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1. Introduction

Topological insulators (TIs) are a quantum state of matter 
identified a little over ten years ago [1]. They are commonly 
distinguished from trivial insulators by conducting states 
associated with surfaces or interfaces; the dispersion relation 
for these conducting states generally obeys the Dirac equation 
[2, 3]. Key to this classification is the fact that the existence of 
these states is guaranteed by the bulk properties of the topo-
logical insulator relative to the vacuum or more recognisable 
‘trivial’ insulator on the other side of the interface [4, 5].

The electronic structure of TI junctions has been studied 
previously both theoretically and experimentally, often with 

the objective of designing spintronics-type devices or band-
structure engineering towards different states of matter [6–8].
In this work we study the quantum states and dispersion rela-
tions of multiple TI junctions in a single heterostructure, by 
modifying an effective four-band continuum Hamiltonian pre-
viously used to capture the fundamental physics of surface 
states in TIs [9–16]. We apply this to a number of structures
with alternating topological insulator and trivial material 
layers, including conductors. Because of quantum-mechanical 
tunneling by interface states in TIs to adjacent trivial material 
layers, which also results in hybridisation between interface 
states in proximity to each other, we have interface states that 
are not fully localised inside one material. This requires us 
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Abstract
In this article we describe the bulk and interface quantum states of electrons in multi-layer 
heterostructures in one dimension, consisting of topological insulators (TIs) and topologically 
trivial materials. We use and extend an effective four-band continuum Hamiltonian by 
introducing position dependence to the eight material parameters of the Hamiltonian. We are 
able to demonstrate complete conduction-valence band mixing in the interface states. We find 
evidence for topological features of bulk states of multi-layer TI heterostructures, as well as 
demonstrating both complete and incomplete conduction-valence band inversion at different 
bulk state energies. We show that the linear kz terms in the low-energy Hamiltonian, arising 
from overlap of pz orbitals between different atomic layers in the case of chalcogenides, 
control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same 
linear kz terms in the low-energy Hamiltonian affect the material’s ability to form the localised
interface state, and we demonstrate that due to this effect the spin and probability density 
localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that 
controls the magnitude of the overlap of pz orbitals affects the transport characteristics of the 
topologically conducting states, with incomplete topological state localisation resulting in 
increased backscattering.
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to extend the effective four-band continuum Hamiltonian to 
take into account the position dependence of the eight mat
erial parameters it includes.

We consider a set of substitutions in the four-band 
Hamiltonian that allow us to write down a system of posi-
tion-dependent Schrödinger equations  connecting the four 
bands described by the Hamiltonian. The substitutions we 
use are similar to those performed in the effective mass 
approximation for semiconductor junctions—they con-
nect low-energy continuum Hamiltonians for one or more 
bands derived using k · p perturbation theory to a system of 
Schrödinger equations  that contain position-dependent car-
rier masses. These substitutions are derived from making use 
of an envelope function approximation [17, 18]. We dem-
onstrate how to numerically solve the system of position-
dependent Schrödinger equations we obtain by making use of 
the finite difference approximation. Our position-dependent 
effective Hamiltonian applies to real systems and materials, 
but in this work we illustrate it by making use of a series of 
simulated materials defined only by the eight material param
eters of the Hamiltonian, as well as making use of values of 
those parameters that are sometimes used in the description 
of the low-energy behaviour of commonly studied 3D TIs 
Bi2Se3 and Sb2Te3 [13–15, 19].

We aim to demonstrate the expected interface states 
between topological and trivial insulators, and we show that 
these states naturally tunnel into adjacent trivial insulator 
layers and hybridise with other interface states. We show the 
evolution of trivial bulk states into the spin-split interface 
states with changing topological phase. We also investigate 
the band mixing and inversion in both interface and bulk 
states, and look for possible topological features of bulk states. 
Additionally, we investigate the effect that the linear kz term in 
the low-energy Hamiltonian, which represent pz orbitals over-
laps between different atomic layers in chalcogenide crystal 
structures, has on a material’s ability to support localised 
interface states regardless of its topological phase. We investi-
gate this effect using model parameters corresponding to real 
materials.

This paper is organised as follows. Section  2 describes 
the position-dependent effective Hamiltonian we use and 
discusses our numerical approach to solving our effective 
position-dependent Hamiltonian. In section  3 we show the 
electronic states and dispersion relations of multilayer hetero-
structures of topological and trivial materials as a function of 
changing material parameters, demonstrating a series of new 
physical effects. Section 4 contains our conclusions.

