words, for each given l, the ordered concatenation of all
the excursions eli with li < l is the process O − W up to the first time at which its
local time at 0 hits l. Clearly, for any positive u, the number of excursions in the sets
(eli , li ∈ [ku, (k+1)u)) that reach level y3/4 for k ≥ 0 form an i.i.d. sequence of Poisson
random variables with mean u(y3/4)−(8/κ−1). It then follows from Wald’s identity, that
the number N (u) of excursions of O − W that reach level y3/4 and that have been
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completed before the first time Ty(u) after Ty at which the local time at 0 of O − W is
a multiple of u is equal to

E[N (u)] = u(y3/4)−(8/κ−1) × E[�Ty(u)/u] = (y3/4)−(8/κ−1) × E[�Ty(u)].
Letting u → 0, we deduce by monotone convergence the corresponding Wald’s identity
for the Poisson process: The expectation of the numberN of excursions of O − W that
reach level y3/4 and that have been completed before time Ty is

E[N ] = (y3/4)−(8/κ−1) × E[�Ty ].
By scaling, this quantity is also equal to

(y1/4)8/κ−1 × E[�T1 ].
It is also easy to see, using similar arguments, that P[N ≥ n] ≤ P[N ≥ 1]n , so that

in fact,

E[N1N≥2] = P[N ≥ 2] +
∑

n≥2

P[N ≥ n] ≤ 4P[N ≥ 1]2

for all small enough y. It follows that as y → 0,

P[τy3/4 < Ty] = P[N ≥ 1] ∼ P[N = 1] ∼ E[N ]
∼ �(4/κ)

�(2 − 8/κ)�(12/κ − 1)
× (y1/4)8/κ−1.

��
Let us now explain how to deduce Lemma 3 from Corollary 7:

Proof of Lemma 3. Instead of working with the CLEκ inH with wired boundary onR−
and using the additional marked points at 1 − ε and 1, we will instead work in the unit
disk D and choose the four points aε, aε, −aε and −aε on the unit circle, where aε is
chosen very close to 1 so that the cross-ratio corresponding to in the unit disk these four
points is exactly ε. Note that as ε → 0, |aε − 1| is of the order of √

ε. These four points
define two small boundary arcs ∂ε and −∂ε, respectively near 1 and −1.

By conformal invariance, the event B(ε) becomes the event B ′(ε) that, if one looks
at the CLE with wired boundary condition on −∂ε and explores the loops (of this wired
CLE) attached to ∂ε in their order of appearance starting from aε, one finds a time at
which the cross-ratio between (−aε,−aε, wt , ot ) in the domain Dt reaches ε7/8. Note
already that this will occur for loops attached to ∂ε that have diameter of at least O(ε3/8),
because the arc −∂ε has a length of the order of ε1/2. The goal of the next few lines is
to estimate the probability of B(ε) with accuracy.

In order to apply our previous estimates for non-conditioned CLE’s, we first sample
the SLEκ γ that joins the end-points of −∂ε. By the same 8/κ − 1 boundary exponent
for SLE, we know that the probability that this SLE has diameter greater than ε1/4 is
bounded by a constant times (ε1/4)8/κ−1 (recall that the endpoints of this SLE are at
distance ε1/2 from each other, so this event corresponds roughly to the event that an SLE
from 0 to 1 in the upper half-plane reaches distance ε1/4/ε1/2 = ε−1/4). On the event
that the diameter of γ is smaller than ε1/4 (which has probability very close to 1 by the
previous estimate), we now look at the CLE in the complement of this small SLE: We
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aε

∂ε

aε

−aε

−aε

−∂ε

aε

∂ε

aε

Fig. 17. The SLE from −aε to −aε in the wired CLEκ . The uniformizing map onto the unit disk is very close
to the identity in the right-hand side of the disk, and therefore also near ∂ε

can first map the connected component of the complement of this curve which has ∂ε

on its boundary back to the unit disk in such a way that aε, aε are fixed and (say) the
two extremal points on γ ∩ ∂D are mapped onto symmetric points on the real axis—this
defines a conformal map ϕ that (by standard distortion estimates) is uniformly very close
to the identity map (the derivative of this map is uniformly close to 1 on the right-half
of the unit disk) in the neighborhood of 1.

