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Abstract 19 
Sustainable development requires harnessing technological innovation to improve human well-being 20 
in current and future generations. However, impoverished, marginalized, and unborn populations too 21 
often lack the economic and political power to shape innovation systems to meet their needs. Issues 22 
arise at all stages of innovation, from invention of a technology through its selection, production, 23 
adaptation, adoption, and retirement. We argue that three insights should inform efforts to intervene in 24 
innovation systems for sustainable development. First, innovation processes do not evolve linearly, 25 
but rather emerge from complex adaptive systems involving many actors and institutions operating 26 
simultaneously from local to global levels. Second, there has been significant experimentation in 27 
mobilizing technology for sustainable development in the health, energy, and agriculture sectors, 28 
among others, but learning from past experience requires structured cross-sectoral comparisons and 29 
recognition of the socio-technical nature of innovation systems. Third, the current constellation of 30 
rules, norms, and incentives shaping technological innovation is often not aligned towards sustainable 31 
development. Past experience demonstrates that it is possible to reform these institutions to re-orient 32 
innovation, and many actors have the power to do so through research, advocacy, training, convening, 33 
policymaking, and financing. We offer three proposals to begin: establishing channels for regularized 34 
learning across domains of practice, developing measures that systematically take into account the 35 
interests of underserved populations throughout the innovation process, and reforming institutions to 36 
re-orient innovation systems towards sustainable development in a manner that considers all 37 
innovation stages and decision-making levels at the outset. 38 
Keywords: sustainable development, technology, innovation systems, complex adaptive systems, 39 
knowledge systems 40 
Significance Statement 41 
The 2015 Sustainable Development Goals and Paris Agreement on climate change heightened global 42 
attention on sustainable development. Transitioning toward sustainable development will require 43 
technological innovation in many areas, such as clean energy and water-saving agriculture. However, 44 
unless the rules and incentives shaping innovation systems change, this transition will be impossible. 45 
Barriers to overcome include inadequate investment in technologies that could help people living in 46 
poverty, a lack of affordable and suitable technologies to address a wide range of sustainable 47 
development goals, and overuse of technologies that place unfair burdens on future generations. In 48 
this paper, we identify the fundamental reasons why current innovation systems fall short, describe 49 
what needs to change, and offer several proposals to begin making such change.  50 
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\body 51 
Technological innovation is at the heart of sustainable development. In September 2015, following an 52 
extensive multi-year negotiation among governments, 193 countries of the United Nations committed 53 
to 17 Sustainable Development Goals (SDGs). Innovation itself is one of the SDGs (Goal 9) and also 54 
a means to achieve the others. 55 
Technology is the subset of knowledge that includes the full range of devices, methods, processes, 56 
and practices that can be used “to fulfill certain human purposes in a specifiable and reproducible way 57 
(1). Innovation is the "process by which technology is conceived, developed, codified, and deployed” 58 
(1). The innovation process occurs in multi-faceted “innovation systems” comprised of socially 59 
negotiated goals, the technologies needed to reach these goals, people and organizations, and the rules 60 
and incentives that shape their decisions (2, 3). Many studies of innovation have focused on specific 61 
nations (3), sectors (4), or technologies (5). However, learning across these approaches and 62 
experiences is less common. 63 
Sustainable development requires simultaneously advancing inter- and intra-generational equity. 64 
However, innovation does not always advance equity. For example, global investment in research and 65 
development (R&D) in medicines for “neglected diseases” is inadequate because the developing 66 
country populations who bear the primary burden of such diseases lack the means to incentivize such 67 
investment (6). Even when innovation does advance equity, it may not do so for both current and 68 
future generations—rather, these goals may conflict (7). For example, current investment in low-69 
carbon energy does not fully reflect the interests of future generations who will be impacted by 70 
climate change (8). These unborn populations cannot influence current innovation systems. 71 
Making technologies work for sustainable development will require greater clarity in conceptualizing 72 
the innovation process itself, identifying barriers to innovation, and learning from a wealth of 73 
academic research and past experience. Innovation scholars have proposed several conceptual 74 
frameworks for understanding how technologies emerge, change, and are adopted (3, 4, 9, 10). Yet 75 
these literatures are not explicitly connected to the specific problems facing actors promoting 76 
sustainable development (e.g., scientists conducting early-stage research, donors selecting particular 77 
technologies for funding, or governments promoting technology cooperation (11)). In this paper, we 78 
link a wide range of scholarship to empirical cases and real-world implementation challenges to 79 
highlight ways of promoting technological innovation for sustainable development. 80 
We present three insights: 1) innovation is a complex adaptive system with non-linearities and tipping 81 
points; 2) the socio-technical nature of innovation enables deeper understanding of barriers to 82 
innovation; and 3) the capacity of actors to promote innovation is restricted by institutions not 83 
oriented towards sustainable development, but reform is possible. To illustrate these insights, we use a 84 
common set of cases that concern physical artifacts and non-physical practices; technologies at 85 
different levels of maturity; a range of geographic areas; and interventions to address various 86 
sustainable development needs (this set of cases is presented in more detail in Table 1 and the 87 
Supporting Information). 88 
1. Understanding Innovation as a Complex Adaptive System 89 
An “innovation system” is the connected set of actors and institutions that shape the process of 90 
technological change. Understanding how innovation systems work requires analyzing the actors and 91 
institutions that contribute to innovation in a geographic region (3), sector (4), or technological area 92 
(9). Actors typically include individuals and organizations, public and private, operating at multiple 93 
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scales (e.g., central governments, local authorities, universities, private firms, non-profits, and 94 
technology users). Institutions include the set of formal and informal rules, norms, decision-making 95 
procedures, beliefs, incentives and expectations that guide the interactions and behavior of actors in 96 
an innovation system (12–15). The connections of actors and institutions across the many stages of 97 
the innovation process, which occur in multiple sectors and at different decision-making levels, make 98 
innovation systems complex and adaptive. 99 