2.  Model

2.1.  Effective Hamiltonian

The Hamiltonian H used for bulk materials here is a standard 
4-band model, based on that used by Liu et al [13] which can 
be written as (ignoring the k3 terms)

H(k) = C(k)I4 + M(k)Γ5 + BkzΓ4 − A(kxΓ2 − kyΓ1)� (1)

where I is the 4 × 4 identity matrix,

C(k) = C0 + C1k2
z + C2|k‖|2

M(k) = M0 + M1k2
z + M2|k‖|2

k‖ = kx − iky

�

(2)

Γ5 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ,Γ4 =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 ,

Γ2 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 ,Γ1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

The constants (C0, C1, C2, M0, M1, M2, A, B) in these defini-
tions are material-dependent parameters; the interpretation 
of these parameters arises from k · p theory and their spe-
cific values for a particular material can be extracted from ab 
initio calculations or experiments. Broadly speaking, C(k) 
represents the overall elliptical dispersion relation, M0 is the 
bulk gap at the Γ point which can be positive or negative, 
and A and B are Rashba-type spin–orbit interaction param
eters. M1 and M2 describe the effective masses of the quasi-
particles formed by the hybridised atomic orbitals at k = 0 , 
which form the basis set in which this Hamiltonian is written. 
This Hamiltonian describes topologically distinct phases for 
M0  >  0 and M0  <  0 [13, 15, 20] (see also appendix B), and 
this is the parameter we use in our simulations to continu-
ously change our structures from TI to non-TI and back1. 
Since we are going to be looking only at kx dispersions in 
this paper, we will neglect all the ky terms in what follows. 
These can easily be added back in and treated the same way 
as kx terms.

It is important to note that this Hamiltonian has a spin 
degeneracy in its energy bands. This is due to its overall time-
reversal invariant nature, a key feature of Z2-invariant TIs [4].

We are interested in obtaining solutions to Hamiltonian 
(1) in systems that are bulk-like in two of three dimensions  
(x, y), and contain a series of interfaces in the third dimension 
(z) represented by infinite 2D planes in the x and y dimen-
sions. We follow the literature (see for example [21–23]) in 
performing the standard substitution

kz → −i∂z� (3)

in equation  (1) to obtain the time-independent Schrödinger 
equation

H(kx, ky)Ψ(z) = EΨ(z).� (4)

In order to simulate the changing of material parameters 
across an interface, we will need to extend equation (1).

The approach to this problem pursued here is based on the 
envelope function approximation (EFA), commonly in use 
in traditional semiconductor physics [24, 25]. In semicon-
ductors, the EFA leads to the effective mass approximation, 
which has been succesfully used to analyse semiconductor 

1 A number of different material parameter values are given in [13] that cor-
respond to different compounds.
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heterostructures by means of a single-band position-dependent 
Schrödinger equation  [17], where the effective mass of the 
carriers varies with position. In line with the effective mass 
approximation in semiconductors, our position-dependent 
equation  can be obtained from effective k · p Hamiltonians 
such as equation  (1) by substituting k → −i∇, and writing 
in the position dependence for our material parameters 
(C0(z), C1(z), C2(z), M0(z), M1(z), M2(z), A(z), B(z)). We will 
also need to make changes to preserve the hermiticity of the 
model—these are discussed in the next section.

2.2.  Numerical approach

We need to rewrite equation (4) after performing the substitu-
tion in equation (3) such that it is Hermitian in regions where 
the material parameters are changing. This approach is similar 
to that historically taken in other materials e.g. wurtzite semi-
conductor heterostructures [26], and has also been published 
recently elsewhere specifically for TIs [27]. For this we use 
the literature standard form of the kinetic energy (see [17, 18, 
24, 25]). The relevant terms that need to be rewritten are

−C1∂
2
z Ψ → −∂z(C1∂zΨ)

−M1Γ5∂
2
z Ψ → −Γ5∂z(M1∂zΨ)

−iBΓ4∂zΨ → − i
2
Γ4{B, ∂z}Ψ

�

(5)

where the curly braces indicate the usual anticommutation 
relation.