We can also now discover the CLE in this disk, by using the SLEκ(κ −6) exploration
in the upper half-plane (which defines a process W and O) and mapping it back onto
the disk via the conformal map from H onto D that maps ∞ to −1 and is normalized in
the neighborhood of ∞. Then, distortion estimates for conformal maps show also that
the cross-ratio corresponding to the four points (−aε,−aε, wt , ot ) in the domain Dt is
very close to

√
ε times Wt − Ot (i.e., the ratio between the two is uniformly close to 1,

as long as the SLEκ(κ − 6) stays in the right-hand half of the unit disk).
Note finally that if the SLEκ(κ − 6) starting from aε up to the swallowing time of

aε does not stay in the right-hand side of the unit disc, then there exists a CLE loop in
the unit disk of diameter at least 1/4 that intersects the small arc (of size of order

√
ε)

between aε and aε. We will show in Lemma 8 (in a conformally equivalent setting) that
this quantity is bounded by a constant times (

√
ε)8/κ−1 which is an o((ε1/4)8/κ−1).

Wrapping things up, we get that the probability of B(ε) is up to an error of order
O(ε1/4)8/κ−1) asymptotic to the probability that O − W hits ε3/8 before swallowing ∂ε

i.e., to P[τy3/4 < Ty] in Corollary 7 for y = √
ε. Hence, we conclude that indeed,

P[B(ε)] ∼ (ε1/8)8/κ−1 × �(4/κ)

�(2 − 8/κ)�(12/κ − 1)
,

which concludes the proof of Lemma 3. ��
It now finally remains to prove the following fact:

Lemma 8. Consider a CLEκ in the upper half-plane with κ ∈ (4, 8). Then there exists
a constant C = C(κ) such that the probability of the event ER that there exists a CLEκ

loop that intersects both the circle of radius R and the interval [−1, 1] is bounded by
C × R−(8/κ−1) for all R > 2.
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Proof. Here are one possible way to deduce this result from our previous estimates:
Let us first discover the CLEκ loops that intersect [−1, 1] from left to right (and

tracing the loops in a clockwise manner), starting from−1 via an SLEκ(κ −6) started at
−1. Then, the event ER holds if and only if this SLEκ(κ −6) will hit the circle of radius
R for the first time (at some point R exp(iθ−)) before it disconnects 1 from infinity.

One can also use the symmetric procedurewith respect to the imaginary axis: One can
start from1 and discover the loops from right to left, and trace them in a counterclockwise
manner. The event ER holds if and only if this process will hit the circle of radius R (at
some point R exp(iθ+)) before disconnecting −1 from infinity.

Clearly, when ER holds, 0 < θ+ < θ− < π so that at least one of the two events
{θ+ ≤ π/2} and {θ− ≥ π/2} holds. By symmetry, these two events have the same
probability. But if θ− ≥ π/2, then it is easy to see that for some constant c independent
of R, the value of OT −WT corresponding to that hitting time T of the circle of radius R is
greater than some constant c times R: One can for instance bound frombelow (by c1R/y)
the probability that a Brownian motion started from iy for some very large y, hits the
circle of radius R on the side with positive real value, then stays in the positive quadrant
until its imaginary value hits R/2, and then exits the upper half-plane on (−R,−R/2)
without exiting the disk of radius R around the origin—and note that when this event
happens, then necessarily the Brownian motion (obtained by conformal image of the
previous one) started from iy + o(y) exits the upper half-plane in the interval [WT , OT ]
(and this event has probability of order c2(OT − WT )/y as y → ∞).

Hence, we conclude that the probability of ER is bounded by twice the probability
that for the SLEκ(κ − 6) started from −1, O − W reaches cR before swallowing 1,
which is the quantity we have derived the asymptotic behavior of in Corollary 7 (modulo
scaling) ��

7. Proof of Lemma 5

In the present section,wewill prove Lemma5. Thiswill complete the proof of Theorem1
for the remaining case κ ∈ (8/3, 4).

