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We present numerical simulations of steady, laminar, axisymmetric convection of a Boussinesq
fluid in a shallow, rotating, cylindrical domain. The flow is driven by an imposed vertical heat flux
and shaped by the background rotation of the domain. The geometry is inspired by that of tropical
cyclones and the global flow pattern consists of a shallow, swirling vortex combined with a poloidal
flow in the r−z plane which is predominantly inward near the bottom boundary and outward along
the upper surface. Our numerical experiments confirm that, as suggested by [1], an eye forms at
the centre of the vortex which is reminiscent of that seen in a tropical cyclone and is characterised
by a local reversal in the direction of the poloidal flow. We establish scaling laws for the flow
and map out the conditions under which an eye will, or will not, form. We show that, to leading
order, the velocity scales with V = (αgβ)1/2H, where g is gravity, α the expansion coefficient, β
the background temperature gradient, and H is the depth of the domain. We also show that the
two most important parameters controlling the flow are Re = V H/ν and Ro = V/ (ΩH), where Ω
is the background rotation rate and ν the viscosity. The Prandtl number and aspect ratio also play
an important, if secondary, role. Finally, and most importantly, we establish the criteria required
for eye formation. These consist of a lower bound on Re, upper and lower bounds on Ro, and an
upper bound on Ekman number.
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FIG. 1. Streamlines highlighting the cyclonic vortex in the center of our convection cell. The conical eyewall is represented in
shaded gray. Parameters: ε = 0.1, Pr = 0.1, E = 0.1 and Ra = 2× 104.

I. INTRODUCTION

A well-documented and intriguing feature of atmospheric vortices, such as tropical cyclones and dust-devils, is that
they often develop an eye, defined as a region of reversed, downward flow in and around the axis of the vortex [see
2, and references therein]. In the case of tropical cyclones, such an eye is readily identified in satellite images by the
absence of cloud cover. Despite their common appearance, there is still little agreement as to the mechanisms of eye
formation [3–5], and indeed it is not even clear that the same basic mechanisms are responsible in different classes of
atmospheric vortices [6]. In the absence of such a fundamental understanding, one cannot reliably predict when eyes
should, or should not, form.

Recently, however, Oruba et al [1], (hereafter denoted ODD17) identified one mechanism of eye formation in the
context of a simple model problem. Inspired by the geometry of tropical cyclones, they considered convection in a
shallow, rotating, cylindrical domain of low aspect ratio. In particular, they investigated the simplest physical system
that can support an eye in such a geometry, which is the steady, laminar, axisymmetric convection of a Boussinesq
fluid. Such a simple system is free from the complexities which hamper our understanding of real atmospheric vortices,
such as turbulence, stable stratification, ill-defined boundary conditions, latent heat release from moist convection,
and transient evolution. This allowed the mechanism of eye formation to be unambiguously identified, at least for
the model system considered. It turns out that the eye in such cases is a passive response to the formation of an
eyewall, a thin conical annulus of upward moving fluid which forms near the axis and separates the eye from the rest
of the vortex (see Figure 1). Such eyewalls are characterised by a particularly intense level of negative azimuthal
(horizontal) vorticity, and ODD17 showed that the eye, which is also characterised by a region of negative azimuthal
vorticity, receives its vorticity by slow, cross-stream diffusion from the eyewall. Since the main body of the vortex has
positive azimuthal vorticity, it is natural to ask where the intense, negative azimuthal vorticity of the eyewall comes
from, and ODD17 established that the eyewall vorticity has its origins in the boundary layer on the bottom surface.

Perhaps it is worth taking a moment to describe the model system of ODD17, if only because we shall adopt
the same system here. It consists of a rotating, cylindrical domain of low aspect ratio in which the lower surface
is a no-slip boundary and the upper surface is stress free. The motion is driven by a prescribed vertical heat flux
through the lower boundary and, in a frame of reference rotating with the lower boundary, the flow is organised and
shaped by the Coriolis force. Crucially, this Coriolis force induces positive excess swirl in the fluid adjacent to the
lower boundary, which in turn sets up an Ekman-like boundary layer on the lower surface. This boundary layer then
drives flow inward towards the axis, and so the primary motion in the vertical plane is radially inward near the lower
boundary and outward at the upper surface. As the fluid spirals inward, it tries to conserve its angular momentum,
and this results in a region of particularly intense swirl near the axis.

In the force balance for the bulk of the vortex it was found that the buoyancy, Coriolis and inertial forces are of
similar magnitudes, with a local Rossby number of order unity. However, near the eyewall the intense swirl means that
the local Rossby number is large, with the buoyancy and Coriolis forces almost completely irrelevant by comparison
with inertia. So, surrounding the eyewall there exists a conventional converging, swirling boundary layer, which
separates before reaching the axis, carrying its intense azimuthal vorticity up into the bulk of the flow. The resulting
free shear layer then constitutes the eyewall, which in turn gives rise to an eye.

For the limited range of parameters considered in ODD17, the requirement for an eye to form is that the Reynolds
number based on the peak inflow velocity must exceed Re ∼ 37. By contrast, at lower values of Re the flow is
relatively diffusive, and so the negative azimuthal vorticity in the lower boundary layer cannot be advected upward
to form an eyewall; hence the absence of an eye. To the best of our knowledge, this is the first attempt to establish a
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simple criterion for eye formation. However, ODD17 considered only a relatively small range of parameters, keeping
the aspect ratio and Ekman number fixed and varying the Rayleigh number by a factor of only 30. Here we revisit
the entire problem and consider a much wider range of parameters. In particular, we present the results of a suite of
over 150 numerical simulations in which the Rayleigh number, Ekman number and aspect ratio are all varied. The
analysis of this suite of simulations shows that the conditions required for eye formation are more subtle than those
suggested in ODD17.