1.1. Innovation Systems Operate at Multiple Stages, Sectors, and Levels 100 
Innovation happens in multiple stages that are tightly linked, often overlap, and do not necessarily 101 
occur in a specific order. By “innovation stage” we refer to the variety of activities that occur during 102 
the innovation process to shape technological change. There are a number of different ways 103 
innovation systems and activities can be conceptualized (4, 9, 16). For clarity of exposition, we group 104 
different types of innovation activities into seven stages: invention (the process leading to the initial 105 
discovery of a technology), selection (the choice of a technology for a given setting), early adoption 106 
(the use of a selected technology in a specific context), production (the manufacturing of a 107 
technology), adaptation (efforts by users or inventors to modify a technology to better serve the needs 108 
of individual users), widespread use (the broad adoption of a technology in different communities of 109 
users), and retirement (the replacement of a technology by a new, more effective technology). 110 
The types of activities that occur in different innovation stages often require distinct modes of 111 
thinking, the engagement of diverse actors (3), and the mobilization of many physical and intangible 112 
resources. Hence, the performance of this set of interconnected and non-linear innovation stages 113 
requires the broader system to perform specific “functions” (9). Further, innovation stages often occur 114 
simultaneously, involving multiple actors at different decision-making levels, from individuals to 115 
multinational governance bodies. Actors and their activities are embedded in social systems, which 116 
are governed by institutions that shape innovation processes (17). We return to this in Section 2, 117 
where we explore the interlinked socio-technical dimensions of innovation systems, and in Section 3, 118 
where we explore the reciprocal relationship between actors and institutions. 119 
The range of actors, decision-making levels, and resources relevant to a single technology is 120 
illustrated by the case of artemisinin combination therapy (ACT) for malaria (Table 1). In the 1990s 121 
and 2000s, R&D for new drugs to replace those whose efficacy had been eroded by resistance was 122 
taking place in  in China (in government-supported labs) and Switzerland (at a private firm), leading 123 
to the invention of ACTs. Following a proposal by a panel of US Institute of Medicine experts, the 124 
technology was subsidized by the Global Fund to Fight AIDS, Tuberculosis and Malaria and 125 
UNITAID to make these drugs more affordable in Southeast Asia and sub-Saharan Africa. 126 
Simultaneously, governments at the World Health Assembly were negotiating international norms to 127 
protect existing drugs from antimicrobial resistance. 128 
Due to the pervasiveness of linkages in the innovation system across stages, sectors, and decision-129 
making levels, intervening in any one part of an innovation system can create negative and positive 130 
externalities that act as “ripple effects” throughout the system. On the negative side, innovation can 131 
cause unintended consequences, particularly as technologies gain more widespread use, such as 132 
the impact of local incentives for biofuel development on global food prices (18). On the positive 133 
side, innovation in one technology area can lead to “spillovers” that enable more rapid improvements 134 
and new applications in other areas (19). In this sense, when new knowledge becomes broadly 135 
accessible, it can act as global public good by laying the foundation for further innovation (20). For 136 
example, global positioning system technology was developed for defense applications but has 137 
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opened up other applications, including improved approaches for targeting disaster relief. The socially 138 
optimal level of investment in technological innovation requires consideration of positive and 139 
negative externalities that can have ripple effects and create spillovers across multiple stages, sectors 140 
and levels. 141 