We now integrate equation  (4) with respect to z from a 
point −ε just to the left of the interface at z  =  0 to a point ε just 
to the right of the interface. Using equations (5) and (3) we get

∫ ε

−ε

HzΨdz =
∫ ε

−ε

(EΨ−H0Ψ) dz� (6)

where

Hz = −∂z(C1∂z)− Γ5∂z(M1∂z)−
i
2
Γ4{B, ∂z}

H0 = (C0 + C2k2
x) + (M0 + M2k2

x)Γ5 − AkxΓ2.
�

(7)

In order to solve it numerically, we would like to turn equa-
tion (6) into a discretised equation. For the purposes of inte-
gration we begin by discretising the position variable z such 
that

z → zi = i ·∆z� (8)

where i is our new lattice index variable and ∆z  is the lat-
tice spacing. We introduce the wavefunction values Ψi at each 
point

Ψi = Ψ(i ·∆z).� (9)

We perform the integral on the right-hand side of equation (6) 

by setting ε = ∆z
2  to obtain

∫ ε

−ε

(E −H0)Ψdz � (E −H(0)
0 )Ψ0∆z� (10)

where the superscript (0) denotes that H0 uses the material 
parameters for site 0, which here is the interface site. Because 

we assume that the junction is symmetric, the interface site has 
material parameter values equal to the average of the material 
parameter values either side of the interface. We evaluate the 

integral on the left-hand side of equation (6) by parts and eval-

uate it at −∆z
2  and ∆z

2  by interpolation using the approximations

∂zΨ(−∆z/2) � 1
∆z

(Ψ0 −Ψ−1)

∂zΨ(∆z/2) � 1
∆z

(Ψ1 −Ψ0)

Ψ(−∆z/2) � 1
2
(Ψ0 +Ψ−1)

Ψ(∆z/2) � 1
2
(Ψ1 +Ψ0).

�

(11)

This finally allows us to rewrite equation (6) as

T (−1)Ψ−1 +D(0)Ψ0 + T (1)†Ψ1 = EΨ0� (12)

where

D(i) =

(
C(i)

0 − 2C(i)
1

∆z2 + C(i)
2 k2

x

)
I4

+

(
M(i)

0 − 2M(i)
1

∆z2 + M(i)
2 k2

x

)
Γ5 − A(i)kxΓ2

T (i) =
C(i)

1

∆z2 I+
M(i)

1

∆z2 Γ5 +
iB(i)

2∆z
Γ4.

�

(13)

The superscript (i) denotes the value of the material param
eter for site i. Note that equation (12) is exactly the same as a 
normal second-order finite difference equation if no change in 
material parameters occurs across the interface—see appendix 
A. Equation (12) can also be extended to cover the application 
of a constant magnetic field in the y-direction by making use 
of the Peierls substitution kx → kx +

e
�Byz , where By is the 

field strength.
Before our results we briefly cover the numerical detail of 

our simulations. Other than in section 3.6, we modelled 15 nm 
heterostructures using 150 lattice points (1 Å lattice spacing), 
with interface sites at lattice points 31 and 119. The results in 
section 3.6 were obtained using 100 lattice points to simulate 
10 nm, with no interface sites as we simulated a single slab 
of Sb2Te3. Thicknesses were chosen to minimise the amount 
of coupling between interface or edge states, such as that 

Table 1.  Table of Hamiltonian parameters used for each 
figure except where indicated on the figure; non-zero values in this 
table are taken from [13] for Bi2Se3.

Parameter Value

A/eV Å 3.33
B/eV Å 2.26
C0/eV 0.00

C1/eV Å
2

0.00

C2/eV Å
2

0.00
M0/eV −0.28

M1/eV Å
2

6.86

M2/eV Å
2

44.50

J. Phys.: Condens. Matter 30 (2018) 235001
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described in [12]—this can be seen wherever we plot band-
structures with Dirac cones, where the gap in the cone that 
would exist due to coupling is small enough to be invisible.

3.  Results and discussion

3.1.  Emergence of spin-polarised heterostructure interface 
states tunneling into adjacent trivial insulators

We have stated previously that the Hamiltonian (1) has dis-
tinct topological phases. These phases are controlled by the 
material parameter M0, which is equal to the Γ-point energy 
gap between the two electronic states nearest to the Fermi 

level. For topologically non-trivial materials, this parameter is 
negative, and it indicates a crossing over of bands has occured. 
In Bi2Se3, this is the gap between the lowest bonding orbital 
of the hybridised Bi p-orbitals (labelled |P1+−,±1/2〉), and 
the highest antibonding orbital of the hybridised Se p-orbitals 
(labelled |P2−+,±1/2〉)—see [13].