II. A MODEL PROBLEM AND KEY DIMENSIONLESS GROUPS

Our model problem is the same as that in [1]. It consists of the steady, laminar flow of a Boussinesq fluid in a closed,
rotating cylinder of height H and radius R, with aspect ratio ε = H/R� 1. We adopt cylindrical polar coordinates,
(r, φ, z), with the upper and lower boundaries at z = H and z = 0. The motion is maintained by buoyancy with a
prescribed heat flux between the two horizontal boundaries. The surfaces at z = 0 and r = R are no-slip boundaries,
while the upper surface is taken to be stress free. This choice of boundary conditions is essential to our model as the
vorticity generation in the bottom boundary layer is essential in the eyewall formation. It does not necessarily imply
that counter-vortices (associated with a downward flow near the axis) are not possible under different configurations,
such as for example a stress-free bottom boundary. However such structures would not feature a sharp eyewall as in
the present model.

The choice of fixed heat flux boundary condition is motivated by our intention to model an elongated vortex: we
want to drive a large-scale convective cell in an elongated domain. It is well known [e.g. 7] that imposed flux boundary
conditions will cause the convective cell to extend horizontally and fill the entire domain. This choice of boundary
conditions is also the natural choice to model intense atmospheric vortices over the ocean, the main source of energy
being the flux of water vapour from the ocean.

In the absence of convection there is an imposed, uniform temperature gradient of dT0/dz = −β, and we write the
temperature distribution in the presence of convection as T = T0(z) +ϑ. The governing equation for the temperature
disturbance is then

Dϑ

Dt
= κ∇2ϑ+ βuz , (1)

where κ is the thermal diffusivity and uz the vertical velocity. We impose ∂ϑ/∂z at z = 0 and z = H in order to
maintain a constant axial heat flux, and the outer radial boundary is taken to be thermally insulating.

Let Ω be the background rotation rate, and ν, α and ρ0 be the kinematic viscosity, expansion coefficient and mean
density of the fluid. In a frame of reference which rotates with the boundaries z = 0 and r = R, the governing
equation of motion is then

Du

Dt
= −∇ (p/ρ0) + 2 u×Ω + ν∇2u − αϑg , (2)

where u is the solenoidal velocity field in the rotating frame, p the departure from a hydrostatic pressure distribution,
and −αϑg the buoyancy force per unit mass. The associated vorticity equation is

Dω

Dt
= ω ·∇u + 2 Ω ·∇u + ν∇2ω + αg ×∇ϑ , (3)

where ω = ∇× u.
Since we restrict ourselves to axisymmetric velocity fields it is convenient to decompose u into poloidal, up =

(ur, 0, uz), and azimuthal, uφ = (0,Γ/r, 0), components, in which ∇ · up = 0 and Γ = ruφ is the angular momentum
density in the rotating frame. The azimuthal component of (2) and (3) then becomes evolution equations for Γ and
ωφ = (∇× up) · êφ,

D
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[See, for example, 8, for a derivation of equations (4) and (5)]. The Stokes stream-function, defined by up = ∇ ×
[(ψ/r) êφ], can be determined from ωφ by inverting the Poisson equation rωφ = −∇2

?ψ. It follows that the two scalar
fields Γ and ωφ uniquely determine the instantaneous velocity distribution, and so the governing equations for our
model system are (1), (4) and (5).

The dimensionless control parameters normally used to investigate the stability of this kind of rotating convection
are

ε =
H

R
, Pr =

ν

κ
, E =

ν

ΩH2
, Ra =

αgβH4

νκ
, (7)

where Pr is the Prandtl number, E the Ekman number and Ra the Rayleigh number. However, since we are looking
at fully-developed flow, rather than the stability of a static equilibrium, we shall find it convenient to work with
an alternative set of dimensionless parameters. Let us introduce the velocity scale V = (αgβ)1/2H, which will turn
out to be characteristic of the actual fluid velocity. Then an alternative, if equivalent, set of dimensionless control
parameters is

ε =
H

R
, Pr =

ν

κ
, Re =

V H

ν
, Ro =

V

ΩH
, (8)

where Re and Ro are characteristic Reynolds and Rossby numbers. One potential advantage of (8) over (7) is that, if
we are allowed to take V as truly representative of fluid velocity, then Re and Ro have a simple physical interpretation
in terms of the relative dynamical balance in (2). The dimensionless control parameters (8) indeed naturally enter
the non-dimensional form of equations (1) and (2) using H, V and βH as units of length, speed and temperature,
which provides

Dϑ?

Dt?
= Re−1 Pr−1 ∇2ϑ? + u?z (9)

Du?