1.2. Innovation is Non-Linear 142 
Innovation does not happen linearly nor is it a random process. Rather, activities in different 143 
innovation stages can occur in various chronological sequences throughout a technology’s lifecycle. 144 
A well-functioning innovation system has deep connections between and a degree of co-dependence 145 
among innovation stages, making the innovation system non-linear (21). Technological change nearly 146 
always involves various feedback loops across the stages of innovation, unfolding in a chronological 147 
order that rarely traces out a linear development pathway. 148 
The existence of feedback loops connecting activities in different innovation stages implies that 149 
overcoming barriers (or “blocking mechanisms” (22)) to innovation in any one stage often requires 150 
looking beyond that particular stage. For example, ceramic pot filters (CPFs) offer a means for users 151 
to treat available water sources in their homes and reduce the incidence of water-borne diseases. CPFs 152 
have apparent benefits, as they can be manufactured with local materials and labor. However, CPFs 153 
often lack rigorous quality control during the production process and many areas where CPFs may be 154 
deployed do not have access to an adequate supply chain for replacement parts (Table 1). 155 
Interventions to increase CPF adoption without addressing issues in the production stages are likely to 156 
deliver limited benefits. 157 
Actors that fail to recognize the importance of feedback loops often select and promote unsuitable 158 
technologies for adoption. This problem is more prevalent when outside actors are insufficiently 159 
familiar with local settings and are passionate about specific technologies (23). Where decision-160 
making over technology selection is split among actors, a so-called “principal-agent problem” can 161 
arise. For example, if non-governmental organizations (NGOs) and aid agencies do not adequately 162 
engage local communities, they may select inappropriate water treatment technologies on behalf of 163 
the intended users, hindering adoption. 164 
Development of technologies in protected “niche spaces” can allow for important experimentation 165 
and early-stage user interaction to build in necessary feedback (24, 25). For example, engaging users 166 
when designing clean biomass cookstoves for Darfur has resulted in fourteen iterations of the stove, 167 
leading to more suitable designs for local cooking practices (26). To design interventions in 168 
innovation systems that build in feedback, actors must process large amounts of information 169 
concerning technologies that can address particular needs, possible policy interventions, types of 170 
financing arrangements, and input from local users. 171 

1.3. Innovation Systems have Tipping Points 172 
Like other complex adaptive systems, innovation systems can demonstrate punctuated equilibria 173 
whereby thresholds create irregular bursts of explosive technological change*. These “tipping points” 174 
in innovation systems are exemplified by past inventions, such as the steam engine, high-yield staple 175 
crops, antibiotics, the printing press, and the internet. Each example featured rapid utilization of a new 176 
invention, rich follow-on innovation, and broad societal change. Tipping points create dynamics in 177 
                                                      
* Mass species extinctions, the possibility of rapid sea level rise after a certain level of climate warming, sudden outbreaks of 
infectious disease, and rapid economic collapse of the global financial system are examples of observed and predicted 
tipping points of complex adaptive systems (27). 
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innovation systems that are characterized by “thresholds” that create time lags and other forms of 178 
irregular technological evolution. 179 
In some cases, innovation systems can become path-dependent or “locked-in,” whereby relatively 180 
small differences in prior stages of innovation lead to large and persistent differences in which 181 
technologies achieve widespread use. Lock-in occurs through reciprocal feedback loops, such as 182 
increasing returns to an initially adopted technology through continuous adaptation and refinement 183 
(28). Lock-in can also occur when powerful actors, who may have the most to lose from changes to 184 
the status quo, bias the institutions governing innovation systems to meet their preferences and 185 
reinforce their positions of power. Lock-in poses a challenge often faced by new technologies in 186 
capital-intensive and infrastructure-dependent sectors. One example is the challenge of replacing 187 
fossil fuels with renewable energy, in which economies of scale, powerful incumbent firms, a long 188 
history of incremental process technology improvement, and the long life of physical and institutional 189 
supporting infrastructure give economic and political advantages to incumbent technologies (29). The 190 
possibility of lock-in suggests that innovation systems may reach temporarily stable equilibria of 191 
relatively static “technological regimes” (30). Lock-in builds longer time lags into the innovation 192 
system, resisting change until tipping points reorient the system and technological regimes change 193 
(30). 194 
Meeting this challenge includes designing interventions that intentionally cross some technological 195 
tipping points (e.g. escaping from “poverty traps”), managing tipping points that have already 196 
“tipped” (e.g. increasing access to the technological outcomes of the Green Revolution), and raising 197 
barriers to avoid other tipping points altogether (e.g. catastrophic climate change). 198 
2. Understanding the Socio-Technical Nature of Innovation Systems 199 
Understanding innovation systems requires the integration of social and technical considerations. In 200 
innovation systems, society and technology are inextricably linked–actors shaped by institutions in 201 
society produce knowledge just as knowledge modifies and legitimizes the institutions of society. 202 
This reciprocal process is referred to as “co-production.” (31–33). Co-production sheds light on the 203 
ways that technologies and innovation systems reflect broader social, political, and moral 204 
commitments of the societies in which they are embedded. Co-production also helps explain why 205 
diverse societies privilege different outcomes or forms of scientific evidence relating to technological 206 
risks and benefits over others. For example, South Korea and the United States have taken profoundly 207 
approaches to the regulation and use of nuclear energy. In the US, the perceived risk of catastrophic 208 
damage from a potential meltdown and the challenges of long-term waste disposal proved to be 209 
insurmountable challenges to the proponents of nuclear energy. In contrast, South Korean decision 210 
makers saw nuclear energy as a potential solution to what was viewed as an even bigger risk, namely 211 
failing to catch up with the living standards of the developed world. While decision makers in both 212 
countries believed that nuclear energy, in principle, could meet common goals related to energy 213 
security and economic development, the distinct socio-technical systems led to different long-term 214 
innovation pathways (33, 34). 215 
To understand the full range of factors influencing technological change, actors intervening in 216 
innovation systems must grapple with the inextricable linkage of technology and society. As 217 
illustrated in the literature on socio-technical systems (9, 17, 30, 33), technological systems can be 218 
understood in terms of their “socio-technical characteristics” (STCs), which serve as an analytic tool 219 
to structure comparisons across the many dimensions of innovation systems. Innovation systems can 220 



