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Abstract
Characterization of the anticipated performance of energy technologies to inform policy
decisions increasingly relies on expert elicitation. Knowledge about how elicitation design
factors impact the probabilistic estimates emerging from these studies is, however, scarce. We
focus on nuclear power, a large-scale low-carbon power option, for which future cost estimates
are important for the design of energy policies and climate change mitigation efforts. We use
data from three elicitations in the USA and in Europe and assess the role of government
research, development, and demonstration (RD&D) investments on expected nuclear costs in
2030. We show that controlling for expert, technology, and design characteristics increases
experts’ implied public RD&D elasticity of expected costs by 25%. Public sector and industry
experts’ cost expectations are 14% and 32% higher, respectively than academics. US experts
are more optimistic than their EU counterparts, with median expected costs 22% lower. On
average, a doubling of public RD&D is expected to result in an 8% cost reduction, but the
uncertainty is large. The difference between the 90th and 10th percentile estimates is on
average 58% of the experts’ median estimates. Public RD&D investments do not affect
uncertainty ranges, but US experts are less confident about costs than Europeans.

Keywords: nuclear power, uncertainty, returns to RD&D, expert elicitations, meta-analysis

S Online supplementary data available from stacks.iop.org/ERL/8/034020/mmedia

1. Introduction

Developing energy policies that are robust to a broad
set of possible future conditions typically requires explicit
(Nakicenovic and Riahi 2001) or implicit (Nordhaus 2008)
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characterization of the anticipated performance of individual
energy technologies. Representing future technological
change introduces considerable uncertainty into decision
making because, as we know from past data, energy
technologies have been dynamic (Grubler et al 1999). And
even though future change is uncertain, we are not completely
ignorant. Dispersed researchers have produced data and
developed tools that, in combination, provide the basis for
probabilistic estimates of future improvements in technology.
A well-established methodology used to this end is expert
elicitation.
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Expert elicitations gather the informed opinions of
experts on technical questions that fall within their area of
knowledge and expertise. Data collection is carried out using
elicitation protocols carefully designed to reduce heuristics
and biases (Hogarth 1987, Morgan and Henrion 1990, Cooke
1991). These data-gathering efforts are particularly useful in
decisions that require an assessment of the future evolution of
energy technologies because historic data may not inform on
future performance and costs or the relevant data might not be
available.

Energy policy making relies on experts’ estimates
of the future performance, costs, and safety of energy
technologies (Apostolakis 1990). A prominent one is the
study undertaken by the European Commission and the
United States Nuclear Regulatory Commission during the
1990s on the uncertainty surrounding accident consequence
codes for nuclear power plants (Cooke and Goossens 2004).
Six years ago, the National Research Council released a
report with a strong recommendation that the US Department
of Energy begin to use expert elicitation for their RD&D
allocation decisions, to explicitly characterize probabilistic
estimates of the outcomes of RD&D investments (NRC 2007).
Over the past few years, research groups on both sides
of the Atlantic have gathered data from expert elicitations
on the future of several energy technologies to inform
energy RD&D policy (Anadon et al 2011a, 2011b, 2012,
Baker and Keisler 2011, Baker et al 2009a, 2009b, Chan
et al 2011, Curtright et al 2008, Bosetti et al 2012). The
ability to use probabilistic data from various elicitations
to characterize future energy technology uncertainty and
improve the reliability of estimates is valuable for impact
assessment evaluations such as the Energy Modeling Forum
(EMF) and the International Panel on Climate Change (IPCC),
especially in light of the magnitude of investments being
considered to support energy technologies and the costs and
time involved in collecting elicitation data.