Dt?
= −∇π + 2 Ro−1 u? × êz + Re−1 ∇2u? + ϑ?êz , (10)

where a ? denotes dimensionless quantities. Moreover, ODD17 have already noted the importance of Re as a control

parameter for the appearance of an eye. Of course, it is easy to go from (7) to (8), with Ro = Ra1/2E Pr−1/2 and

Re = Ra1/2 Pr−1/2.
The eyewall tends to be confined to the region r < H and, as noted above, the dynamics in the vicinity of the eyewall

tends to be quite different to be that in the bulk of the vortex. In particular, although the Coriolis and buoyancy
forces are of the same order of magnitude as inertia in the bulk, they are negligible near the eyewall where inertia
is particularly high. Consequently, for diagnostic purposes, we shall find it convenient to introduce the following
local definitions of Re and Ro. Let uφ,m be the maximum azimuthal velocity on the surface r = H, and ur,δ be the
magnitude of the radial velocity at location (r = H, z = δ), where z = δ is the upper edge of the bottom boundary
layer, defined at a given radius as the point where negative azimuthal vorticity ωφ in the boundary layer becomes
positive. We then define local values of Re and Ro in the vicinity of the eyewall as Rer = ur,δH/ν, Reφ = uφ,mH/ν,
Ror = ur,δ/(ΩH) and Roφ = uφ,m/(ΩH). More generally, we introduce local values of Ror(r) and Roφ(r) for any
radius, based on the local values of ur,δ(r) and uφ,m(r).

The numerical values of the dimensionless control parameters used in our suite of numerical simulations are tabulated
in the Appendix, along with the corresponding values of Ro, Re, Ror, Rer and the magnitude of the maximum
downward velocity on the axis, |uz|max

r=0 . The dimensionless parameters listed in (7) are restricted to the ranges
0.1 < ε < 0.3, 0.1 < Pr < 1, 0.07 < E < 0.4 and 103 < Ra < 4.5 × 104. These correspond to values of Re, Ro and
Rer of 45 < Re < 616, 4.5 < Ro < 124 and 6 < Rer < 188. A zero entry for |uz|max

r=0 in the table indicates that no eye
formed in that simulation, while a non-zero value provides a measure of the strength of the eye.

There are 157 simulations in total. Each numerical experiment comprises an initial value problem which is run until
a steady state is reached. We solve equations (1), (4) and (5) using second-order finite differences with an implicit
second-order backward differentiation in time. The grid resolution is 1000 radial ×500 axial cells and grid resolution
studies were performed to ensure convergence.

The strength and shape of the eye depends on the parameter regime, see table 1, and figure 2.

III. GENERAL FLOW STRUCTURE AND SCALING LAWS

As a prelude to our discussion of the conditions under which eyes form, it is useful to consider the general structure
of the flow and the scaling laws for the velocity field. In order to illustrate some of the more general features of
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(a) (b)

FIG. 2. Similar representation as Figure 1 for different choices of parameters: (a) ε = 0.1, Pr = 0.1, E = 0.15 and Ra = 1×104 ,
(b) ε = 0.1, Pr = 1, E = 0.1 and Ra = 4.5× 104 .
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FIG. 3. (a) The Stokes stream-function. (b) The radial variations of Ror(r) and (c) Roφ(r). Parameters: ε = 0.1, Pr = 0.1,
E = 0.1 and Ra = 2× 104.

the flow, let us start by considering the specific (though typical) case in which the control parameters are ε = 0.1,
Pr = 0.1, E = 0.1 and Ra = 2 × 104, or equivalently Re = 447 and Ro = 44.7. The Reynolds number and Rossby
number in the vicinity of the eyewall are Rer = 176 and Roφ = 30.

The Stokes stream-function and radial variations of Ror(r) and Roφ(r) for this case are shown in Figure 3, and
it is evident that an eye has formed near the axis. Note that Roφ(r), and hence uφ, rises rapidly as we approach
the eyewall, which is a consequence of approximate angular momentum conservation in the incoming flow. The local
value of Roφ near the eye is therefore large and background rotation has no direct influence on the flow in this region.
Note also that uφ,m is smaller than ur,δ in the bulk of the vortex, but that uφ,m exceeds ur,δ near the eyewall.

Figure 4 shows the corresponding distributions of azimuthal velocity, uφ, angular momentum, Γ, and total tempera-
ture, T = T0(z)+ϑ. The intensification of uφ by the inward advection of angular momentum is evident in Figure 4(a),
while 4(b) shows that, in the region immediately to the right of the eye, the contours of constant angular momentum
are roughly aligned with the streamlines, indicative of DΓ/Dt ' 0. This is to be expected from (4), given that the
background rotation is locally weak and diffusion is largely restricted to the boundary layer and the eyewall. This
figure also shows a substantial region of negative uφ (anti-cyclonic rotation) at large radius, something that is also
noted in ODD17 and is observed in tropical cyclones. From Figure 4(c) we see that the poloidal flow sweeps hot
fluid upward near the axis and cold fluid downward and inwards at r = R. The resulting negative radial gradient
in temperature drives the main poloidal vortex, ensuring that it has positive azimuthal vorticity in accordance with
equation (5).

The structure of the eyewall is particularly evident in Figure 5, which shows the distribution of azimuthal vorticity,
ωφ/r. It is clear that there are intense levels of azimuthal vorticity in the vicinity of the eyewall, and indeed it is
natural to define the eyewall as the conical annulus of strong negative azimuthal vorticity. The eyewall then separates
the eye from the primary vortex. Note also that an intense region of negative azimuthal vorticity has built up in the
lower boundary layer, and it is shown in ODD17 that this is the ultimate source of the eyewall vorticity. A region of
strong positive azimuthal vorticity is also evident between the lower boundary and the eyewall. As noted in ODD17,
this is a local effect caused by the source term ∇ ·

[(
Γ2/r4

)
êz
]

in (5), which is particularly large near the base of the
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FIG. 4. Colour maps of: (a) the azimuthal velocity, uφ, (b) the angular momentum, Γ, superimposed on the stream-function,
and (c) the total temperature T = T0(z) + ϑ. Parameters: ε = 0.1, Pr = 0.1, E = 0.1 and Ra = 2× 104.
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FIG. 5. Colour map of ωφ/r superimposed on the streamlines. (a) Full flow field. (b) Flow in the inner quarter of the domain.
Parameters: ε = 0.1, Pr = 0.1, E = 0.1 and Ra = 2× 104.

eyewall. However, since this source term takes the form of a flux it cannot contribute to the mean azimuthal vorticity
in the eyewall (see ODD17).