7 
 

be viewed through the lens of STCs to help diagnose barriers to innovation, increase the likelihood of 221 
the ex-ante identification of problems, and support learning from previous experiences. 222 

2.1. Socio-technical Characteristics Diagnose Barriers to Innovation 223 
STCs are a useful analytical tool for understanding and diagnosing possible barriers to innovation that 224 
may emerge when attempting to advance sustainable development in particular innovation systems. A 225 
focus on developing insights inductively through cases spanning multiple sectors with common STCs, 226 
rather than drawing strictly from one sector, location, or for certain actor groups, has great potential 227 
for developing useful generalizations. 228 
The STC perspective can be used analytically to develop hypotheses about general conditions under 229 
which innovation systems are likely to work rather than result in barriers. The usefulness of STCs 230 
emerges from the ability of scholars and practitioners to incorporate new observations from a variety 231 
of different contexts into their knowledge base and leverage those insights to make thoughtful 232 
comparisons about potential pathways or barriers for other technologies with similar STCs. 233 
We illustrate the STC perspective with three STCs and their associations with specific barriers to 234 
innovation that emerge from a broad range of literatures and cases: the presence of positive network 235 
externalities, perceptions of mundaneness, and modularity. These three STCs exemplify a broad range 236 
of potentially useful diagnostic STCs and are thoroughly supported by evidence in the literature. 237 
Because STCs are a guiding concept for inductive investigation, no comprehensive list of relevant 238 
STCs exists†. These three demonstrative STCs are certainly not the only ones that have analytic value 239 
or even the most important ones; rather, they highlight the utility of an STC-focused approach to 240 
diagnosing barriers to innovation. 241 

2.1.1. STC: Presence of Positive Network Externalities 242 
“The presence of positive network externalities” is an STC that describes the degree to which the 243 
adoption of a particular technology by some increases the benefits from using the technology for 244 
others (36). Users of technologies with network externalities benefit more from their use of the 245 
technology as the total number of users increases. This is exemplified by the case of industrial 246 
symbiosis, a practice to configure industrial technologies in a manner that reduces the overall impact 247 
of manufacturing by linking wastes and byproducts in one process to the input needs of another (37). 248 
The EcoTEDA industrial symbiosis program in Tianjin, China is a model where increasing the 249 
number of users has greatly expanded the value of the network by enlarging the number and 250 
robustness of possible resource exchanges between participating firms (Table 1). The role of network 251 
externalities in accelerating technology adoption suggests the importance of strategic information 252 
transmission and marketing to complement peer-to-peer information sharing. 253 
Network externalities also suggest that technologies may be locked-in when network effects are 254 
strong and social learning is an important factor in adoption and effective utilization (28). However, 255 
developing self-sustaining networks of peers that reinforce social learning de novo is difficult. This 256 
dynamic is a major challenge for EcoTEDA, which has struggled to retain enough users to keep their 257 
industrial symbiosis program viable. Barriers to adoption arise unless powerful actors are able to spur 258 
the formation of self-sustaining networks. The presence of network externalities also suggests that 259 
barriers to the timely retirement of technologies are high, as users find switching to other technologies 260 
without established networks less attractive. 261 
                                                      
