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Abstract (word count = 188) 
 
Expert elicitations of future energy technology costs can improve energy policy design by 
explicitly characterizing uncertainty. However, the recent proliferation of expert elicitation studies 
raises questions about the reliability and comparability of the results. In this paper, we standardize 
disparate expert elicitation data from five EU and US studies, involving 65 experts, of the future 
costs of photovoltaics (PV) and evaluate the impact of expert and study characteristics on the 
elicited metrics. The results for PV suggest that in-person elicitations are associated with more 
optimistic 2030 PV cost estimates and in some models with a larger range of uncertainty than 
online elicitations. Unlike in previous results on nuclear power, expert affiliation type and 
nationality do not affect central estimates. Some specifications suggest that EU experts are more 
optimistic about breakthroughs, but they are also less confident in that they provide larger ranges 
of estimates than do US experts.  Higher R&D investment is associated with lower future costs.  
Rather than increasing confidence, high R&D increases uncertainty about future costs, mainly 
because it improves the base case (low cost) outcomes more than it improves the worst case (high 
cost) outcomes. 
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The effects of expert selection, elicitation design, and R&D assumptions on experts’ estimates 
of the future costs of photovoltaics 
 
1 Introduction 
The inherent uncertainty surrounding the future cost and performance of energy technologies has 
important consequences for energy policy and for decisions about energy infrastructure 
investment, subsidy policies, mitigating health outcomes, and the like. To meet the world’s energy 
challenges, policy makers will have to accelerate innovation in low-carbon and efficient energy 
technologies. Hence, the interest regarding what governments can do in this respect is only 
growing. Public investment in research and development (R&D) is an important tool that 
governments have at their disposal (Cohen and Noll, 1991). However, retrospective analyses show 
how difficult it is to predict the future of the energy system and to assess the impact of public 
investment on energy costs (Craig et al. 2002). A key difficulty is designing R&D policies that are 
robust to the uncertainty around the impact of such policies on future energy costs. Hence, 
knowledge about the range of possible cost outcomes and their associated probabilities greatly 
helps in informing policy makers and in evaluating the effectiveness and robustness of potential 
energy policies.  
 
Expert elicitations have been increasingly used to fill this gap and gather experts’ opinion on the 
range of possible future energy costs for a number of reasons. First, they allow analysts to account 
for the fact that the future may not look like the past, in particular in technology innovation, i.e., 
that learning curves (e.g. Junginger et al. 2005, Söderholm and Klaassen 2007) and factor 
decomposition (Nemet 2006, McNerney et al. 2011) may not be good predictors of future change. 
Second, experts have information that may not be available elsewhere due to their deep knowledge 
of the technologies. Finally, expert elicitations allow an explicit characterization of uncertainty, 
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namely they can provide not only a range of possible outcomes but also their associated 
probabilities. Indeed, a 2007 report from the National Research Council recommends that the U.S. 
Department of Energy begin to use expert elicitation for their RD&D allocation decisions, to 
explicitly characterize probabilistic estimates of the outcomes of RD&D investments (NRC 2007). 
 
The recent surge in the use of expert elicitation to collect probabilistic information on future energy 
technology costs raises however the fundamental issue of comparing the elicited metric across 
different studies and different technological options. In this paper, we collect and standardize data 
from these different elicitations. We focus on expert elicitations on solar power from photovoltaics 
(PV), a promising low carbon energy technology which involves no fuel costs, minimal operating 
costs, and the potential for very low manufacturing costs.1 Due to these characteristics and 
potential, governments around the world have prioritized making solar PV competitive with other 
fossil power generation alternatives.2 Since 2007, five research groups in the United States and 
Europe have conducted probabilistic expert elicitations on future costs of solar PV with the aim of 
informing the communities of policy makers and energy modelers (see Table 1). Using a variety 
of methods, experts, and policy scenarios, these groups have separately gathered a wealth of data 
regarding the expected impact of R&D investments on future costs ranges and their associated 
probabilities.  
 

                                                 
1 Crystalline silicon solar module costs came down by a factor of 70 between 1970 and 2010 and by almost a factor 
of 2 between 2010 and 2013. 
2 Countries that have most prominently supported solar PV are, for example, the United States (Sunshot Program), the 
European Union (SET-Plan), Germany (Erneubare-Energien-Gesetz), Japan (2012 feed-in-tariff for renewable 
energy), and China (the National Energy Administration’s goal of incentivizing 14 GW in 2014). 
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The standardization and data analysis we carry out is beneficial in many respects. First, it improves 
the knowledge about possible future technological pathways and performance. Elicitation studies 
are expensive and time consuming to conduct, for analysts as well as subjects. Hence, the number 
of experts involved is generally low and the technologies included in each survey may be a 
selection of the possible technological paths that researchers could consider. Yet the lack of 
comparability means that policy makers and analysts often use information from just one study, 
and therefore do not benefit from the whole set of information available.  For instance, grouped 
studies would arguably provide more reliable estimates, simply by including a larger sample of 
the population of experts. Our first contribution is therefore to collect data from all the most recent 
probabilistic expert elicitations on PV and standardize it to make it comparable conditional on a 
set of clearly specified assumptions. This arguably represents the most consistent and 
comprehensive representation of expert opinion on the influence of R&D funding on future PV 
costs. As such, it has potential to inform the research and the policy communities beyond the 
analysis we carry out in this paper. 
 