In a multi-layer heterostructure, we can observe the emer-
gence of the interface states by changing the parameter M0 
in some part of the structure. Beginning with a heterostruc-
ture of topologically-trivial materials, each with a positive 
gap M0, we would expect to see a change in total probability 
distribution of the lowest conduction and highest valence sub-
bands as M0 decreases and becomes negative in part of the 

Figure 1.  (a) Illustration of device, including the gap parameter used for each part. (b) Bandstructure of entire device. (c) Probability 
distribution of states marked in the bandstructure (b). (d) 〈σ̂y〉 plotted on top of the probability distribution shown in (c), indicating the spin 
associated with each wavefunction. Parameters given in table 1.

J. Phys.: Condens. Matter 30 (2018) 235001



A Nikolic et al

5

heterostructure. Figure 1 shows how they change from bulk-
like states that resemble closely an electron trapped in a poten-
tial well, to states localised towards the material interfaces. 
Also in figure 1, we show how the subbands of the full hetero-
structure change as the gap M0 closes and becomes negative. 
The conduction and valence bands move towards each other 
until they meet, and as they do they lose their parabolic char-
acter and adopt a Dirac-like linear dispersion relation about 
the crossing point—see figures C1 and C2 in appendix C.

Figure 1 also shows how the resulting interface states are 
spin-polarised—once the gap M0 becomes negative enough, 
there is almost no overlap between the spin-up and spin-down 
interface states. This is one of the reasons for the lack of back-
scattering mechanisms for electrons travelling along these inter-
face states—in order for such an event to occur, both the crystal 
momentum and the spin of the electron must be reversed. In 
addition, it is clear that even before the change of topological 
phase there is some separation of the spin channels—this is due 
to the presence of the spin–orbit interaction, which is controlled 
by the parameters A and B in the Hamiltonian (1).

3.2.  Evidence of complete mixing of conduction and valence 
orbitals in the topological interface state

The states presented in figure 1 are shown as probability distri-
butions in space over all four basis states of the Hamiltonian. 

However, we would not necessarily expect the electronic 
occupation of each basis state of the Hamiltonian to be equal 
in each case.

One important point about the topological interface states 
in a finite-size device such as the ones studied in this work, 
is that they are an example of one of many subbands that are 
formed in a finite device. These subbands are distinct from 
the bulk bands that are described at the start of section 3.1, 
labelled |P1+−,±1/2〉 and |P2−+,±1/2〉. However, this section, 
and section 3.4, are concerned with the four components of a 
particular subband; those four components can be traced back 
to the bulk states |P1+−,±1/2〉 and |P2−+,±1/2〉 by examining 
the form of the numerical Hamiltonian (12).

In figure 2, we plot the occupation of each basis orbital as 
a function of position in the heterostructure, for one of the two 
highest valence orbitals. We find that, for the topologically 
trivial cases where the gap M0 is positive throughout the struc-
ture, the electrons in the highest valence band occupy primarily 
the |P2−+,±1/2〉 states. We find this to be an expected result—
before the band inversion caused by the spin–orbit interaction, 
the P2 orbitals represent the highest energy orbital that is still 
below the Fermi level [13]. As the gap M0 is made negative for 
the part of the heterostructure indicated on figure 2, we see for 
the highest valence orbital that the |P1+−,±1/2〉 states begin to 
match the |P2−+,±1/2〉 states in terms of occupation. It is clear 
that the surface states are formed of a mixture of the two sets 

Figure 2.  State from subband n  =  −1 of device as illustrated in figure 1—probability densities plotted by band component. Parameters 
given in table 1.

J. Phys.: Condens. Matter 30 (2018) 235001
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of states, as the spin orbit interaction in the crystal brings them 
together and inverts them, changing the topological phase of 
the material.

3.3.  Evidence of topological features of heterostructure  
bulk states

We turn our attention now to the bulk states just above and just 
below the bands that form the interface states. We define here 
bulk states as those states which are associated with bands that 
remain parabolic or quartic throughout our parameter sweep; 
these are states with probability distributions which are 
spread further away from the material interface. These states 

also experience some changes in probability distribution and 
orbital composition as the relevant part of the heterostructure 
changes topological phase.