† A more extensive list of STCs is proposed in Anadon, et al., 2014 (35). 
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2.1.2.  STC: Perceptions of Mundaneness 262 
“Perceptions of the mundaneness of a technology” is an STC that describes the degree to which a 263 
technology fails to hold the attention of key actors in an innovation system, especially actors who play 264 
important roles in technology invention and selection. Perceptions of mundaneness tend to shift the 265 
mobilization of resources away from these options, guiding priorities towards other less appropriate or 266 
effective options (38). Technologies that draw on simpler scientific principles or approaches tend to 267 
be perceived as mundane. However, mundaneness is fundamentally determined by social perceptions, 268 
including whether a technology is considered novel or fits into pre-existing conceptions of a valuable 269 
technology. 270 
The role of mundaneness is exemplified by the development of the system of rice intensification 271 
(SRI) in Madagascar. In the case of SRI, established research centers working on high-yield drought-272 
tolerant seed varieties were initially skeptical of the benefits of the SRI technology, which they 273 
perceived to be a mundane, practice-based approach for improving rice yields. Instead, they preferred 274 
modern laboratory techniques for developing new hybrid and genetically-modified crops. This bias 275 
against mundane technologies led the established research community to ignore a potentially useful 276 
technology for helping small farmers (Table 1). The mundaneness STC cautions practitioners to be 277 
self-aware of institutional influences and social expectations that create perceptions unduly restricting 278 
the solution set of technologies they consider. 279 

2.1.3. STC: Level of Modularity 280 
“The level of modularity” is an STC that describes the degree to which a technology is comprised of 281 
design elements that are easily disaggregated and organized according to a formal architecture or plan 282 
(39). Modularity may be a direct consequence of technological design, but it may also be more 283 
directly socially constructed (e.g. in modular software design). A modular technology can therefore 284 
change via innovation in a subset of its components that are later reintegrated into the whole without 285 
complete redesign of the technology’s architecture. More modular technologies have lower barriers to 286 
adaptation because the separability of components allows actors to improve one component without 287 
the architectural knowledge of the entire technology (40). This expands the range of actors who can 288 
engage in adapting a technology. Because adaptation costs are lower with increasing modularity, 289 
skilled entrepreneurial actors may be able to expand the settings in which a modular technology is 290 
suitable, thus serving a wider array of human needs. 291 
The relationship between modularity and the expansion of suitable contexts for a technology through 292 
adaption is exemplified by the case of cookstoves (Table 1). After some success in supporting the 293 
adoption of the Berkeley Darfur Cookstove (BDS) in Darfur, Sudan, the Berkeley cookstove team 294 
sought to expand deployment of cookstoves to Ethiopia. The adaptation to accommodate different 295 
cooking practices was facilitated by the modularity of the technology: while a common shell was 296 
mass produced in India, the bulk of local adaptation was possible through the use of different pot 297 
supports. 298 

2.2. Socio-Technical Characteristics Facilitate Learning across Innovation Systems 299 
Practitioners with a stake in advancing sustainable development usually have direct access to only a 300 
limited set of experiences from which to develop evidence-based policy and action strategies. Too 301 
often, practitioners struggle to make innovation work for a particular need because they fail to benefit 302 
from the experience of others. This failure stems from a lack of interactions with actors working in 303 
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other fields and settings, together with siloes of narrowed expertise (41). This is a lost opportunity that 304 
the identification of STCs can help address. 305 
STCs can serve to identify barriers to innovation ex-ante and to facilitate learning. For example, the 306 
mundaneness STC can explain the degree of attention paid by actors to a technology in several of the 307 
cases in Table 1. In contrast to the case of SRI discussed above, in the case of ceramic filters, funders 308 
sometimes promoted the CPF technology because they were attracted by the idea of having local 309 
potters build low-cost water filters with local materials; in other words, the technology was not 310 
perceived as mundane because it was connected to an appealing story. However, this attention to 311 
ceramic filters at times caused other water treatment technologies to be overlooked, such as those that 312 
were already sold in the market and known by local actors. 313 
An example of potential learning across sectors from an STC perspective is the experience from 314 
efforts to make the price of artemisinin-based combination therapy (ACT) for malaria treatment 315 
affordable for rural populations in sub-Saharan Africa and Southeast Asia. A group of global health 316 
funding organizations created a global subsidy called the Affordable Medicines Facility-malaria 317 
(AFMm) which reduced the price of ACTs to end-users. Manufacturers received the global subsidy 318 
directly and then shipped reduced-price drugs to countries. They were then supplied into informal 319 
village-level supply chains at a cost competitive with less desirable treatment options (Table 1). Here 320 
we highlight a different set of STCs that are important in this case: end-users who have limited 321 
financing and information, high prices of the technology relative to inferior alternatives, and lengthy 322 
transnational supply chains between manufacturers and end-users. The case of ACT shares similar 323 
STCs to efforts to make drought-tolerant seed varieties. Both ACT and drought-tolerant seeds are 324 
meant to be used by small-scale end-users, have high relative prices, and involve lengthy transnational 325 
supply chains. These shared STCs suggest that a similar intervention to provide a global subsidy 326 
could be considered to address the need for more affordable drought-tolerant seed varieties for 327 
farmers in developing countries. 328 
We conclude that the community of scholars and practitioners seeking to make innovation work for 329 
sustainable development would be well served by an effort to build up a larger set of STCs along with 330 
insights derived from their application. 331 
3.  Understanding Institutional Change in Innovation Systems 332 
Institutions shape the functioning of innovation systems by guiding and constraining the activities of 333 
actors at multiple levels, ranging from customs that extend no further than a particular village, to 334 
regional or national laws, to codified norms in international treaties (11). These institutions are often 335 
not aligned to meet sustainable development goals. Fortunately, institutions can be changed by actors 336 
who thus have the ability to reorient innovation systems towards sustainable development. 337 