Second, the collected and standardized data are used to inform and improve expert elicitation 
methods and outcomes. Since elicitation protocols can vary in design, collecting data from 
different survey is a starting point to study whether differences in protocol design and expert 
sampling have an impact on the elicited metrics. With this analysis, we further contribute to the 
science of better understanding how to design expert elicitations by exploring whether various 
characteristics of survey design, such as elicitation method and expert selection, are statistically 
significant predictors of central estimates and uncertainty ranges. While our analysis has some 
limitations due to the fact that only five research groups undertook expert elicitations on solar 
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technologies, it nonetheless provides important insights. A previous effort along these lines was 
carried out in Anadon et al. (2013) for nuclear technologies. Here, we extend the analysis to the 
case of solar PV and present insights which can be used to (1) complement with quantitative 
contributions the qualitative prescriptions on optimal elicitation protocol design and expert 
selection (O’Hagan et al. 2006) and (2) test whether the results for nuclear technologies carry over 
to the case of solar PV and whether, in fact, they can be considered generally applicable.  
 
Finally, as in Anadon et al. (2013), we quantify the average expected impact of government 
research, development, and demonstration (RD&D) investments on expected PV costs in 2030 the 
by pooling data from a larger number of experts. These are helpful insights for decision makers, 
who confront a wide variety of decisions regarding which types of policies to implement, the level 
of public investment, the timing of policies, but also how to prioritize among technological 
pathways within solar PV as well as between solar PV and other energy technologies.  
 
This paper is thus motivated by the potential to improve the design of future elicitations by 
exploring how elicitation design choices affect the elicited outcomes, as well as policy decisions 
by allowing the use of a larger set of elicited technology costs.   
 
The rest of the paper is organized as follows. Section 2 describes the data, summarizes the 
standardization procedure and presents the meta-regression set up, including details on the 
dependent and independent variables of interest. Section 3 presents the empirical results and 
Section 4 concludes with relevant research and policy implications emerging from this study. The 
supplementary information (SI) contains further details and results.  
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2 Materials and Methods 

2.1 Description of expert elicitations 
We use individual participant data from 5 expert elicitations conducted between 2007 and 2011 on 
the future costs of solar PV. Note that we only include probabilistic expert elicitations in our 
exercise, namely those that ask experts to assess a range of percentiles.  We intentionally exclude 
other types of forecasts, such as central estimates and ranges with no probabilities attached, for 3 
reasons: 1) those estimates do not typically conduct assessments conditional on both BAU and 
non-BAU R&D expenditures, 2) they do not include a process of de-biasing which is central to 
the expert elicitation methodology, and 3) they cannot be used to explore the effect of protocol and 
expert characteristics on different points of the cost distribution.  Table 1 summarizes the main 
characteristics of each study. For a more detailed description of each elicitation study, please refer 
to the original articles. Here, we summarize the aspects of the studies that are relevant for the 
current analysis.   
 
The 5 elicitations provide variation along several dimensions. In particular, three of the elicitations 
were conducted in person, and two were conducted online.  Three of the elicitations were published 
in the peer-reviewed literature and two of the elicitations were published as reports. Four of the 
expert elicitations were based in the United States and consulted U.S. experts, and one of them 
consulted European experts. All elicitations but one included experts from academia, the private 
sector, and public institutions. This heterogeneity allows us to explore the effects of survey design 
and expert selection features, as well as various public R&D funding scenarios, on the elicited PV 
costs in the sample.  We include all structured expert elicitations of the future cost of PV conducted 
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in the past 5 years, which consist of 65 experts, 39 of which are included in our main specifications 
(the difference is made up of observations that make particular assumptions about deployment).  
These are a subset of an unknown population of experts on the future of PV who are adept at 
thinking in terms of probabilities and R&D policy conditions.  That population may not be much 
larger than 65, but we are conservative in the claims we make from our analysis and use the results 
mainly to inform future research (Cooke, et al. 2014).   
 
In addition, each expert elicitation protocol focused on different aspects of future solar PV costs. 
UMass asked questions about the probability that specific technical and cost goals would be met 
by 2050, while all other surveys asked experts to provide the 10th, 50th, and 90th percentile cost and 
performance estimates by 2030.  Moreover, the FEEM elicitation focused on levelized cost of 
electricity (LCOE) given specific insolation and discount rate assumptions, which were provided 
to the experts and on which the experts agreed. Conversely, the Harvard study asked about several 
components of solar costs: module capital cost, module efficiency, module lifetime, inverter cost, 
inverter efficiency, inverter lifetime, other materials cost, installation labor, overhead cost, 
operation and maintenance expense. Finally, CMU and UMass focused on module costs and 
conversion efficiency and NearZero focused only on module costs.  
 
Elicitations also differ in their assumptions about future public R&D investment. The UMass, 
FEEM, and Harvard studies explicitly asked questions conditional on three different public R&D 
investment levels.  The NearZero elicitation asked experts to provide cost estimates consistent with 
a business-as-usual (BAU) global R&D funding scenario. Finally, CMU asked questions under a 
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BAU R&D funding level and a much larger funding level (10 times the BAU level) coupled with 
two different solar deployment scenarios. 
 