This letter takes a first step in this direction and focuses on
three recent expert elicitations on the future costs of nuclear
fission technologies carried out by groups at Carnegie Mellon,
Fondazione Eni Enrico Mattei (FEEM), and Harvard. This
collection of experts’ estimates provides a rich resource with
which to inform RD&D, energy, and nuclear policy decisions
on future nuclear costs and on the uncertainty surrounding
them. However, substantial differences in expert composition,
elicitation design and technology considered make it difficult
to draw more than very general conclusions when looking
at the multiple elicitations. Such differences are very likely
to affect experts’ estimates. Previous studies, for example,
pointed at the importance of protocol design and expert
selection as key for elicitation results (Raiffa 1968, Keeney
and Winterfeldt 1991, Meyer and Booker 2001, Phillips 1999,
Clemen and Reilly 2001, Walls and Quigley 2001). However,
no empirical assessments of the impact and size of differences
in expert selection and elicitation design have been carried out
to date. Similarly, no empirical analysis exists on the size and
shape of the relationship between public RD&D investments
and the future cost of nuclear power (or any other technology)
emerging from elicitations data.

Our contribution fills this gap in the literature. First,
we provide important insights on the bias introduced by
specific elicitation design decisions by assessing how experts’
characteristics affect estimates of cost and uncertainty. The
FEEM and Harvard studies are similar in elicitation design
and method (both were conducted online), but include a
heterogeneous group of experts in terms of affiliation and
nationalities, allowing investigation of how characteristics of
the expert influence their beliefs about the returns to public
RD&D. Conversely, the CMU elicitation was administered
in person, but only includes data for Gen. III/III+ consistent
with a business as usual US public RD&D funding scenario.
Hence we provide some preliminary results on whether or
not in-person elicitations are associated with statistically
significant differences on costs under a BAU public RD&D
scenario. Second, we derive an average estimate of the
elasticity of (future) nuclear costs to (future) nuclear public
RD&D investments that accounts for expert, design, and
technology differences. This is a valuable parameter for both
policy makers and modelers interested in uncertainty analysis,
which can be compared with historical estimates of returns to
RD&D (NRC 2001).

2. Data

We use responses from 67 experts about the future costs
of nuclear power conditional on specified levels of RD&D
investment obtained via expert elicitation included in the
Harvard/FEEM (Anadon et al 2012) and CMU (Abdulla et al
2013) studies (25 experts in the Harvard elicitation, 30 in
the FEEM elicitation, and 12 in the CMU elicitation). Table
S1 in the supplementary material (available at stacks.iop.org/
ERL/8/034020/mmedia) summarizes the key characteristics
from these elicitation studies. Harvard and FEEM used online
tools to elicit US and EU experts, respectively. In the CMU
study experts completed a paper-based instrument during an
in-person meeting.

For each expert, the three elicitations collected estimates
of the 50th, 10th, and 90th percentile of expected overnight
capital costs in 2030 for different types of reactors,
conditional on levels of public annual RD&D funding.
All elicited estimates are in 2010$. All experts provided
estimates consistent with the business as usual (BAU) funding
scenarios, where yearly public RD&D investment to 2030
would not significantly change from the present investment in
the United States or in the European Union, depending on the
study. Moreover, the FEEM and Harvard experts were asked
about three additional RD&D scenarios: (1) a recommended
budget scenario, with a yearly public RD&D investment
level chosen by the experts (ranging between 1.5 and 20
times BAU investments); (2) a half recommended budget
scenario, with a public RD&D investment equal to half the
yearly amount in the recommended budget scenario; and (3) a
10× recommended scenario, with a public RD&D investment
equal to ten times the yearly amount in the recommended
budget scenario. Not all experts provided all estimates for all
technologies, RD&D funding scenarios, and percentile values.
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Figure 1. Elicitation results for large-scale Gen. III/III+ reactor systems for the FEEM, Harvard, and CMU studies (Abdulla et al 2013,
Anadon et al 2012). The data points represent the 50th percentile estimates. The top and bottom error bars denote the 10th and 90th
percentiles, respectively. The ‘2010 ref.’ data point includes the experts’ estimates of costs in 2010, of interest given the fact that there are
few reactors being built in both the US and the EU. CMU experts 6 and 8 did not provide a 50th percentile estimate.