The general structure of the flow shown in Figures 3, 4 and 5 is typical of all of our simulations which exhibit an
eye. However, the scaling of the various velocity components and the characteristic thickness of the bottom boundary
layer depends on the precise values of the control parameters. Let us start with some observations about the thickness
of the bottom boundary layer.

Figure 6 shows δ? = δ/H, the dimensionless boundary-layer thickness, evaluated at mid radius, r = R/2, and
plotted as a function of Ro in Figure 6(a) and E in Figure 6(b). The results of all 87 numerical simulations for ε = 0.1
and Pr = 0.1 are shown. It is clear from Figure 6(a) that there are two regimes. For Ro < 25 we see that δ is
an increasing function of Ro, while for Ro > 30 there is evidence that δ saturates at approximately H/4. We shall
see shortly that these two distinct regimes also manifest themselves in the scaling laws for the velocity field, with a
transition at around Ro ∼ 25. Figure 7 shows the same data, but for the location r = H. The boundary layer is now
much thinner and there is some suggestion in Figure 7(b) that δ? ∼ E1/2. This, in turn, suggests that the boundary



7

(a)
20 40 60 80 100 120

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Ro

δ⋆
(r

=
R
/
2
)

(b)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.18

0.2

0.22

0.24

0.26

0.28

0.3

E

δ⋆
(r

=
R
/
2
)

FIG. 6. The dimensionless boundary-layer thickness at mid radius, δ?(r = R/2), as a function of: (a) Ro, and (b) E.
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FIG. 7. The dimensionless boundary-layer thickness at r = H, δ?(r = H), as a function of: (a) Ro, and (b) E. The dashed line

corresponds to δ? ∼ E1/2.

layer at r = H scales approximately as δ ∼ (ν/Ω)1/2, as in a conventional Ekman layer.

We now consider the velocity ratio uφ,m/ur,δ. A preliminary analysis of the data indicates that this velocity ratio

scales approximately as uφ,m/ur,δ ∼ E−1/2, a scaling which is highlighted on Figure 8, together with the remaining
Rossby number dependence.

Regarding the scaling laws for the velocity field, it is instructive to integrate equation (2) once around a closed
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FIG. 8. The velocity ratio E1/2uφ,m/ur,δ at r = H as a function of Ro.
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streamline. The inertial, pressure and Coriolis terms all drop out and we are left with the simple expression

ν

∮
∇2u · dr =

∮
(αϑg) · dr . (11)

This represents an energy balance for a fluid particle as it is swept once around a closed streamline. In particular,
it represents the balance between the viscous dissipation of energy and the work done on the fluid particle by the
buoyancy force as the particle is carried around a streamline. For those cases in which the dissipation occurs primarily
in the bottom boundary layer, this yields the estimate

ν
ur,δ
δ2

R ∼ αgβH2 = V 2 . (12)

(We have taken advantage of the fact that uφ,m/ur,δ ≤ 1 at most radii to omit the contribution from uφ.) If, in

addition, we adopt the suggestion of Figure 7(b) that the boundary layer thickness scales as δ ∼ (ν/Ω)1/2, as in an
Ekman layer, then we conclude that

ur,δ
V
∼ V

ΩR
= εRo . (13)

However, this estimate holds only when there is a well-developed boundary layer on the lower surface in which
δ is much thinner than H. If the boundary layer grows to be of order H, on the other hand, the dissipation will
be distributed throughout the bulk of the fluid and we would expect a different scaling law to hold. Figure 6(a)
tentatively suggests that scaling (13) might be appropriate for Ro < 25, but not for Ro > 30.

Figure 9 shows: (a) ur,δ/V , (b) uφ,m/V , and (c) E1/2uφ,m/V , all evaluated at r = H and plotted against Ro. The
data in Figure 9(a) supports the idea that there are two regimes, with a transition at around Ro ∼ 25. Moreover, for
Ro < 25 there is some evidence in support of (13), while for Ro > 25 the radial velocity saturates at ur,δ ∼ V . There
is considerably more scatter in Figure 9(b), which shows uφ,m/V as a function of Ro. However, we have already noted

that uφ,m/ur,δ ∼ E−1/2 at r = H and so Figure 9(c) shows the same data in the form E1/2uφ,m/V . The data is now
reasonably well collapsed and again there is clear evidence of a transition in regimes at around Ro ∼ 25.