[Table 1 around here] 
 

2.2 Standardization of expert elicitation data  
The first issue confronting us with respect to these different studies was the fact that estimates 
were not directly comparable. As explained above, the different groups focused on different 
metrics, with some groups eliciting the LCOE while other focusing on the different components 
of costs (such as module capital cost, module efficiency, etc.) or different times in the future. The 
first step we undertook was to convert estimates into a consistent metric—to standardize estimates.  
 
Due to the lack of details on specific cost components for the FEEM study we chose 2030 LCOE 
in $2010 as the metric of interest. FEEM had asked experts to make LCOE estimates assuming 
particular values of key metrics like discount rate and solar insolation.  In the standardization 
process, we used individual cost components provided by experts in the Harvard, CMU, and 
NearZero, along with the FEEM assumptions for discount rate and solar insolation to calculate the 
LCOE. UMass researchers converted experts’ estimates of module cost for 2050 to LCOE 
estimates for 2030 relying on the same assumptions about the impact of time on technological 
change, about the discount rate and about the insolation assumed by the FEEM team (as described 
in Baker et al. 2014). We then further standardized the elicited data from the different studies into 
the $2010 LCOE, as described in detail in the SI.   
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Since all studies focused on probabilistic cost elicitation, the standardization process allows us to 
compare a number of different cost estimates. The first is the 50th percentile, or central estimate, 
provided by experts (P50). The second is the 10th percentile cost estimate (P10), which we interpret 
as the value of LCOE associated with a “best-case scenario”, or breakthrough technology 
development. Third, the 90th percentile cost estimate (P90) is the highest cost estimate, and can be 
thought of as the “worst case scenario” in terms of future technology performance. Finally, 
measures of the range of uncertainty (Urange) associated with such cost estimates can also be 
computed. We focus here on a measure of experts’ “normalized” uncertainty around future costs, 
which is defined as the difference between the 10th and 90th percentile of each expert’s estimate 
divided by their most likely expected cost (P50). Hence, Urange=(P90-P10)/P50.  
 
In addition to converting the cost variables, which are the dependent variables in this study, we 
also coded a number of other key variables for each study in the sample. First, as already 
mentioned, most studies elicited cost data under clearly defined R&D investment scenarios, which 
differ across studies (see Table 1). Asking experts to provide cost estimates under varying R&D 
scenarios is instrumental in understanding the impact of public research investment on 
technologies’ future performance. The different R&D scenarios can be easily compared in absolute 
value across studies, but focusing on exact assumed budget amounts could be misleading for two 
main reasons. First, 40% of the observations in our sample are not associated with dollar amounts 
of R&D spending due to the way in which the elicitation protocol was designed. Second, experts 
typically rely on heuristics when making estimates (Kahneman, 2011). Even though each study 
provided experts with detailed background information on historical levels of public R&D, they 
still may find some difficulty in thinking about specific investment levels, and instead may use 
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these levels to think about the outcomes of worst-case and best-case investment scenarios. If the 
latter, then the cost estimates for different R&D levels would not necessarily reflect the effects of 
the full range of R&D.  We therefore chose to investigate a categorical definition of R&D 
investments, and coded R&D amounts into three bins indicating “low”, “medium”, and “high” 
investment. Such binning of R&D values might be a closer representation of the experts’ thinking 
than the actual levels they were basing their estimates upon. The details on the categorization of 
R&D investment into the different bins are included in the SI, Table S3. We then explore the 
robustness of results using the continuous R&D investment variable. 
 
Standardization allows us to compare the insights on the relationship between R&D investments 
and elicited costs in the different studies in a qualitative manner. Figure 1 shows the full range of 
elicitation results used in the analysis grouped under the low, mid and high R&D investment 
scenarios.  The three panels in Figure 1 have different numbers of experts, with the “low” level 
being the most populated one and the “mid” being the least populated one. This is due to the fact 
that (a) the CMU elicitation only populated the low and high R&D categories; and (b) the NearZero 
elicitation only covered a low (or BAU) R&D investment level. 
 
[Figure 1 around here] 
 
Figure 1 shows that including a greater number of observations generally results in a greater range 
of outcomes, with the range of P50 estimates decreasing from the low, to the high, to the mid R&D 
scenarios, partly due to the decreasing number of experts and studies. Variation between P50 
estimates and P10 and P90 estimates are different across experts. Ordering the observations by 
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increasing P50 does not result in P10 and P90 observations that are also ordered. This means that 
the 10th and 90th percentile estimates of each expert are to a large extent expert specific and 
suggests that any quantitative analysis should take this into account to appropriately control for 
variation among experts. 
 
Moreover, in the highest R&D scenario the P50 curve is shifted downward and has a smaller slope 
compared to the low R&D scenario.  This indicates that experts believe that increased R&D will 
decrease PV technology costs. Finally, the impact of higher R&D investment on the range of 
expected costs for each expert (namely, the difference between the 90th and the 10th percentile) is 
less clear in this descriptive framework.  
 