Figure 1 shows a wide range of estimates of future costs
under different public nuclear RD&D investment scenarios
for large-scale Gen. III/III+ reactor systems (Harvard in the
upper panel, FEEM in the middle and CMU in the lower).
Similar figures for the large-scale Gen. IV reactor systems and
SMRs are reported in the SI (available at stacks.iop.org/ERL/
8/034020/mmedia). 17 of the FEEM and Harvard experts also
participated in a group meeting in which they discussed the
rationale behind their answers and could potentially converge
towards a consensus answer (Dalkey 1969). However, as
documented in Anadon et al (2012), only a few experts made
marginal changes to their estimates.

3. Approach

Our first objective is to understand how scenarios with
different levels of potential public RD&D investment affect

experts’ central estimates (50th percentile) of the costs of
nuclear technologies in 2030. Second, we assess whether the
RD&D investment level also impacts the range of uncertainty
surrounding these cost estimates. We define uncertainty here
as the difference between the 90th and the 10th percentile of
expected costs, normalized by the median (50th percentile).
We thus use information on experts’ responses for each
technology in each RD&D scenario. Given that, as explained
above, not all experts provided all cost estimates, we end up
with 393 observations in the analysis of the central estimate
and 389 observations in the analysis of the uncertainty range.

We draw on two strands of literature to choose a
functional form for our specifications. First, the literature
on learning-by-doing (LbD) finds that the accumulation of
experience in manufacturing and/or project development,
proxied by capacity, often leads to productivity improvements
(Arrow 1962). In this ‘learning curve’ model, the rate
of cost reductions in different technologies is a function
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Table 1. Descriptive statistics. (Notes: the R&D rec. and the R&D high variables are dummy variables equal to 1 if the associated expert’s
cost estimate refers to the recommended and high R&D scenarios, respectively. The average values of the variables therefore represent the
share of cost estimate referring to that specific R&D scenario within our sample.)

Variable Obs Mean Std. Dev. Min Max

Dependent variable, 2030 overnight capital costs ($ kW−1)

Median (p50) 393 4872 1816 506 14 156
10th %tile 389 3781 1548 253 11 000
90th %tile 389 6463 2389 758 20 222
p50/(p502010) 372 1.15 0.51 0.22 4.00
(p90− p10)/p50 389 0.58 0.31 0.10 1.83

Investment

RD&D ($m) 393 5324 10 386 400 80 000
RD&D rec. 393 0.22 0.41 0 1
RD&D high 393 0.21 0.41 0 1

Elicitation characteristics

In person 393 0.03 0.16 0 1
Public 393 0.45 0.50 0 1
Industry 393 0.27 0.45 0 1
USA 393 0.55 0.50 0 1
PRONUKE 393 0.07 0.25 0 1
Gen IV 393 0.38 0.49 0 1
SMR 393 0.36 0.48 0 1

of the number of units installed or produced. LbD is
investigated using a ln–ln specification linking technology
costs and experience and has been applied to a wide range
of technologies (Bodde 1977, Junginger et al 2005, Grubler
et al 1999, Goldemberg et al 2004). The ‘two factor learning
curve’ model augments the basic specification with a learning-
by-searching factor accounting for the impact of RD&D
investments on costs (Kouvaritakis et al 2000, Klaassen et al
2005, Soderholm and Klaassen 2007). We choose the ln–ln
specification as our main model of the relationship between
future costs and public RD&D investments. We however
do not include a learning-by-doing variable because experts
provided their cost estimates conditional on just RD&D
investments (note that the CMU study only provides estimates
consistent with a BAU public RD&D funding scenario in the
US).