3.1. Institutions are Not Necessarily Aligned towards Sustainable Development 338 
The complex web of existing institutions governing innovation systems reflects existing power 339 
structures. Often, such institutions are not aligned with sustainable development due primarily to three 340 
factors. First, existing institutions tend to drive innovative activity toward the areas of greatest 341 
financial prospect, not the greatest human needs. Economic incentives propel much innovation to 342 
meet the needs of those who can exert “market” or “demand pull” (42), but not those with few 343 
financial resources. The problems of neglected diseases and neglected crops, for which few new 344 
technologies have been developed, exemplify such gaps. 345 
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Second, existing institutions do not adequately govern activities producing negative externalities 346 
mediated over environmental systems or over long time-horizons. For example, private actors can 347 
often degrade the ecosystems on which human wellbeing depends without consequence. In the case of 348 
industrial symbiosis, private incentives were insufficient to drive firms to participate in an industrial 349 
symbiosis network that would have lowered overall environmental impacts in Tianjin in the short 350 
term; additional financial and regulatory incentives to reduce waste and emissions were required 351 
(Table 1). 352 
Third, the public-good nature of knowledge, in general and of technology in particular (see Section 353 
1.1), raises questions about the possibility for institutions to restrict the dissemination of knowledge or 354 
otherwise affect technological innovation for sustainable development. The intellectual property (IP) 355 
regime is an institution that aims to incentivize innovation by allowing inventors to exclude others 356 
from using patented technology for a fixed period of time, during which they can charge monopoly 357 
prices for patented products or earn revenues from licensing. While the IP regime strengthens 358 
incentives to invest resources in invention, it also restricts the use of new knowledge by raising prices 359 
or blocking follow-on innovation (43, 44). It has been argued that the increasingly globalized IP 360 
regime will diminish prospects for technology transfer and competition in developing countries, 361 
particularly for several important technology areas related to meeting sustainable development needs 362 
(45). 363 
These three shortcomings of innovation systems highlight the need for institutional reform. At a 364 
national level, policy makers regularly reshape institutions to meet national interests, such as 365 
increasing domestic economic growth, improving national security, or enhancing their citizens’ 366 
wellbeing. National actors may develop public policies to promote innovation to advance these 367 
interests, such as subsidizing R&D or creating publicly-funded research labs. However, many 368 
sustainable development challenges and their potential solutions have important transnational 369 
dimensions. The control of carbon emissions, the spread of infectious diseases, and the depletion of 370 
shared water resources are examples in which both problems and solutions involve multiple nation-371 
states. Yet, transnational institutions to drive technological innovation to address these problems 372 
remain relatively weak or absent altogether, and national policies offer only patchwork solutions. To 373 
meet key sustainable development challenges, greater alignment of institutions with sustainable 374 
development goals is needed at all decision making levels. 375 

3.2. Innovation Systems Involve Many Actors Operating at Different Stages and Levels  376 
Reforming institutions to better align innovation systems with sustainable development requires 377 
mobilizing collective action across a complex and large set of actors, who work at many levels and 378 
who engage in activities that overlap and sometimes conflict (46, 47). As highlighted in Section 1, 379 
innovation system complexity arises because actors in the innovation system operate across different 380 
innovation stages and decision-making levels through interconnected activities. The 381 
interdependencies of actors may be explicit, such as through technology commercialization licensing 382 
agreements that involve a formal contract transferring intellectual property (48). Alternatively, 383 
linkages connecting actors may be implicit, such as the underemphasized dependence of new product 384 
development by many computer hardware and pharmaceutical firms on prior government-funded 385 
R&D (49, 50). Collective action problems arise because actors operating across different stages and 386 
decision-making levels vary in their interests and incentives, which are not necessarily driven by the 387 
goal of sustainable development. In some cases, actors are strongly driven by market forces. In other 388 
cases, a centralized authority, such as a single state or private firm, creates rules that govern the 389 
behavior of actors across all (or many) stages and decision-making levels of the innovation system. 390 