This qualitative data analysis does not however take into account that variables other than the R&D 
scenarios might be affecting cost estimates. Specific choices in the design of the elicitation 
protocol or the selection of an “optimistic” group of experts are recognized as resulting in estimates 
that are biased, either upward or downward (see O’Hagan et al. 2006 and Meyer and Booker 2001). 
Such potential biases are worth investigating to ensure that insights from expert elicitations feed 
into efficient and cost-effective energy policy. Anadon et al. (2013) focused on nuclear 
technologies. Here, the analysis and results are extended to the case of solar PV. The higher 
diversity in elicitation design in the case of PV allows us to focus on some elicitation design 
characteristics that were only marginally considered in the nuclear case due to the higher 
homogeneity of the sample. Moreover, it is not clear to what extent the results presented in Anadon 
et al. (2013) are technology specific. We shed light on this through the analysis presented in the 
next Section. 
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2.3 Empirical approach 
The surveys included in our sample provide information on three other categories of variables that 
might affect experts’ cost and uncertainty ranges, in addition to R&D scenarios, as suggested by 
the literature on expert elicitation design (O’Hagan et al. 2006 and Meyer and Booker 2001). The 
first category, elicitation design variables, includes three variables of interest: in person (denoting 
an elicitation that was conducted in person) vs. online (denoting an elicitation that relied on an 
online tool); published (denoting an elicitation that was published in a peer-reviewed journal) vs. 
unpublished (denoting an elicitation that was reported in a non-peer reviewed journal); and the 
year an estimate was made (the year in which the expert elicitation was conducted).  Even though 
previous studies have looked at the differences in the design of elicitation protocols, highlighting 
in particular the importance of the expert selection phase (Raiffa 1968; Keeney and Winterfeldt 
1991; Meyer and Booker 1991; Phillips 1999; Clemen and Reilly 2001; Walls and Quigley 2001), 
to our knowledge the impact of these variables has been evaluated empirically only in Anadon et 
al. (2013) with a focus on nuclear technologies. 
 
The second relevant category of explanatory variable defines the market in which the technology 
competes (residential, commercial, utility).  Electricity from solar PV generally competes with 
electricity produced by other sources, sometimes known as “grid” electricity.  But the price of grid 
electricity varies considerably depending on who is buying it, whether retail, commercial, or 
wholesale customers.  Similarly, the scale of production, and thus costs, can differ considerably 
whether at the single-digit kilowatt scale of residences, tens of kilowatts for commercial 
installations, and even thousands of kilowatts for utility scale.  In the SI we show a cross-tab of 



13 
 

technology type and market to show that, although the categories are not well balanced, the two 
variables are not well correlated.  
 
The third category encompasses expert selection variables.  Studies suggest that selecting a diverse 
pool of experts can help avoiding anchoring to a usually conservative reference point (Meyer and 
Booker 2001). There are two relevant dimensions of expert background that can be coded for the 
elicitation in our sample. US denotes experts based in the United States, as opposed to experts 
based in the EU.  Academia denotes experts working in universities, compared with private sector 
denoting experts working companies, and public, denoting experts working in public institutions, 
such as national laboratories and regulatory bodies. 
 
Table 2 summarizes the descriptive statistics of the dataset used in the empirical analysis, which 
include 178 observations from 39 individual experts. Each observation is the elicited cost of one 
expert in one solar sub-technology under a given R&D scenario.  Since not all studies specified 
R&D amounts or market segments, observations are lower for those variables. Considering the 
different R&D investment categories, 42% of the estimates are conditional on low investment 
levels, 28% on medium levels, and 30% on high levels. In terms of expert affiliation: 30% of the 
estimates come from experts in academia, 46% from experts in the private sector, and 33% from 
experts in public institutions.  Only 20% of the estimates are from experts based in the European 
Union; the rest were from the U.S.  Finally, market characteristics can be coded only for a subset 
of studies (namely, FEEM, Harvard and UMass).  
 
[Table 2 around here] 
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To identify the factors affecting cost estimates we apply a meta-analysis approach to the 
standardized data. We regress each of the cost variables of interest (namely, P50, P10 and Urange) 
on the set of control variables described above.  In this way, we study the relationship between 
costs estimates and the three other groups of variables using individual data points and in a 
multivariate setting. We thus isolate two different components of the cost reductions implicit in 
each expert’s estimate: (1) the variation arising from differences in experts’ views about future 
technological improvement and (2) the variation arising from differences in expert and survey 
characteristics.   
 
We first use the three generalized R&D scenarios (low, medium, high) to assess the extent to which 
experts expect reductions in future costs as a consequence of higher public R&D investment. 
Second, we use annual investment levels in constant dollar amounts to check whether the definition 
of the R&D bins has an impact on the empirical results.  Third, we add a squared term to the annual 
investment levels to account for the possibility of decreasing marginal returns to R&D 
investments. In this framework, the coefficient associated with the R&D variable describes the 
average effect ceteris paribus of R&D spending on different measures of costs across the whole 
sample. Conversely, the coefficients associated with variables describing expert and survey 
characteristics indicate whether expert selection or study design affect the estimates.  
 
Our base specification reads as follows:  

ln = +  +  +  δ +  θ + +  
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Where i indicated expert and j indicates study. Y is either: P50, P10, P90, Urange, or future costs 
normalized by current (2010) costs (normP50).  The vector of study characteristics (S) includes a 
dummy variable equal to one if the survey was conducted in person and the year in which the 
elicitation was carried out. The vector of technology variables (T) includes dummy variables for 
type of technology or alternatively market segment. The vector of expert characteristics (E) 
includes dummy variables indicating the expert was from academia or the public sector, with 
private sector being the reference category. It also includes a dummy variable indicating whether 
the expert worked in the European Union, with US experts being the default category. The vector 
of R&D variables (R) includes either the dollar amount and its square or two dummy variables 
indicating medium and high funding, with business-as-usual R&D funding (low) being the 
reference.  are the individual effects.  
 