Let us finally consider the thickness and strength of the vorticity in the eyewall. We define the width of the eyewall
δ?ew as the horizontal extent of the negative azimuthal vorticity at the height of the eye center zeye (we restrict ourselves
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FIG. 11. Bifurcation diagrams of |uz|max
r=0 versus Reynolds number, with the bottom panels focused on the region of the

bifurcation. The Ekman number is allowed to vary, but Pr and ε are fixed at Pr = ε = 0.1. The colour code indicates the
values of E, with E = 0.085 (white), E = 0.090 (black), E = 0.10 (blue), E = 0.12 (light blue), E = 0.15 (green), E = 0.17
(yellow), E = 0.20 (pink), E = 0.22 (red). (a), (c) |uz|max

r=0 plotted as a function of Rer. (b), (d) |uz|max
r=0 plotted as a function

of Re.

here to cases in which an eye was observed). It is to be expected that the width of the eyewall δ?ew depends on the ratio
of advection along the eyewall to that of cross-stream diffusion. This appears to be well supported by Figure 10(a).

Indeed the width of the eyewall appears to scale as Re−1/2
r as anticipated from a balance of streamwise advection and

cross-stream diffusion. The strength of the vorticity in the eyewall can be estimated as ω?φ,ew = −min(ω?φ(r, zeye)) .

Figure 10(b) shows the increase of ω?φ,ew as the Reynolds number Rer is increased. The nature of the supercritical
bifurcation to an eye will be the object of the next section.

IV. THE TRANSITION TO AN EYE

It was noted in ODD17 that, for the limited set of cases examined, an eye would not form when Rer < 37. The
reason is that the flow is then too diffusive for the boundary layer vorticity to be advected up in the bulk for the
flow, and without this boundary layer vorticity, an eyewall cannot form. We now revisit this transition from no eye
to an eye, focussing exclusively on the flow in the region r ≤ H. We shall use as a measure of the strength of the
eye the magnitude of the maximum downward velocity on the axis, |uz|max

r=0 . The value of |uz|max
r=0 observed in each

simulation is tabulated in the Appendix, with a zero entry for |uz|max
r=0 in the tables indicating that no eye formed in

that simulation.
Figure 11 shows |uz|max

r=0 plotted as a function of (a) the measured Rer and (b) the controlled Re for different values
of E. (Both Pr and ε are held fixed at ε = 0.1 and Pr = 0.1.) There is indeed a supercritical bifurcation to an eye
at around Rer,crit ∼ 40, but there is also clear evidence that the critical Reynolds number, Rer,crit, depends on E,
with Rer,crit varying from around 34 up to a maximum of 50. Considering the control parameter Re yields somewhat
more scatter in the plot of |uz|max

r=0 versus Re, but the general trend is similar, with a supercritical bifurcation in the
range 110 < Recrit < 170.

The degree to which the critical Reynolds numbers Rer,crit and Recrit vary with E, Pr and ε is explored in Figure 12.
Panels (a) and (b) show the dependency on E, (c) and (d) the dependency on Pr, and (e) and (f) the dependency
on ε. Interestingly, there is an optimum Ekman number for eye formation in the sense that Rer,crit and Recrit both
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exhibit minima. This minimum is around E ∼ 0.1 for Rer,crit and E ∼ 0.15 for Recrit. Note also that no eyes are
observed when E falls below 0.07 or rises above 0.25, as indicated by the grey areas in panels (a) and (b). We shall
return to this observation shortly. There is also an optimal value of ε for eye formation, at around ε ∼ 0.15 − 0.2,
with a complete absence of eyes for ε > 0.3 (at least for the range of parameters considered here). This suggests that
a low aspect ratio is important for eye formation in this particular model problem.

The dependency of Rer,crit and Recrit on Pr is more complicated. While Rer,crit is only weakly dependent on Pr,
Recrit displays a marked dependency on Pr, with Recrit rising sharply as Pr is increased. However, since Rer,crit is
evaluated near the eyewall, and Recrit is a global quantity, we interpret the left-hand panel as indicating that Pr plays
little or no role in the local dynamics of eye formation. The apparent dependency on Pr in the right-hand panel is
then a manifestation of the fact that the global flow structure, and hence the ratio Rer/Re, is a function of Pr.

While there are clearly lower bounds on Rer,crit and Recrit for eye formation, it is natural to ask if other conditions
need to be satisfied. For example, the absence of eyes in Figure 12 for E < 0.07 and E > 0.25 is intriguing. This
is explored in Figure 13, which presents scatter plots (or phase diagrams) of (a) E versus Rer and (b) E versus Re.
In both cases the filled circles indicate the absence of an eye and the empty circles the presence of an eye. As in
Figure 11, Pr and ε are both held fixed at Pr = ε = 0.1. A more complex picture now emerges, with both upper and
lower limits on E for eye formation, in addition to the lower bounds on Rer,crit and Recrit.

The upper limit on E is to be expected from a consideration of global dynamics. That is to say, the presence of an
eye rests on the formation of an eyewall, and this, in turn, requires the presence of a thin Ekman-like boundary layer
surrounding the axis within which the fluid spirals inward. If E is too large, then the Coriolis force acting in the bulk
is unable to establish such a thin boundary layer in the face of strong viscous forces.

V. DISCUSSION

Let us now pull together the results of the section IV and summarise the conditions under which an eye is likely to
form, at least in the particular model system investigated here. This is summarised in cartoon fashion in Figure 14
as a phase diagram of E versus Re, with Pr and ε both held fixed.

We suggest that the regime in which eyes are expected to form is limited by four curves. Line 4 is the lower bound
on Re identified by ODD17, while line 1 is the upper bound on E discussed above. Curves 2 and 3 are both of the
form

E = Rocrit/Re , (14)

and represent upper and lower bounds on the Rossby number. While there is clear evidence in favour of lines 1 and 4
in Figure 13, there is only moderate support for lines 2 and 3. However, upper and lower bounds on Ro, as expressed
by (14), are conceptually necessary, as we now discuss.