11 
 

For example, a national government usually has little motivation to take into account the needs of 391 
citizens beyond its borders, a profit-maximizing firm has insufficient incentive to invent technologies 392 
for people who cannot afford its products, and consumers lack the impetus to consider how their 393 
decisions impact other communities distant in time or space. 394 
Aligning actors working at different decision-making levels of the innovation system is challenging. 395 
The problem is particularly relevant when needs that vary at the local level are not fully incorporated 396 
into decision-making elsewhere. In efforts over the past few decades to promote the development and 397 
adoption of cleaner and more efficient cookstoves, inventors and selectors of technologies were often 398 
not fully engaged in local contexts and lacked an adequate understanding of the needs of end-users. 399 
Many stove designs promoted by transnational actors proved unsuitable for the preparation of local 400 
dishes, which led to significant barriers in achieving widespread adoption and achieving impact 401 
(Table 1) (51). 402 

3.3. Actors Can Change Institutions to Re-orient Innovation Systems towards Sustainable 403 
Development 404 

The cases discussed throughout this paper illustrate how the preexisting rules and norms that shape 405 
innovation systems are not necessarily aligned towards sustainable development. However, while 406 
institutions constrain actor behavior in the short term, institutions are not immutable. The incentives, 407 
capabilities, and needs of actors that comprise innovation systems co-evolve with governing 408 
institutions (4, 52, 53). So although the capacity and power of actors depend on institutions, 409 
institutions themselves are shaped by actors and can change in both incremental and radical ways 410 
(13). For example, in the early 2000s, efforts to expand access to treatment for HIV/AIDS were 411 
hindered by stringent international IP rules that blocked developing countries from using lower-cost 412 
generic versions of HIV drugs. A global network of civil society, developing country governments, 413 
and health experts challenged the moral acceptability of these IP rules and succeeded in changing 414 
norms to allow for much greater flexibility in how patents on medicines were managed in resource-415 
poor settings (54). 416 
Institutions are inherently “sticky.” Changing innovation systems is a daunting task that requires 417 
leveraging multiple types of power, such as normative power to challenge the ethical acceptability of 418 
existing institutions; convening power to bring actors together to establish new goals, priorities, and 419 
agendas; legal power to negotiate and revise norms, binding rules, and standards; informational power 420 
to identify alternatives and to assess their feasibility; and financial power to create incentives, 421 
implement costly new policies, and reduce the risk or cost of doing so (35). 422 
Here, we provide three additional examples drawn from Table 1, of how actors have induced 423 
institutional change to promote sustainable development. In the case of drip irrigation, government 424 
officials in Andhra Pradesh (AP), India designed a subsidy that reduced costs and incentivized private 425 
companies to market and disseminate knowledge of drip irrigation, a technology that could improve 426 
yields but was too expensive for most farmers in AP. Utilizing its legal power to change the rules 427 
shaping the behavior of private firms and its financial power via a subsidy to implement the new 428 
rules, the government reshaped institutions to spur widespread use of drip irrigation. In contrast, in the 429 
case of SRI, a loose network of activists, lacking both legal and financial power, relied upon 430 
informational and convening power to build a coalition of support for SRI. Finally, in the case of 431 
ACT, NGOs and academics exercised normative power through a public advocacy campaign to 432 
challenge the then-prevailing norm that donors should not subsidize relatively expensive medicines 433 
for lower-income populations. 434 