The second strand of literature focuses on returns to
RD&D (Evenson and Kislev 1976, Evenson 1984, Segerstrom
1998, Popp 2002, Tassey 2003, Bosch et al 2005, Hall
et al 2009). These contributions generally suggest that if too
many resources are devoted to RD&D in a short time frame,
technology cost improvements could exhibit diminishing
returns (Kortum 1997, Popp et al 2012). Diminishing
marginal returns are usually tested with the inclusion of a
quadratic RD&D term or a negative exponential function
(Blanford 2009). We thus also test a linear specification
relating technology costs with RD&D and its squared term.

3.1. Dependent variable: experts’ estimates of overnight
capital cost

As explained above, we consider two different dependent
variables to explore the impact of RD&D investment on

expected nuclear costs: the 50th percentile estimate of
overnight capital cost in 2030 and normalized uncertainty,
defined as (p90 − p10)/p50. Descriptive on both variables
are presented in table 1. The average expected cost of
nuclear technologies in 2030 is around 4800 in $ kW−1, with
estimates as low as 506 $ kW−1 but also experts expecting
costs as high as 14 156 $ kW−1. Uncertainty ranges between
0.10 and 1.83, with an average value of 0.58. Table S2 in the SI
(available at stacks.iop.org/ERL/8/034020/mmedia) contains
a breakdown of the central estimate observations by RD&D
scenario and technology type.

3.2. Independent variables: research design and experts’
characteristics

The estimates of costs provided by the experts are conditional
on RD&D investment but also on the type of technology
included in the elicitations. Specifically, the assumed yearly
public RD&D investment levels range from $2000 million to
80 billion dollars across the four different scenarios (BAU,
recommended, half recommended and 10× recommended)
(table 1). With respect to technology characteristics, our
observations are almost equally divided between Gen.
III/III+ technologies, Gen. IV technologies and small and
medium sized reactors (SMRs). We define these technology
categories in detail in the SI.

Among the observables that could potentially affect
elicitation results we consider both variables capturing
differences across studies (indicating differences in study
design) and variables capturing differences across experts
within studies (indicating individual characteristics). For
example, studies suggest that selecting a diverse pool of
experts can help avoiding anchoring to a usually conservative
reference point (Meyer and Booker 2001). Table S3 in the
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supplementary material (available at stacks.iop.org/ERL/8/
034020/mmedia) discusses and justifies the selection of the
control variables.

Around 45% of our experts belong to public institutions
(including supra-national European organizations), while
27% work in industry and the remaining 28% are academics
(table 1). Moreover, around 55% of our expert pool work
in the United States (‘USA’ variable), with the remaining
45% working in the European Union. Only 3% of the data
in our sample (the CMU elicitations) was obtained through
a face-to-face interview rather than online (‘in-person’
variable).

Omitting expert and technology subscripts, our main
specification reads as follows:

ln y = α0 + β ln RD&D+ γ ′z+ ε

where y is either the central estimate of future technology
costs (50th percentile) or the uncertainty range (p90 −
p10/p50), RD&D is the yearly public research and
development budget in nuclear technologies associated with
each cost estimate, z is the column vector of control variables
as listed in table S2, and ε is an i.i.d. error component
with mean zero and variance σ 2. The main shortcoming
of the above specification is that there might be some
unobservable individual characteristics that are likely to bias
the estimates above and beyond what we can control for using
our independent variables. We therefore check the robustness
of our results also including experts’ fixed effects.

4. Results

We present here the main results of the specifications for costs
and the uncertainty range. Additional results are presented in
the SI.

4.1. Predictors of median overnight capital costs

Table 2 presents the results of seven specifications focusing
on the 50th percentile of expected overnight capital. Model
1 is a simple correlation in which we estimate the effect
of (future) annual public RD&D investment on (future) cost
without controlling for any other observable characteristics.
The estimated coefficient is significant and indicates that a
doubling of yearly public energy RD&D investment in nuclear
technologies (equivalent to a 100% increase) is associated
on average with 7% decrease in overnight capital costs by
2030. In model 2, we drop the continuous RD&D variable
and use dummy variables associated with different RD&D
levels. Specifically, the reference categories include BAU and
half recommended RD&D budget level, while the dummy
variables ‘RD&D rec.’ and ‘RD&D high’ indicate each
expert’s recommendation of RD&D investment and 10 times
the expert’s recommended level, respectively. The notion
here is that using the actual RD&D levels provided in the
elicitation may exaggerate the precision with which experts
can be expected to understand the returns to RD&D. The
hypothesis is that experts are better equipped to distinguish
between low, medium, and high levels of RD&D. Both