The idea behind an upper bound on Ro is the assertion that the Coriolis force is essential for shaping the global
flow pattern into a configuration favourable to eye formation. In particular, an appreciable Coriolis force acting on
the bulk of the vortex is required to induce an Ekman-like boundary layer on the lower surface, without which an
eyewall cannot form. So the Coriolis force cannot be significantly smaller than either the viscous or the inertial forces
in the main body of the vortex. The restriction that the Coriolis force out-ways the viscous stresses leads to line 1,
as discussed above, while the requirement that it is at least as large as the inertial forces places an upper bound on
Ro and yields line 2.

The lower bound on Ro stems from the fact that the local dynamics of eye formation occurs without any significant
local influence from the buoyancy or Coriolis forces, as emphasised in ODD17. Indeed, it is essential that Roφ is
large (or at least greater than unity) at r = H, as otherwise quasi-geostrophy near the axis would prevent the lower
boundary separating to form a conical shear layer, and hence prevent the formation of an eyewall. So we require
Roφ > 1 for an eye to form and this, in turn, suggests a lower bound on Ro in the bulk of the flow, thus leading to
curve 3. Certainly, it is noticeable that in tropical cyclones Roφ near the eyewall is invariably significantly larger than
unity.

In summary, then, there is clear supporting evidence for lines 1 and 4 in Figure 13, and also some support for lines
2 and 3. Never-the-less, conceptually consistency requires an upper bound on Ro and a lower bound on Roφ for eye
formation, at least for the particular model system considered here.

It is interesting to consider the applicability of our simplified model to large-scale cyclonic vortices occurring in
atmospheric flows, such as tropical cyclones. Of course, one must be cautious in such attempts, and it is important
to stress that certain essential characteristics of atmospheric vortices have been dropped in the present model. These
include vertical stratification, spatially varying and anisotropic eddy viscosity, as well as latent heat release due to
water vapour condensation. However, most large-scale atmospheric vortices (tropical cyclones, medicanes, polar lows)
exhibit an eye, which may be related to the eye in our simplified model.
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FIG. 12. Critical Reynolds numbers Rer,crit (left column) and Recrit (right column). The grey areas denote an absence of an
eye. The diamonds correspond to a hysteretic case.

The appropriate level of turbulent diffusion required to model a tropical cyclone is a poorly constrained quantity
[9]. It is most certainly non-uniform in space and anisotropic. For the sake of simplicity, we could estimate an order of
magnitude for the relevant Ekman number, based on eddy viscosities in the range 1→ 103 m2.s−1 and latitudes varying
between some 10◦ and 30◦. This yields an estimate of the Ekman number in the range 10−4 → 0.2 . Dropwindsonde
observations in actual tropical cyclones indicate that the inward radial flow above the boundary layer and at a radius
close to the eye is smaller by a factor about 10 than the azimuthal flow at the same location [10]. This suggests,
via the ratio uφ,m/ur,δ ∼ E−1/2 , an effective Ekman number of the order of 10−2. Such estimates happen to be
consistent with estimates of the eddy viscosity above the boundary layer as well as with observations of the boundary
layer thickness in actual tropical cyclones [11]. Reynolds and Rossby number estimates may then be constructed on
the basis of such eddy viscosity orders of magnitude and in situ measurements of the inward radial flow (typically
5 m.s−1) and azimuthal flow (typically 50 m.s−1). These estimates suggest Rer lies in the range 102 → 105 and Roφ
in the range 70 → 220, which include the parameter range covered by our numerical study. Another encouraging
observation concerns the tilt of the eyewall. Airborne Doppler radar data indicate that the eyewall in hurricanes is
on average characterised by a tilt angle of some 45◦ [12, 13], comparable to the tilt produced in the simplified model
(see Figure 5). These observations may indicate that the fluid mechanics model presented here, albeit simplified, is
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FIG. 13. Scatter plots of (a) E versus Rer and (b) E versus Re. The filled circles indicate the absence of an eye and the empty
circles the presence of an eye. Both Pr and ε are held fixed at Pr = ε = 0.1.
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FIG. 14. Schematic structure of the phase diagram for the appearance of eyes in the model system considered in this paper.
Eyes are not expected to form outside the shaded region limited by the four curves shown. Extension of this domain to the
right of this figure is so far unexplored.

not irrelevant to some aspects of the dynamics of tropical cyclones, and could capture some of the important physical
mechanisms.

We should stress however the important distinction between the large-scale vortices discussed here and elongated
atmospheric vortices, such as tornadoes or dust devils. These tornado-like vortices have an inversed aspect ratio
compared to our model. They do exhibit an eye-like structure, possibly associated with vortex breakdown. However,
this breakdown is characterised by a much steeper wall [see for example 14–16]. Such phenomena correspond to a
different configuration (both in terms of aspect ratio and of controlling parameters), and our model is not relevant to
such flows. Rather, we intend to model atmospheric vortices characterised by a large horizontal scale.