12 
 

In sum, sustainable development is not yet a strong enough organizing principle to align actor 435 
behavior in most innovation systems to systematically take into account the interests of low-income 436 
populations and future generations. Realigning innovation systems towards sustainable development 437 
requires changing institutions at all stages of the innovation process, from invention through 438 
widespread use and retirement, and at multiple decision-making levels, from local to global. While 439 
such changes may be difficult, committed actors who strategically mobilize the multiple types of 440 
power available to them have achieved significant reforms. 441 
4. Conclusion 442 
Technological innovation has played a central role in achieving important societal objectives, such as 443 
economic growth and improved human well-being. But innovation systems, driven primarily by 444 
markets and the most highly-resourced states, are characterized by pervasive power imbalances. As a 445 
result, the needs of marginalized populations and future generations are not met as well as they could 446 
be. Re-orienting innovation systems towards sustainable development will require addressing power 447 
imbalances and transforming many of the deeply embedded institutions that limit innovation systems 448 
from delivering on their potential. We offer three recommendations for action derived from the 449 
insights on innovation presented here, deepening and extending recommendations regarding 450 
knowledge systems more generally (55). 451 
First, measures are needed to regularize learning across spheres of practice to improve understanding 452 
of how to re-orient innovation systems towards sustainable development. Understanding innovation 453 
systems and their socio-technical nature is a necessary precondition for the development of carefully 454 
targeted interventions that realize the full potential of innovation for sustainable development. Many 455 
potential lessons are available (41), but drawing appropriate conclusions requires analytical rigor, 456 
which can be facilitated by the use of STCs. Actors with convening power should facilitate learning 457 
across disparate communities of practice, for example, by organizing conferences that purposefully 458 
bring together practitioners, policymakers, and scholars working in more than one sector. Research 459 
funders should support comparative analyses that draw from the experience of more than one sector 460 
or location. Universities should teach students across disciplines to think broadly about technological 461 
innovation, and not only innovation in a single sector, region, or technology area. More broadly, 462 
actors can use STCs as heuristics to identify possible barriers to innovation that could emerge when 463 
selecting particular technologies or interventions. 464 
Second, power disparities can be mitigated by identifying ways to systematically take into account the 465 
interests of underserved populations throughout the innovation process. Since impoverished and 466 
future populations often lack the power needed to influence innovation systems, problems arise such 467 
as when third parties select technologies poorly suited for end-users. There is also untapped potential 468 
for end-users to adapt technologies for use in new settings (25). Building in channels of 469 
communication between underserved populations and powerful actors would help alleviate power 470 
disparities and strengthen the feedback loops that characterize well-functioning innovation systems. 471 
We propose that actors with convening power and normative authority identify ways to more 472 
meaningfully engage marginalized populations in innovation systems (56). For example, international 473 
NGOs and United Nations agencies can directly engage marginalized populations when negotiating 474 
norms and establishing priorities, rather than speaking on behalf of directly-affected populations. We 475 
also argue for capacity-building among less-powerful populations to represent their interests in global 476 
forums. The gradual shift in the multilateral climate regime to policies that more deeply engage 477 
developing country governments and firms in how to innovative for climate change demonstrates that 478 
such change is possible. Previously, international organizations primarily focused on technology 479 
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transfer, often through financing arrangements to export technology from more advanced countries to 480 
developing countries. However, newer forms of cooperation seek to more deeply engage developing 481 
country actors in the process of technology invention and selection by reducing information 482 
asymmetries, decreasing social distance between actors with expertise and skills, and fostering new 483 
collaborative R&D arrangements (57). 484 
Finally, we argue that actors should reform institutions to re-orient innovation systems towards 485 
sustainable development, leveraging various forms of power to do so. Due to the complex-adaptive 486 
nature of innovation systems, such reforms will be more effective if all stages of innovation and all 487 
relevant decision-making levels are considered at the outset. To illustrate: reform efforts in the 488 
biomedical innovation system previously focused on just one stage, such as driving invention for 489 
neglected diseases, adapting vaccines to be heat-stable, or decreasing the price of HIV/AIDS 490 
medicines. More recently, institutional reforms under consideration involve using publicly-financed 491 
“push” and “pull” incentives that simultaneously steer invention towards socially negotiated goals and 492 
facilitate widespread adoption by building affordability measures into R&D processes from their 493 
inception. Governments of both industrialized and developing countries are being asked to contribute 494 
to a global biomedical R&D fund for this purpose (58), an illustration of reforming institutions 495 
simultaneously at both national and global levels. 496 
In the context of climate change mitigation, institutional reform to create a carbon price through 497 
regional, national, and sub-national carbon markets has shifted the incentives facing consumers and 498 
producers towards low-carbon forms of energy at all stages of innovation. For example, carbon 499 
pricing increases the profitability of private action to invest in renewable energy invention, select 500 
more energy-efficient appliances, and hasten the retirement of greenhouse gas-intensive power plants. 501 
Yet carbon pricing alone may be inadequate for addressing climate change in a cost-effective manner. 502 
Doing so also requires further strengthening incentives for private energy R&D and concerted public 503 
R&D investment (59). 504 
Many types of interventions are needed to realign innovation systems for sustainable development, 505 
requiring actors to leverage the types of power available to them. Altering the institutions governing 506 
innovation systems may appear politically or practically impossible in the short-run. Yet without 507 
institutional change, certain populations will remain excluded from the benefits of innovation, and the 508 
interests of present generations will continue to unfairly outweigh those of the future. Making 509 
technological innovation work for sustainable development requires making fundamental changes to 510 
the rules of the game. 511 
  512 
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Figure Legends 753 
Figure 1. Summaries of six case studies of technologies and innovation systems to promote 754 
sustainable development. The cases are detailed further in the Supporting Information.  755 
 756 
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