Figures 3 and 4 plot the evolution of the bulk valence bands 
closest to the interface states. We can see that at the high-
lighted point kx  =  0.2nm−1 on the bandstructure, the prob-
ability distribution of the resulting state shifts with the change 
in topological phase from a bimodal distribution to one with 
a single maximum. Both the initial and the final states shown 
are reminiscent of the states of an electron in a potential 
well, but we have moved from two nodes to one node. The 
quantized electron in a potential well has states such that each 
extra node—each additional maximum in the probability 

Figure 3.  (a) Illustration of device, including the gap parameter used for each part. (b) Bandstructure of entire device. (c) Probability 
distribution of states marked in the bandstructure (b). (d) 〈σ̂y〉 plotted on top of the probability distribution shown in (c), indicating the spin 
associated with each wavefunction. Parameters given in table 1.

J. Phys.: Condens. Matter 30 (2018) 235001
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distribution—represents an additional unit of energy. We can 
see that where we have lost the lowest energy, zero-node dis-
tribution state in figure 1 as it forms into an interface state, we 
have gained a new zero-node distribution state in figures 3 and 
4. However, the shapes of these distributions are not identical. 
We can see from figures 3 and 4 compared to figure 1 that the 
zero-node bulk state has an additional kink towards the edge 
of the heterostructure, near to the interface (highlighted in the 

figure). It appears likely that this bulk state is affected by the 
topological phase transition in this area.

It is also clear from figures 3 and 4 that there is some spin 
polarisation across the heterostructure in these bulk states. 
Again, this is due to the spin orbit interaction in these mat
erials, and the non-zero crystal momentum of these states. We 
would expect to see similar effects in all of the states created 
by our simulations.

Figure 4.  (a) Illustration of device, including the gap parameter used for each part. (b) Bandstructure of entire device. (c) Probability 
distribution of states marked in the bandstructure (b). (d) 〈σ̂y〉 plotted on top of the probability distribution shown in (c), indicating the spin 
associated with each wavefunction. Parameters given in table 1.

J. Phys.: Condens. Matter 30 (2018) 235001
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3.4.  Evidence of complete and incomplete band inversion  
in heterostructure bulk states of different energies relative  
to the gap

We can also demonstrate bulk band inversion within the het-
erostructure by examining the composition of the bulk state 
in terms of the Hamiltonian basis states—the |P1+−,±1/2〉 
bonding states and the |P2−+,±1/2〉 antibonding states, as 
discussed previously. Figure 5 shows the probability distri-
bution of one of the highest energy valence bulk states, plot-
ting the magnitude of each of the four components. We can 
see that much like in the case of the interface state that arises 
from the valence band, the state starts of dominated by the 
|P2−+,±1/2〉 antibonding states. As the gap M0 of the struc-
ture is changed, we find that occupation of the |P1+−,±1/2〉 
bonding states increases, and by the time the structure has 
reached a negative enough gap, the |P1+−,±1/2〉 bonding 
states become the dominant component of this valence 
bulk state. While this image is not included here, we find 
the same kind of inversion from |P1+−,±1/2〉 bonding states 
to |P2−+,±1/2〉 antibonding states takes place in the lowest 
parts of the conduction band.

However, further away from the gap the inversion is less 
complete, and in fact no inversion occurs in the trivial insu-
lator parts of the heterostructure. We illustrate this phenom
enon in figure  6. Inside the topological insulator, the bulk 

state contains a mixture of the |P1+−,±1/2〉 bonding and 
|P2−+,±1/2〉 antibonding states, while inside the trivial insu-
lators the bulk state contains only |P2−+,±1/2〉 antibonding 
states. This fits with the expected ordering of the bonding and 
antibonding states in trivial and TIs. It is also to be expected 
that the further away a band is from the gap, the less affected 
it will be by the topological crossover of the bonding and anti-
bonding states.

3.5.  Demonstrating control of interface state tunneling  
into adjacent trivial insulator by pz-orbital interactions

In the devices studied so far, we have been focusing on the 
effect of changing the primary topological parameter, the band 
gap M0. We have been studying the topological phase trans
ition controlled by this parameter. However, there are more 
subtle effects taking place at the TI-trivial insulator boundary 
that are controlled by other parameters in the Hamiltonian. In 
this section and the next we consider the parameter B, which 
is found from k · p theory to be [13]

B =
�
m
〈P1+−,

1
2
|pz|P2−+,

1
2
〉

= − �
m
〈P1+−,−1

2
|pz|P2−

+,−1
2
〉.