We make a number of important methodological choices in our analysis which are dictated by the 
nature of our data. First, our sample is composed of repeated observations for the same subjects, 
both across R&D scenarios, as well as sub-technologies. Our observations are nested, in the sense 
that each of the 39 experts included in our models might have commented on one or more solar 
subtechnologies, each of which is evaluated over different R&D scenarios. In this framework, we 
need to account for the serial correlation in the error term as well as to adjust the standard errors 
for this dependence across observations for each expert. The fact that the population of experts in 
solar technologies is not big, and that only five research teams undertook expert elicitations 
exercises further complicates the issue. To address these concerns, we estimate the above equation 
as a random effects model in which each observations is a combination of expert and sub-
technology, observed over different R&D scenarios. Moreover, we cluster the standard errors at 
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the level of the expert. The choice of the random effects model is dictated by the focus of our 
study, which aims to characterize variables that are constant within expert but that can vary across 
study. This approach allows us to use regression analysis to draw conclusions on the expected 
elicited costs from each expert/technology with respect to a variable of interest, conditional on a 
set of covariates. While our analysis sheds light on the important research questions we highlighted 
above, it should by no means be thought as providing definitive answers. Hence, our results should 
just be considered as informing future research, which should conduct randomized control trials 
to more definitively evaluate the relationships uncovered in this work. 
 
Second, due to the collinearity between published and in person studies (as apparent in Table 1) 
we focus on the in-person variable. The motivations behind this choice are that: (a) as already 
pointed out, the mode of administering a survey is of great interest for researchers involved in 
expert elicitations (O'Hagan 2006), who are continuously facing the trade-off between in person 
interviews, which increase the interaction between experts and researchers, and well-designed 
online protocols, which allow researchers to more cost-effectively reach a wider pool of experts; 
and (b) conversations with researchers involved in the unpublished elicitations suggest that the 
collinearity between published and in person is due to spurious correlation: the reasons for not 
seeking publication in the peer-reviewed literature are unrelated to significance of the estimates, 
unlike what has been observed in the health field (McGauran et al. 2010).  
 
Third, given that certain variables are only available for a subset of studies, we estimate models 
on samples of different sizes and confine non-core results to the SI.  Our main regressions include 
178 observations: this sample includes all observations with binned R&D variables that are not 
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conditional on a specific deployment scenario.  As previously mentioned, only a minority of the 
observations explicitly characterized deployment. The models using the continuous R&D variable 
further exclude the CMU observations, resulting in 114 observations.  We present results on the 
impact of technology variables in the SI.  
 
3 Discussion of results 
Here we present our findings on the effects of expert selection, elicitation design, and R&D 
investment on the cost variables.  
 
Table 3 focuses on explaining P50, the central estimates, under various ways of measuring R&D. 
Models 1-3 include binned R&D variables, with Model 2 representing our base regression.  Model 
1 does not include the random effects and is presented for comparison purposes. Model 3 uses 
normP50, the normalized P50, as the dependent variable.  Models 4 and 5 use R&D levels (hence 
the smaller sample size), with Model 5 including a square term to explore decreasing marginal 
returns to R&D. Model 6 tests the results using the Hausman-Taylor estimator, which allows for 
observation-specific unobservable effects which are correlated some other explanatory variables. 
This is one example, along with Multilevel mixed-effects linear regression, that could potentially 
be applied to data like the one we use in this paper.  
 
Table 4 includes results for P10 (Models 1-3) and P90 (Model 4). Model 1 is our preferred 
specification, relying on binned R&D variables.  Models 2 and 3 use R&D levels, without and 
with an additional square term, respectively.  Model 4 is similar to Model 1 but for P90.   Table 5 
presents results for Y=Urange. Models 1 and 2 include the results using binned R&D variables—
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Model 1 without, and Model 2 with, expert random effects. Models 3 and 4 use R&D levels, the 
latter adding a squared R&D term. Model 5 again present the results using the Hausman-Taylor 
estimator.  In the SI we include additional results including technology and market variables and 
deployment for P50 and Urange (Tables S6 and S7). 
 
Summarizing our results, we show that in-person elicitations are associated with more optimistic 
(lower cost) 2030 estimates but greater uncertainty range. Expert selection (affiliation type and 
nationality) does not affect results for P50, in contrast with previous research on expert elicitations 
in nuclear power.  Some models suggest that EU experts might be more optimistic regarding 
breakthrough costs, but have higher Uranges. Finally, as expected, higher R&D investment is 
associated with lower future costs and greater uncertainty about those costs, although with a 
diminishing effect in both cases.  
[Table 3 around here] 

[Table 4 around here] 

[Table 5 around here] 

3.1 Effects of expert selection 
Relationship between expert selection and central estimates 

Expert selection has no effect on experts’ central estimates (Table 3).  The coefficient associated 
with the EU dummy variable is never statistically significant from zero, suggesting that EU experts 
are not different from their U.S. counterparts. Similar results are presented also in the additional 
models in the SI. These results are in contrast with those of Anadon et al. (2013) for nuclear 
technologies, which indicated that U.S. experts were consistently more optimistic than EU experts 
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on central estimates of future nuclear costs.  Similarly, variables characterizing the background of 
each expert are never statistically significant from zero, indicating no difference between the 
elicited costs of experts from different background in the solar PV case.  These insights differ from 
those in Anadon et al. (2013) for nuclear technologies, in which private sector experts emerge as 
the most pessimistic.  One possible explanation of this difference is that industry experts are more 
familiar with recent construction than are public sector and academic experts.  In nuclear, industry 
experience in 2007-11 would have created a heightened awareness of the recent challenges, delays, 
and escalating costs, whereas in solar, industry experience would have heightened awareness of 
rapidly falling costs and expanding markets, partly as a result of the greater public acceptance of 
solar PV. Thus, the availability heuristics (Kahneman, 2011) of private experts would have been 
different than that of other experts. 
 