Let us consider γ an SLEκ from 0 to infinity in the upper half-plane, driven by
Wt = √

κβt , and let gt be the uniformizing conformal map from H\γ [0, t] onto H so
that gt (z) = z + o(1) as z → ∞. Recall that ∂t gz(z) = 2/(gt (z) − Wt ).

We denote byR the independent one-sided restriction sample attached to [1− ε, 1].
Our goal is to estimate the probability of the eventC(ε) that γ intersectsR. Let us define
the function Q on (0, 1) by

Q(1 − ε) := 1 − P[C(ε)].
Then,

Q(1 − ε) = P[γ ∩ R = ∅] = lim
t→∞P[γ [0, t] ∩ R = ∅]

= lim
t→∞E

[(
ε2g′

t (1 − ε)g′
t (1)

(gt (1) − gt (1 − ε))2

)α
]

.

If we write It = gt (1) and Vt = gt (1 − ε), then we note that

Q((Vt − Wt )/(It − Wt )) ×
(

ε2g′
t (1 − ε)g′

t (1)

(gt (1) − gt (1 − ε))2

)α
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is a bounded martingale, and we deduce, using the standard machinery that Q is smooth
and is a solution to the ODE

κ

2
x2(x − 1)Q′′(x) + ((κ − 2)x − 2)x Q′(x) − 2α(x − 1)Q(x) = 0

on (0, 1) with boundary conditions Q(0) = 0 and Q(1) = 1. In fact, if we write
Q(x) = x2/κ A(x), then A solves the following hypergeometric differential equation

x(1 − x)A′′ + (−2x + 8/κ)A′ + (16/κ2 − 4/κ)A = 0. (7.1)

This means (see “Appendix B”) in particular that A is a linear combination of the same
function f as in Sect. 4, i.e.,

f (x) := F(4/κ, 1 − 4/κ, 8/κ; x)

and of another function that diverges like x1−8/κ as x → 0+. By the boundary conditions
for Q, we conclude that A is a multiple of f and more precisely that A(x) = f (x)/ f (1),
so that

Q(x) = x2/κ f (x)/ f (1).

Recall that our goal is to estimate P[C(1 − x)] = 1 − Q(x) as x → 1. For this
purpose, we express (via the connection formula (7.3)) the hypergeometric function f
as a linear combination of the two natural independent hypergeometric functions that
solve the same ODE in the neighborhood of 1, i.e., we write f as a linear combination
of

f1(x) := F(4/κ, 1 − 4/κ, 2 − 8/κ; 1 − x)

and of

f2(x) := (1 − x)8/κ−1F(4/κ, 12/κ − 1, 8/κ; 1 − x)

and we get

f (x) = f (1) f1(x) − η f2(x),

where

η := −�(8/κ)�(1 − 8/κ)

�(4/κ)�(1 − 4/κ)
= 1

−2 cos(4π/κ)
.

Hence, we see that as x = 1 − ε → 1,

f (1 − ε) = f (1) − ε f ′(1) − ηε8/κ−1 + O(ε2)

(recall that 1 ≤ 8/κ−1 < 2 because κ ∈ (8/3, 4]).We can note that f ′(1) = −2 f (1)/κ
(which follows for example from (7.1)), so that

f (1 − ε)

f (1)
= 1 +

2

κ
ε − η

f (1)
ε8/κ−1 + O(ε2).

If we now expand Q(1 − ε) = (1 − ε)2/κ f (1 − ε)/ f (1) when ε → 0, we get that

P[C(ε)] = 1 − Q(1 − ε) ∼ η

f (1)
ε8/κ−1,

which concludes the proof.
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Appendix A Connection Probabilities for Discrete O(N) Models

Let us very quickly browse through the properties about hook-up probabilities in squares
of discrete FK(q) percolation models and of O(N ) models that we have been referring
to in this paper. All these facts are elementary and classical (the reader can consult for
instance [13] and the references therein).