�
(14)

Figure 5.  State from subband n  =  −2 of device as illustrated in figure 1—probability densities plotted by band component. Parameters 
given in table 1.

J. Phys.: Condens. Matter 30 (2018) 235001
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In the absence of the spin–orbit interaction, this parameter 
is zero [25]. From equation  (14) and by comparison with 
Hamiltonian (1), we can see that the B parameter is respon-
sible for mixing |P1+−,±1/2〉 bonding and |P2−+,±1/2〉 anti-
bonding states. Having seen in previous sections  that the 
TI-trivial insulator interface state is a mixed state of the 
bonding and antibonding states, we would expect to see 
some impact on the interface state from variations of the B 
parameter.

In figure 7 we plot the total probability density of one of 
the interface states across a trivial-TI-trivial heterostructure 
for four different values of B. We find in this figure that the 
B parameter controls the depth of tunneling of the interface 
state into the trivial insulator, separately from the bandgap of 
the trivial insulator. Decreasing the B parameter in the trivial 
insulator relative to the topological insulator decreases the 
tunneling depth of the interface state into the trivial insulator. 
Similarly, increasing the B parameter in the trivial insulator 
will increase the amount of tunneling.

On an atomic level, the overlap in equation (14) is dominated 
by the interaction of the pz orbitals of Bi and Se respectively (in 
the case of Bi2Se3, or their equivalent atoms in other chalcoge-
nides and alloys of chalcogenides). These will be affected by 
the atomic lattice spacing and the relevant outmost shells of the 

atoms in question (6p for Bi, 5p for Sb and Te, 4p for Se). We 
would expect, for example, that the overlap with the 5p orbitals 
of Sb atoms would be smaller than the 6p orbitals of Bi, which 
have probability density spread much further away from the 
nucleus. We explore this prediction in the next section.

3.6.  Evidence of incomplete localisation of surface states  
of Sb2Te3 due to reduced pz-orbital interactions

So far we have used models with particle-hole symmetry to 
examine effects inside TI-trivial insulator heterostructures. 
Here, we employ parameters for a known material, Sb2Te3, 
to identify new features in its surface states. We established in 
the previous section that the atomic pz orbital overlap between 
the different layers of the chalcogenide affects the formation 
of the interface state. This overlap is controlled in Hamiltonian 
(1) by the parameter B. [13] gives material parameter values 
for each of three materials, which we reproduce in table 2.

By comparing the entries for M0 and B for the two mat
erials, we can see that the spin–orbit coupling that inverts 
the bonding and antibonding bands is weaker in Sb2Te3 than 
in Bi2Se3. With the lattice vectors of Sb2Te3 being similar 
to those of Bi2Se3 [19, 28], one possible suggestion for the 
weaker pz overlap is that the much closer distribution of the 

Figure 6.  State from subband n  =  −3 of device as illustrated in figure 1—probability densities plotted by band component. Parameters 
given in table 1.
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Sb 5pz orbital compared to the Bi 6pz orbital, as well as the 
reduced spin orbit interaction due to decreased mass, is not 
offset by the increase in ionic mass and orbital diffusion by 

moving from the Se ion and 4pz orbital to the Te ion and 5pz 
orbital.

Figure 8 shows the low-energy bandstructure of Sb2Te3 
as reproduced by Hamiltonian (1) using the parameters from 
table 2, and the probability distribution and spin expectation 
value of the surface state that is indicated on the bandstruc-
ture. We can see that the surface state is no longer confined 
around the edge, but has nodes further into the core of the TI 
slab. In fact, there are spin up and spin down nodes overlap-
ping in the centre of the structure, which creates the possibility 
for backscattering in the edge states. As discussed above, we 
believe this is the result of the weaker overlap of Sb and Te 
5pz orbitals relative to the same overlaps in Bi2Se3. This is an 
important result, because it suggests that the effectiveness of 
topologically protected surface conduction can be undermined 
by atomic-level features separate to the topological phase of 
the material. We investigate this further in the next section.

Figure 7.  (a) Device illustration. (b) Bandstructure of device 
illustrated in (a). (c) Probability density of state indicated in (b), 
changing with the Hamiltonian parameter B. Parameters given in 
table 1.