VI. CONCLUSIONS

We have extended the study of ODD17, establishing scaling laws for the flow and mapping out the conditions under
which an eye will form. We have shown that, to leading order, the velocity scales on V = (αgβ)1/2H, and that the
two most important parameters controlling the dynamics are Re = V H/ν and Ro = V/ (ΩH), with Pr and ε playing
an important but secondary role. We have also shown that the criterion for eye formation in ODD17 is too simplistic,
and that upper and lower bounds on Ro, as well as an upper bound on E, must be taken into consideration.
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Appendix A: Numerical results

The following table presents the controlling parameters Ra, Ro, Re, and the diagnostic quantities Ror, Rer and
|uz|max

r=0 in our numerical database.
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TABLE Ia. Numerical results.

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1 E = 0.07 Pr = 0.1
2000 9.90 141.42 1.80 25.72 0
3500 13.10 187.08 2.84 40.56 0

ε = 0.1 E = 0.075 Pr = 0.1
3200 13.42 178.89 2.99 39.82 0
3700 14.43 192.35 3.38 45.00 0
4200 15.37 204.94 3.77 50.23 0

ε = 0.1 E = 0.085 Pr = 0.1
1650 10.92 128.45 2.26 26.56 0
1700 11.08 130.38 2.33 27.36 0
2200 12.61 148.32 2.96 34.86 0
2500 13.44 158.11 3.33 39.19 0
2800 14.22 167.33 3.69 43.46 0
2900 14.47 170.29 3.81 44.87 0.0023
3000 14.72 173.21 3.93 46.25 0.0076

ε = 0.1 E = 0.09 Pr = 0.1
1700 11.73 130.38 2.66 29.55 0
2000 12.73 141.42 3.12 34.69 0
2300 13.65 151.66 3.57 39.63 0.0230
2500 14.23 158.11 3.86 42.87 0.0486

ε = 0.1 E = 0.1 Pr = 0.1
1000 10.00 100.00 1.77 17.66 0
1500 12.25 122.47 2.97 29.71 0
1650 12.85 128.45 3.30 32.96 0
1700 13.04 130.38 3.40 34.01 0.0041
1750 13.23 132.29 3.51 35.06 0.0150
1800 13.42 134.16 3.61 36.10 0.0281
1900 13.78 137.84 3.81 38.14 0.0563
2000 14.14 141.42 4.01 40.15 0.0840
5000 22.36 223.61 8.53 85.28 0.3024

20000 44.72 447.21 17.61 176.10 1.6691

ε = 0.1 E = 0.1 Pr = 0.3
2000 8.16 81.65 1.90 18.95 0
4000 11.55 115.47 3.03 30.33 0
5000 12.91 129.10 3.46 34.56 0
5500 13.54 135.40 3.64 36.44 0.0168
6000 14.14 141.42 3.82 38.20 0.0699
8000 16.33 163.30 4.43 44.26 0.3565
9000 17.32 173.21 4.68 46.83 0.4369



15

TABLE Ib. Numerical results (cont.)

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1 E = 0.1 Pr = 0.4
6000 12.25 122.47 2.98 29.82 0
8000 14.14 141.42 3.50 34.96 0
8300 14.40 144.05 3.57 35.66 0
8450 14.53 145.34 3.60 35.99 0.0016
8600 14.66 146.63 3.63 36.33 0.0080
8800 14.83 148.32 3.68 36.78 0.0203
9000 15.00 150.00 3.72 37.22 0.0359

ε = 0.1 E = 0.1 Pr = 0.5
6000 10.95 109.54 2.42 24.24 0
8000 12.65 126.49 2.86 28.58 0

10000 14.14 141.42 3.23 32.34 0
11500 15.17 151.66 3.49 34.88 0
12000 15.49 154.92 3.57 35.68 0
13000 16.12 161.25 3.72 37.21 0.0246
15000 17.32 173.21 3.99 39.85 0.6992

ε = 0.1 E = 0.1 Pr = 0.65
16000 15.69 156.89 3.29 32.90 0
18000 16.64 166.41 3.51 35.09 0
19000 17.10 170.97 3.61 36.13 0
21000 17.97 179.74 3.81 38.11 0.0523
21250 18.08 180.81 3.83 38.34 0.0944

ε = 0.1 E = 0.1 Pr = 0.8
8000 10.00 100.00 1.82 18.15 0

15000 13.69 136.93 2.61 26.08 0
25000 17.68 176.78 3.48 34.80 0
27000 18.37 183.71 3.63 36.35 0
28700 18.94 189.41 3.76 37.60 0
29300 19.14 191.38 3.80 38.04 0
29400 19.17 191.70 3.81 38.11 0
29500 19.20 192.03 3.82 38.18 0
29650 19.25 192.52 3.83 38.29 0.0005
29700 19.27 192.68 3.83 38.33 0.0020

ε = 0.1 E = 0.1 Pr = 1
2000 4.47 44.72 0.62 6.22 0

40000 20.00 200.00 3.71 37.10 0
42000 20.49 204.94 3.81 38.15 0
43000 20.74 207.36 3.87 38.69 0
43000 20.74 207.36 3.98 39.76 3.1408
44000 20.98 209.76 4.03 40.34 3.2326
45000 21.21 212.13 4.09 40.90 3.3116

ε = 0.1 E = 0.12 Pr = 0.1
1100 12.59 104.88 2.97 24.72 0
1300 13.68 114.02 3.67 30.59 0
1400 14.20 118.32 4.00 33.36 0
1500 14.70 122.47 4.32 36.03 0.0384
1650 15.41 128.45 4.79 39.90 0.1263
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TABLE Ic. Numerical results (cont.)