Relationship between expert selection and low cost outcomes (P10) 

Focusing on the low cost outcomes (Table 4), the models with the continuous R&D variables 
suggest that EU experts are more optimistic than their U.S. counterparts, i.e., they have lower P10 
on average. Their estimates are around one third lower and statistically significant.  Even if not 
strongly supported in our models, a higher confidence of EU experts in solar technologies could 
indeed be plausible for a number of reasons. For instance, during the years the elicitations were 
being conducted (2007-11), governments in Europe subsidized the adoption of solar power much 
more intensively than did governments in the United States. Hence, solar PV deployment was 
dramatically different in the two regions. While in 2000 cumulative solar TWh installed were 
comparable, by 2012 the EU had surpassed the U.S. by more than an order of magnitude (BP 
2013).   Experts may have been influenced by the growth of the PV industry in their local markets, 
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and thus the availability heuristics in both regions would differ (Tversky and Kahneman, 1974; 
Kahneman, 2011). Another possible explanation is that EU experts were the only ones that were 
asked about levelized cost of electricity (LCOE) directly, while the U.S. experts were asked about 
other variables, e.g., module capital cost and efficiency, that were used to calculate LCOE ex post.  
It is possible that the conversion process introduced a bias that made the calculations of LCOEs 
from U.S. expert estimates more pessimistic—namely, if U.S. experts had been asked about LCOE 
they may have given different and perhaps more optimistic estimates than those we obtained from 
the standardization process. It is also possible that asking the separate questions on the core 
components of a given technology pushes experts to think more carefully and more conservatively 
about future technology performance (Morgan 2014).  Regarding experts’ backgrounds, results for 
P10 are similar to those presented above for P50.  The coefficients associated with these two 
variables are never statistically significant from zero. Model 4 shows that expert background also 
does not affect the P90 estimates.   
 
Relationship between expert selection and the uncertainty range 

We find that expert selection also has little impact on Urange, the confidence of experts in their 
responses (Table 5). The variables indicating experts’ background are associated with insignificant 
coefficients.  Conversely, results seem to point to European experts being less confident than their 
US counterparts. This is consistent across model specifications, but it is only significant in Model 
3 and 4 of Table 5, in which the continuous R&D variable is included.  Additional specifications 
in the SI are in line with what is discussed above.  
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3.2 Effects of study characteristics 
Relationship between survey design and central estimates 

Elicitations conducted in-person were associated with more optimistic responses about central 
estimates (P50) than elicitations conducted online.  This effect is consistent and highly significant 
across all five specifications in Table 3.  It is also robust to the alternative specifications shown in 
the SI.  In the base specification (Model 2), experts interviewed in person gave average P50 
estimates that were around 60% lower than those gathered on-line.  The SI includes results in 
which we drop the experts from the UMass study.  In-person remains negative and significant.  
One caveat to this interpretation is that since this variable was collinear with the published variable 
this result may also capture the differences in estimates between published and unpublished 
studies. However, as mentioned above, our discussions with the authors did not give us any specific 
reason to believe that the decision to not publish a study was based on the level or significance of 
the included estimates. Hence, the collinearity between these two variables seems to be due to 
spurious correlation. Finally, we find that the year in which an elicitation was conducted does not 
have a robust effect on expected future costs. The coefficient is negative in all specifications, but 
does not reach acceptable levels of significance in our preferred specification. This result is 
noteworthy considering that between 2007 and 2011, when the elicitations were carried out, solar 
panel costs were decreasing dramatically.  
 
Relationship between survey design and non-central cost outcomes 

As in the case of P50, in person interviews are also associated with consistently lower P10 and 
P90 estimates, but the effect of elicitation year is negative and significant only in the case of P90.  
Year of elicitation has a negative effect on Urange estimates, suggesting that as time passes, 
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elicitations include estimates whose range of uncertainty is narrower.  The coefficient is however 
significant only in the specifications using the continuous R&D variable. The effect of in-person 
on uncertainty range is positive and significant only when using the binned R&D variables, 
providing some evidence that in person interviews result in estimates associated with higher 
uncertainty.    
 

3.3 Technology and market characteristics 
We explore the role of technology characteristics in the SI. Controlling for the use of solar power 
in a residential, commercial, or utility scale context had a statistically significant impact on future 
P50 LCOE costs.  Commercial scale PV is roughly 15% cheaper, and utility scale PV roughly 40% 
cheaper than residential scale solar power.  The latter difference is in line with the current 
difference between wholesale and retail power purchase prices at midday when solar would be 
used.  Market characteristics do not have significant effects on uncertainty range.  Some studies 
also accounted for differences in the types of PV on which the experts were to make predictions.  
We explore this in the SI by adding to the regression binary variables for alternative PV designs. 
The coefficient is negative and significant for thin film.  We also observe that advanced PV 
technologies are associated with higher Uranges (Model 3 Table S6). 