Figure 8.  (a) Bandstructure of 10nm slab of Sb2Te3 as modelled 
by parameters in table 2 taken from [13]. (b) Probability density 
of state indicated in (a). (c) 〈σ̂y〉 plotted on top of the probability 
distribution shown in (b), indicating the spin associated with each 
wavefunction.

Table 2.  Table of Hamiltonian parameters used for these results 
taken from Liu et al [13].

Parameter Bi2Se3 Sb2Te3

A/eV Å 3.33 3.40
B/eV Å 2.26 0.84
C0/eV −0.0083 0.001

C1/eV Å
2

5.74 −12.39

C2/eV Å
2

30.4 −10.78
M0/eV −0.28 −0.22

M1/eV Å
2

6.86 19.64

M2/eV Å
2

44.50 48.51
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3.7.  Backscattering measurements

We make use of our simulated wavefunctions from solving 
equation  (1) to calculate the effect on the backscattering 
in interface states due to the change in the B parameter, 
which represents the dipole matrix element between the pz 
orbitals of the different atomic layers of the chalcogenide. 
We consider two modes of longitudinal transport in the 
x  −  y plane, through a cross-section of a device such as the 
one illustrated in figure 7 which is finite in the z-dimension. 
For a Fermi level close to the Dirac point, conduction takes 
place through two sets of spin-locked interface states (see 
figures  1 and 8). Each spin-locked set has a forward and 
backward moving mode associated with it (+kx or  −kx). 
Scattering between the different spin states is not possible 
[1], so we focus on two modes—forward and backward—
with the same spin.

To measure the backscattering, we follow [29] in making 
use of the Green’s function in the form

GR(y, z; y′, z′) = − i
�v

Ψ(z) ·Ψ(z′)� (15)

where z and z′  are defined at the terminals y  =  0 and y′ = 0, v 
is the electron velocity, and Ψ(z) is the subband which solves 
equation (4). From the Green’s function we make use of the 
Fisher-Lee relation

sqp = −δqp + i�√vqvpGR
qp,� (16)

where q and p label device terminals, to find the backscattering 
matrix element q  =  p (in terms of equation (15), y = y′).

Figure 9(b) shows the magnitude of the backscattering 
matrix element spp for the interface state (labelled |si|) plotted 
as a fraction of the magnitude of the backscattering matrix 
element for the bulk state (labelled |sb|), against the value of 
the parameter B, for the device shown in figure  9(a), using 
material parameters in table 1. We can see clear evidence of an 
increase in backscattering as the value of B decreases, though 
this is clearly not linear.

4.  Conclusion and outlook

In this article we have investigated the bulk and inter-
face quantum states of electrons in multi-layer hetero-
structures of topological and trivial materials. We made 
use of an effective four-band continuum Hamiltonian by 
treating the eight material parameters of the Hamiltonian as 
position-dependent.

We have shown that, as expected, spin-polarised 
interface states form in the heterostructure, and tunnel a 
finite distance into trivial insulators. We have presented 
evidence of complete mixing of conduction and valence 
bands in interface states. We have shown that bulk states 
in TI heterostructures exhibit features not present in 
trivial insulator heterostructures, and that there exists a 
varying degree of conduction and valence band mixing 
in bulk states according to energy. We have shown that 
the pz orbital overlap between neighbouring atomic layers 
in a chalcogenide can affect the tunneling of the inter-
face state into a neighbouring trivial insulator. Finally, 
we present evidence that the surface states of Sb2Te3 may 
not be completely localised at the edges, due to a lower 
amount of pz orbital overlap in that crystal relative to the 
more closely studied TI of the same family, Bi2Se3. We 
showed that this could potentially impact the transport 
through the surface states due to creating the possibility 
of backscattering.

Our system relied on realistic physical parameters drawn 
from fitting of the Hamiltonian (1) to ab initio calculations 
in Bi2Se3 and Sb3Te3 [13]. Other materials could be fitted 
using the eight parameters of the model, and our analysis 
could be compared to other studies of those materials. In 
addition, [13] presents extensions of Hamiltonian (1) that 
take into account the hexagonal warping of the Dirac cone 
highly prominent in materials such as Bi2Te3 [19], which can 
also be included in our analysis by extending the finite dif-
ference approximation to higher order derivatives. It would 
be very interesting to see ab initio calculations that model a 
sequence of alloys with relatively similar material properties 
but changing B parameter (pz orbital dipole matrix element) 
in order to compare to our results—this is something we are 
interested in pursuing in a further publication. The approach 
we have outlined here is powerful enough to apply to mul-
tiple interfaces across various different materials as required, 
and thus should be of interest to anyone in the field looking 
for a first approach to modelling a heterostructure of mixed 
topological phase.