We will first describe the example of the fully packed version of the O(N ) model on
the square lattice (which is in fact directly related to the critical FK model on the square
lattice for q = N 2). This fully-packed O(N ) model is themodel where each small square
in the domain is filled with one of the two possible options depicted in Fig. 18.

Then, when one sets boundary conditions as in the middle of Fig. 19, one gets a
collection of loops as in the right of Fig. 19. In the fully-packed O(N ) model, the
probability of a configuration is chosen to be proportional to N L where L is the number
of loops in the configuration. When one explores the tiles of the O(N ) model starting
from two corners, exploring the loops a “discrete Markovian way” (loosely speaking:
one picks a strand emanating from the boundary and explores this strand and the tiles
it traverses, until one completes the loop, and then one picks a new strand from which
to explore without using any information of the not-yet-revealed tiles), one ends up
with a configuration as in Fig. 20. The conditional distribution of the remaining-to-be
discovered configuration is now the discrete analog of our CLEwith twowired boundary
conditions. Examples of the fully-packed O(N ) model with two wired boundary parts in

Fig. 18. The two tiles for the fully packed O(N ) model

Fig. 19. The fully-packed O(N ) model (with free boundary conditions)

http://creativecommons.org/licenses/by/4.0/
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Fig. 20. Exploring the fully packed O(N ) model leads to an O(N ) model with two (longer) wired arcs

Fig. 21. The boundary conditions (left). Rotating the middle configuration by 90 degrees creates exactly one
additional loop. The probability that the boundary arcs hook up into one single loop (as in the middle picture)
is 1/(1 + N )

Fig. 22. The seven tiles

the original square correspond to the choice of boundary conditions depicted in the left
of Fig. 21, where the probability of a configuration is still proportional to the number of
created loops (also taking into account the loops that go through the boundary).

We can note that when one is given a configuration for which the two boundary arcs
are joined together into a single loop, then if one rotates the configuration by 90 degrees
without rotating the boundary conditions, one has a configuration with exactly one more
loop. It therefore follows that the probability that the two boundary arcs are joined into
a single loop is N times smaller than the probability that they are part of two different
loops. In other words, in Fig. 21, the probability of the event that the two wired boundary
arcs are part of the same loop is 1/(1 + N ).

A variation of the previous fully-packed loop model is to allow for additional config-
urations. This time, one considers the square as on the left-hand side of Fig. 19, and an
admissible configuration is when one fills each tile with one of the seven tiles depicted
in Fig. 22, in such a way that one only creates closed loops. One can then choose a
parameter μ, and weight each configuration by N Lμl where l denotes the cumulated
length of all the loops. The previous fully-packed case corresponds to the limit when
μ → ∞. Then exactly the same arguments lead to the definition of the corresponding
model in the square with two wired boundaries, as depicted in Fig. 23, and to the fact
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Fig. 23. The boundary conditions (left). The probability that the boundary arcs hook up into one single loop
is again 1/(1 + N )

that for this model the probability that the two boundary arcs are part of the same loop
is also 1/(1 + N ), regardless of μ. Note that this property of O(N ) models is actually
quite robust and works also for more general models as long as the probability of a
configuration is the product of local weights times N L . It also holds on other lattices, as
long as they have enough symmetries.

The asymptotic behavior of the O(N ) model depends on the choice of μ. It is conjec-
tured (see [20,49]) that when N ≤ 2, for a well-chosen critical value μ(N ), it converges
to a simple CLEκ , while for large μ, it converges to a non-simple CLEκ .

For the FK-percolation model on the square lattice (see for instance [19] and the
references therein for its definition and basic properties), the corresponding crossing
property can be stated as follows. Consider q > 0, and the FK(q) model on the rectangle
[0, n + 1] × [0, n], where the left-hand boundary is wired and the right-hand boundary
is wired (i.e., all points on the left boundary are identified as one single point, and all
points on the right hand boundary are identified as another point). Consider also the
self-dual value of the parameter p, i.e., take p = √

q/(1 +
√

q). Then, the probability
of a left-to-right crossing of this rectangle is 1/(1 +

√
q).