3.4 Effects of R&D 
Relationship between R&D scenarios and the central estimate 

R&D investment has a consistently significant effect on median costs: the higher R&D investment, 
the lower the cost estimates (Table 3, Models 1-4).  These results are robust to alternative 
specifications included in the SI. Compared to the low R&D scenario, the medium R&D scenario 
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is associated costs that are 20% lower, and the high R&D scenario has costs that are 35% lower 
(Model 2). That increasing R&D funding from low to mid has a greater impact on costs than 
increasing R&D funding from mid to high, suggests some diminishing marginal returns to R&D 
investment. In many in-person interviews and written submissions, experts seemed quite aware of 
the potential for decreasing returns to R&D, especially due to constraints on the availability of 
trained scientists and engineers, as well as problems that might not be resolvable in the laboratory, 
such as grid congestion and intermittence. Using the continuous R&D variable, results suggest that 
a 1% increase in investment lowers expected cost by 0.14%. The hypothesis of diminishing 
marginal returns is unconfirmed by Model 5, using a continuous R&D variable and including a 
squared term, since the coefficient on the squared term is not statistically significant.  It is however 
in the right direction for diminishing returns. 
 
Relationship between R&D scenario and low and high cost outcomes (P10 and P90) 

Higher R&D investment not only affects the median outcome, but also the probability of 
breakthroughs, as measured by the P10 estimates (Table 4). The effects of R&D on the lowest cost 
outcomes (P10) are similar to those for P50, although the effects are slightly larger. Similarly, 
diminishing marginal returns are not confirmed when using the continuous R&D variable. In the 
case of P90, the effect is also strongly significant, but of a smaller magnitude when compared to 
P50 and P10.  This suggests that R&D has an impact on the whole distribution of costs; it not only 
shifts the distribution of experts’ predictions lower but also expands it.  
 
Relationship between R&D scenario and the uncertainty range 
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Higher R&D generally has a positive coefficient in the Urange specifications, meaning that the 
range of uncertainty increases in the higher R&D scenarios. Hence, increasing the level of R&D 
with which experts are confronted in the elicitation reduces their confidence (i.e. increases 
Urange). This is confirmed in most specifications, both on the small sample or those presented in 
the SI. This could be due to a number of reasons. For example, medium and high R&D scenarios 
might mean that funding is also devoted to sub-technologies, which are newer and/or more risky, 
or that higher total investment allows for inclusion of more of the riskier R&D, resulting in an 
increase in the uncertainty around future central estimates. An alternative explanation is that this 
could also result from experts facing significantly different (higher) R&D scenarios from the 
business-as-usual might have more difficulty in fully projecting costs.  The effect of the medium 
R&D scenario is larger than that of high R&D in almost every case.  One can see in Table 4 that, 
relative to high R&D, medium R&D has a comparatively larger effect on P10 than it does on P90 
(using the difference in coefficients in model 4 and coefficients in model 1 for High and Mid R&D, 
respectively).  The breadth of technological pathways available in High R&D may improve 
outcomes in the high cost outcome, thus reducing the Urange.   
 
In the SI, we present additional specifications as robustness checks. First, we added P50 as an 
independent variable to explain Urange.  The associated coefficient is negative and strongly 
significant, suggesting that a lower, more optimistic, median elicitation, is associated with a greater 
normalized uncertainty range (with less confidence).  Note that this P50 effect reduces some of the 
effects of R&D.   Some of this effect is difficult to separate since we know that R&D is reducing 
P50.  But one possible interpretation is that R&D is shifting the entire distribution to lower costs; 
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once that effect is accounted for with P50 as an independent variable, the R&D effects on Urange 
are quite similar. 
 
4 Conclusion and Policy Implications 
Researchers in the U.S. and in Europe carried out five probabilistic expert elicitations for solar PV 
technologies between 2007 and 2011. These studies differ in survey and expert characteristics, in 
the sub-technologies considered, and in the level of R&D investment with which the experts are 
confronted. In this paper, we collect, standardize, and analyze individual expert data from these 
expert elicitations. We contribute to the literature by (1) providing standardized estimates of future 
PV costs for 65 experts that could be used as inputs to support policy decisions; (2) measuring the 
likely impact of survey protocol design and expert selection in solar PV elicitation outcomes; and 
(3) estimating the average impact of R&D on future solar PV costs after controlling for these 
differences.   
 
Our results have implications for the design of future elicitations, for understanding the effects of 
R&D, and for understanding the relationship between an expert’s background and that expert’s 
cost estimates. The merits of this approach can be highlighted in at least three respects.  
 
First, standardizing the data makes the studies comparable, allowing access to a wider sample of 
experts than any single study could reach. This broader sample provides insight on a fuller range 
of judgments about the future development of technology costs and hence in developing cost-
effective policies to support PV and new energy technologies more generally.  
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Second, standardized data can be used to test whether differences in protocol design and expert 
selection impact the elicited costs, as suggested by the expert elicitation literature.  Moreover, 
studies of different technologies can determine whether such differences are consistent across 
different energy technologies. In this paper, we go beyond bivariate descriptive analysis use 
regression analysis to highlight the differences in average elicited costs conditional on a series of 
covariates of interest. While the strength of our results is limited by the scarce number of expert 
elicitation exercises carried out for solar technologies, they are nonetheless informative both for 
the research community and for policy makers.  
 