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1 E = 0.15 Pr = 0.1
1200 16.43 109.54 4.78 31.90 0
1350 17.43 116.19 5.45 36.35 0.0003
1400 17.75 118.32 5.67 37.77 0.0260
1500 18.37 122.47 6.07 40.49 0.1134
1650 19.27 128.45 6.64 44.29 0.2669
1800 20.12 134.16 7.18 47.83 0.4154
1900 20.68 137.84 7.51 50.05 0.5049

10000 47.43 316.23 17.70 118.03 1.9520
20000 67.08 447.21 22.44 149.59 2.4840
27000 77.94 519.62 24.85 165.68 2.6067
33000 86.17 574.46 26.71 178.05 2.6655
35000 88.74 591.61 27.30 182.00 2.6783
38000 92.47 616.44 28.17 187.78 2.6902

ε = 0.1 E = 0.17 Pr = 0.1
1100 17.83 104.88 5.06 29.79 0
1300 19.38 114.02 6.09 35.84 0
1400 20.11 118.32 6.55 38.55 0
1500 20.82 122.47 6.99 41.12 0.0583
1600 21.50 126.49 7.40 43.51 0.1636
1800 22.81 134.16 8.15 47.92 0.4005

25000 85.00 500.00 26.55 156.18 2.4819
30000 93.11 547.72 28.41 167.12 2.8008

ε = 0.1 E = 0.2 Pr = 0.1
1500 24.49 122.47 8.13 40.63 0
1650 25.69 128.45 8.77 43.85 0
1750 26.46 132.29 9.16 45.82 0.0429
1800 26.83 134.16 9.35 46.77 0.0835
1900 27.57 137.84 9.71 48.55 0.1797
2000 28.28 141.42 10.05 50.25 0.2859
4000 40.00 200.00 14.58 72.92 1.8018
6000 48.99 244.95 17.32 86.62 2.2864
8000 56.57 282.84 19.42 97.08 2.5055

10000 63.25 316.23 21.17 105.86 2.6395
20000 89.44 447.21 27.10 135.50 0.4030
25000 100.00 500.00 29.13 145.65 0

ε = 0.1 E = 0.22 Pr = 0.1
1650 28.26 128.45 9.45 42.96 0
2000 31.11 141.42 10.80 49.08 0
3000 38.11 173.21 13.59 61.77 0.5521
4000 44.00 200.00 15.58 70.83 1.0177
6000 53.89 244.95 18.51 84.15 1.2230

10000 69.57 316.23 22.47 102.12 0.2218
12000 76.21 346.41 23.93 108.80 0
15000 85.21 387.30 25.80 117.28 0

ε = 0.1 E = 0.235 Pr = 0.1
3000 40.70 173.21 14.20 60.41 0
6000 57.56 244.95 19.25 81.92 0

10000 74.31 316.23 23.21 98.77 0
13000 84.73 360.56 25.41 108.11 0
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TABLE Id. Numerical results (cont.)

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1 E = 0.25 Pr = 0.1
2000 35.36 141.42 11.76 47.03 0
3500 46.77 187.08 15.85 63.41 0
5000 55.90 223.61 18.49 73.97 0

10000 79.06 316.23 23.95 95.81 0
15000 96.82 387.30 27.59 110.36 0
19000 108.97 435.89 29.95 119.78 0

ε = 0.1 E = 0.3 Pr = 0.1
2000 42.43 141.42 13.03 43.44 0

10000 94.87 316.23 26.64 88.81 0
15000 116.19 387.30 30.97 103.22 0
17000 123.69 412.31 32.43 108.10 0

ε = 0.1 E = 0.4 Pr = 0.1
2000 56.57 141.42 15.52 38.79 0

ε = 0.15 E = 0.1 Pr = 0.1
1300 11.40 114.02 2.93 29.28 0
1400 11.83 118.32 3.24 32.44 0.0175
1500 12.25 122.47 3.55 35.45 0.0711
1700 13.04 130.38 4.10 40.99 0.1898

ε = 0.2 E = 0.1 Pr = 0.1
1000 10.00 100.00 2.12 21.25 0
1200 10.95 109.54 2.83 28.33 0
1450 12.04 120.42 3.55 35.46 0.0588
1500 12.25 122.47 3.67 36.68 0.0878
2000 14.14 141.42 4.65 46.53 0.3919
4000 20.00 200.00 6.73 67.28 1.0136

10000 31.62 316.23 9.63 96.27 1.3347
20000 44.72 447.21 12.65 126.50 1.6677

ε = 0.25 E = 0.1 Pr = 0.1
1500 12.25 122.47 3.54 35.44 0
2000 14.14 141.42 4.34 43.41 0.1366
2500 15.81 158.11 4.94 49.35 0.2948
4000 20.00 200.00 6.22 62.23 0.5584

ε = 0.27 E = 0.1 Pr = 0.1
1000 10.00 100.00 2.26 22.62 0
2000 14.14 141.42 4.29 42.88 0.0168
3000 17.32 173.21 5.36 53.60 0.1041
5000 22.36 223.61 6.79 67.85 0.0026
7000 26.46 264.58 7.79 77.94 0

ε = 0.3 E = 0.1 Pr = 0.1
1000 10.00 100.00 2.17 21.70 0
2000 14.14 141.42 4.09 40.85 0
4000 20.00 200.00 5.77 57.67 0
6000 24.49 244.95 6.80 67.96 0
9000 30.00 300.00 7.90 79.01 0

12000 34.64 346.41 8.74 87.39 0
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