One way to see it is via the usual duality trick because the dual configuration w∗ to a
configuration w is also a critical FK(q) model on the dual graph, which is the rectangle
[1/2, N + 1/2] × [−1/2, N + 1/2] but with the top and bottom sides identified as one
single site (not two as for the left and right boundaries before). Hence, it follows exactly
the same law as w rotated by 90 degrees, except that the configurations get an extra
weight 1/q when there is no top to bottom crossing. Hence, if π is the probability of
a left to right crossing for w, one has 1 − π = π/(π + (1 − π)/q) from which the
statement follows. Another simple way is just to note that if we rotate the picture by
45 degrees, and look at the union of the outer boundaries of the collection of clusters
and of the outer boundaries of dual clusters, one gets exactly the previous fully-packed
O(N ) model with N = √

q , with boundary conditions just as described in the O(N )
case above, so one can apply directly the previous considerations on fully-packed O(N )
models. See also for instance Section 2 of [53], or [13].
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Appendix B Hypergeometric Functions

For the convenience of those readers who are not so acquainted with the basic properties
of hypergeometric functions that we are using (or to refresh their memories), we try
to very briefly recall them in the following page. When a, b, c are real numbers, the
hypergeometric function F(a, b, c; z) = 2F1(a, b, c; z) is defined for all z in the open
unit disk by the power series

F(a, b, c; z) =
∑

n≥0

(a)n(b)n

(c)nn! zn,

where (a)n = a(a + 1) . . . (a + n − 1) is the rising Pochhammer symbol (with the
convention (a)0 = 1). When c > a + b (which is in fact the case for all hypergeometric
functions that wewrite out explicitly as a function of κ in this paper) this series converges
also at z = 1 and the function is continuous on the interval [0, 1]. The value at 1 can
then be expressed in terms of the � function:

F(a, b, c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
.

When a +b > c, then the hypergeometric function F(a, b, c; x) diverges like a constant
times (1 − x)c−a−b when x → 1−. Indeed, one can check that

F(a, b, c; x) = (1 − x)c−a−b F(c − a, c − b, c; x).

The hypergeometric function F(a, b, c; x) is a solution of the hypergeometric dif-
ferential equation

x(1 − x) f ′′ + (c − (a + b + 1)x) f ′ − ab f = 0 (7.2)

on the interval (0, 1). Conversely, it is easy to check that when c is not a non-negative
integer, any solution to this equation on the interval (0, 1) is a linear combination of the
two functions F(a, b, c; x) and x1−c F(1 + a − c, 1 + b − c, 2 − c; x).

If we use the change of variables y = 1− x , we can note that the equation (7.2) gets
transformed into another hypergeometric equation. It therefore follows that a solution
to (7.2) on (0, 1) is also necessarily a linear combination of the two functions

f1(x) := F(a, b, a + b + 1 − c; 1 − x)

f2(x) := (1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x).

In particular, using the particular values of those functions at 0 and 1, one gets that on
(0, 1),

F(a, b, c; x) = �(c)�(c − a − b)

�(c − a)�(c − b)
f1(x) +

�(c)�(a + b − c)

�(a)�(b)
f2(x), (7.3)

which is one of the connection formulas between hypergeometric functions (this is for
instance 15.3.6 in [1]).

Similarly, if one looks for solutions to (7.2) on the interval (1,∞), one can use the
change of variables y = 1/x and see that when a − b is not an integer, such a solution
is necessarily a linear combination of the two functions

h1(x) := x−a F(a, 1 + a − c, 1 + a − b; 1/x),

h2(x) := x−b F(b, 1 + b − c, 1 + b − a; 1/x).
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Again, one can see that when x ∈ (1, 2) such a solution is also a linear combination
of f1 and

f̃2(x) := (x − 1)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x).

In particular,

h1(x) = �(a − b + 1)�(c − a − b)

�(1 − b)�(c − b)
f1(x) +

�(a − b + 1)�(a + b − c)

�(a)�(a − c + 1)
f̃2(x), (7.4)

which is the other connection formula that we use in this paper (note that it describes in
particular the precise asymptotic expansion of h1(x) in the limit when x → 1+).
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