Our approach shows that choices in protocol design likely affect estimates at various parts of the 
probability distribution. In the case of PV technologies, in person interviews are associated with 
more optimistic estimates (lower P50, P10, and P90). This finding suggests that one possible 
theory of the impact of in person interviews, namely that in person interviews allow the researcher 
to push experts to think about all possible technological bottlenecks (and hence, would likely result 
in higher elicited costs), does not seem to dominate in the case of solar PV. Preliminary evidence 
for in person interviews on nuclear fission, in Anadon et al. (2013), found they led to higher costs 
outcomes. One explanation is that for PV, interactions with the interviewer that push experts to 
explain their results may lead the experts to consider possible breakthroughs rather than 
bottlenecks.  In any case, with these results, we conclude that this effect is technology-specific and 
sample-dependent, not generally true across technologies. The effect of in person interviews is 
positive (and significant in our preferred specification) in the case of uncertainty ranges.  
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The results also indicate that an expert’s optimism and confidence about future solar PV costs may 
also depend on that person’s geographic location and sectoral background—although these effects 
are not statistically significant across all specifications and their direction is largely dependent on 
sample size. Results suggest that EU experts may be more optimistic than their U.S. counterparts 
in the case of low-cost outcomes P10. Conversely, solar experts from academia, the private sector 
or the public sector do not provide estimate that are statistically different.  These findings, stand 
in contrast with those of Anadon et al. (2013) for nuclear power, in which private experts were 
associated with higher cost estimates.   
 
That expert selection and survey design matter—and that results for solar PV differ from those for 
nuclear—has important implications for researchers and policy makers.  They point to the 
importance of designing studies that will be able in the future to corroborate our results through 
methodologies such as randomized controlled experiments. Such research could shed definitive 
light on the impact of protocol design and elicitation choices on the elicited estimates. Our results 
also suggest that it is beneficial to be inclusive in selecting experts and that using  multiple 
elicitation approaches may ensure that the set of results truly account for the full range of 
uncertainty in the field and produce estimates that are unbiased.   
 
Third, we use the standardized data to study the effects of assumptions about R&D investments on 
future costs and performance, as well as their impact on the range of uncertainty about these 
estimates. We show that R&D investment lowers elicited costs, but that experts have larger 
uncertainty ranges at higher R&D investment levels.  This indicates that more funding expands 
the frontier of the best technological outcomes while not having as large an effect on improving 
the worst case outcomes. The positive impact of R&D affects both central estimates (P50) and 
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extreme cost estimates (P10 and P90, respectively). This finding is robust and statistically 
significant across all specifications, suggesting that our results could be used to model the average 
impact of R&D on future costs based on insights from all solar PV elicitations available to date. 
Using the coefficients associated with the R&D variables in the case of P10, P50 and P90 would 
allow researchers to model the average impact of R&D on costs in probabilistic terms. These 
coefficients represent an average effect across expert opinion, cleaned from expert fixed effects 
and from the effect of other cost variables.  
 
There are a number of important areas of further elicitation work. First, it would important to both 
increase the number of studies and gather larger samples to validate our results, both for solar PV 
and for other energy technologies. Another important contribution would be to conduct 
randomized controlled experiments to assess more robustly the importance of study design on 
elicited metrics. Both of these areas of future work would improve on the results presented in this 
paper.   
 
Another key research is that the most knowledgeable experts on technical aspects of technology 
systems may not be knowledgeable about the impact that production-related improvements could 
have on future technology costs.  One possible solution would be to combine elicitations of R&D 
effects with historically derived estimates for returns to scale and learning by doing, as in Nemet 
and Baker (2009).  This hybrid approach provides a way to incorporate these multiple mechanisms 
of technological changes without over-relying on expert judgment in areas where knowledge is 
weak (Morgan, 2014), although it does require the analysts to make assumptions about future 
returns to scale and learning by doing.  Alternatively, complementing individual elicitations with 
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subsequent expert workshops, as in Anadon et al. (2012), provides the opportunity for experts to 
probe each other and explain and revise their estimates.  This is useful particularly to best reap 
insights from experts with differing, but overlapping, areas of expertise.   
 
In sum, these results show that diligence is needed in the selection of experts and the design of 
elicitations in future studies.  They also point out the need for careful interpretation of elicitation 
results and suggest alternative methodologies by which the reliability of elicitation results can be 
improved. For example, controlling for expert and study characteristics can improve the use of 
elicitation results as inputs to for both energy system models that characterize future technology 
and policy outcomes probabilistically, and probabilistic policy analyses specific to solar. Results 
of expert elicitations are already being used as inputs to energy economic models, for example in 
this Special Issue.  In future work, parameter values such as the cost reductions attributable to 
R&D, could be adjusted, or de-biased, to account for expert selection and study design effects. 
Researchers should also consider how to include information from the multitude of forecasts of 
future costs that do not include attached probabilities.  Expert weighting may be more helpful in 
such a context because they may substitute for the processes of de-biasing experts and helping 
them think through the full range of probabilities that may be lacking in studies limited to central 
estimates. 
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