Figure 9.  (a) Device illustration. (b) Logarithm of backscattering 
matrix element of surface state as a fraction of backscattering 
matrix element of bulk state, versus the value of B. Parameters 
given in table 1.
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Appendix A.  Finite difference approximation

The finite difference approximations made throughout this 
paper consist of the following substitutions:

∂jΦ(r) →
1

2h
(Φ(r + hj)− Φ(r − hj))

� (A.1)

∂2
j Φ(r) →

1
h2 (Φ(r + hj)− 2Φ(r) + Φ(r − hj))

� (A.2)
where j = x, y, z labels the direction of differentiation, the 
vector j is the unit vector in that direction, and h is the discreti-
sation length. These are standard substitutions—for more detail 
any numerics textbook can be consulted (see for example [30]).

Appendix B.  Calculating the Berry flux through  
the model

The Berry flux through the Brillouin zone of the system is a 
commonly encountered topological quantum number in the 
study of TIs [3]. We can analyse the Hamiltonian (1) to get 
a sense for when this number is not zero (and hence where 
the model enters a different topological phase of matter). The 
eigenstates of the bulk Hamiltonian are found to be

ΨT
1 (k) =

1√
N(k)

(−iBkz,
√

P(k)− M(k), iAk‖, 0)

ΨT
2 (k) =

1√
N′(k)

(
√

P(k) + M(k),−iBkz, 0, iAk‖)

ΨT
3 (k) =

1√
N′(k)

(−iBkz,−
√

P(k)− M(k), iAk‖, 0)

ΨT
4 (k) =

1√
N(k)

(−
√

P(k) + M(k),−iBkz, 0, iAk‖)
�

(B.1)

where

P(k) = A2k2
‖ + B2k2

z + (M(k))2

N(k) = 2M(k)(M(k)−
√

P(k))

N′(k) = 2M(k)(M(k) +
√

P(k))�
(B.2)

and M(k) is defined in equation  (2). Note that Ψ1 and Ψ4 
vanish completely at the time-reversal invariant momentum 
(TRIM) point k = 0. The Berry connection A(k) is defined as

A(k) = i〈Ψ(k)|∇kΨ(k)〉� (B.3)

where |∇kΨ(k)〉 is defined by

〈Φ|∇kΨ(k)〉 = ∇k〈Φ|Ψ(k)〉.� (B.4)

By inserting the projection operator |k〉〈k| into equation (B.3) 
and integrating by parts we obtain

A(k) =
i
2
∇k(Ψ

T(k)Ψ(k)).� (B.5)

It is not necessary to expand this equation  to completion to 
evaluate where the Berry flux through the Brillouin zone will 
be zero. Consider the definition of the Berry flux, which here 
is a scalar value obtained from a 2D curl operator:

B(k) = ∇2D × A(k).� (B.6)

This is zero where A is finite by the well-known vector calculus 
theorem ∇×∇g = 0. However, we can see by examining the 
forms of the normalisation constants N(k) and N′(k) in equa-
tion (B.2) that it is possible for A to stop being finite (and thus 
the Berry flux B(k) to become non-zero) where these constants 
become zero, which is only possible for both constants simulta-
neously if M0 and M1,2 have different signs. As M1,2 have phys-
ical interpretations as quasi-particle masses and so are generally 
thought of as positive [13], this allows us to recover the topo-
logical insulator condition for the Hamiltonian M0  <  0. A van-
ishing normalisation constant is commonly encountered in the 
analysis of topologically nontrivial mappings from the Hilbert 
space of the Hamiltonian to the torus of the Brillouin zone. This 
occurs because there is no single choice of global coordinates 
in k-space that can consistently define the eigenvectors at each 
point in the Brillouin zone.
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Appendix C.  Detailed figures of creation of interface states

Figure C1.  (a) Illustration of device, including the gap parameter used for each part. (b) Bandstructure of entire device. (c) Probability 
distribution of states marked in the bandstructure (b). (d) 〈σ̂y〉 plotted on top of the probability distribution shown in (c), indicating the spin 
associated with each wavefunction.
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