variables are significant and in the expected direction.
The effects of high RD&D is twice that of recommended
RD&D: high public RD&D investments are associated with
costs that are on average approximately 21% lower than
‘low’ public RD&D investment scenario (which refers to
the BAU and half recommended public RD&D scenarios).
Note that approximate refers to the fact that this is a
close approximation given that the dependent variables is
in log form—we use this terminology throughout when
interpreting the effect dummy coefficients. The elicitation
questions on RD&D thrusts included in the FEEM and
Harvard elicitations and the group workshop conducted by
the FEEM and Harvard teams shed some light onto what
technical issues experts thought public RD&D investments
could address. Some of the key issues were additional
work on modeling and demonstration projects to test the
economics of Gen. IV designs, with a particular focus
on sodium-cooled fast reactors, high-temperature reactors,
and gas-cooled fast reactors, and also research to improve
the safety and proliferation resistance of Gen. IV designs.
Regarding SMRs, experts expressed the need for RD&D to
safety test and demonstrate the viability and operability of
light-water reactor designs, and to develop more advanced
fuels and materials. Given that the full list of RD&D thrusts is
too long to include here, the reader is referred to Anadon et al
(2011a, 2011b) for a more comprehensive list.

The fit of models 1 and 2 is low but improves dramatically
when the controls for experts’ affiliation, the type of
technology and the area of origin of the expert are added to the
model (model 3 and model 4, respectively). In model 3, as a
result of the inclusion of the additional controls, the coefficient
on the RD&D variable is associated with a significant
increase of roughly 25%, going from 0.0676 to 0.0843.
Hence, a doubling of public RD&D yearly budget for nuclear
technologies is associated with an 8% decrease of nuclear
costs in 2030, on average and ceteris paribus. This indicates
that any policy insight based on the correlation emerging from
model 1 substantially underestimates the impact of public
funding on nuclear cost reductions. Similar conclusions can
be reached with respect to the RD&D levels as measured
by dummy variables in models 2 and 4. Specifically, as a
result of the inclusion of the additional controls, the central
estimate of costs under the recommended RD&D scenario
is approximately 14.7%, a significant increase from the
approximate value of 10.8% in model 2 without the controls.
Similarly, the effect of high R&D also increases with the
controls.

Model 5 further explores the role of data acquisition
method by including a dummy variable to control for
face-to-face interview, but the estimated coefficient is not
statistically significant. Finally, models 6 and 7 include
experts’ dummies in models 3 and 5, respectively, to
account for unobservable expert characteristics that might be
correlated with the elicited median costs. Adding expert fixed
effects only slightly reduces the coefficient associated with the
RD&D variable, but the estimate is still roughly 15% higher
than in model 1.

The results for the other control variables (using model
3) show that experts from public institutions have estimates
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Figure 2. RD&D and technology cost with and without observable expert, technology and study characteristics. Axes in logarithmic scales.

of overnight capital costs that are about 14% higher on
average than those of academics. Estimates for experts from
industry are even higher, on average approximately 31%
higher than academics. This difference could be explained
by the fact that industry experts are generally more likely to
think about potential escalations on labor, materials, licensing,
and permitting costs than their academic counterparts, since
academic experts may tend to be more detached from these
less technical costs. Overnight capital costs are expected to be
higher for both Gen. IV and SMR technologies with respect
to Gen. III/III+ technologies by approximately 23% and 24%,
respectively. Expected overnight capital costs are about 22%
lower for experts in the USA when compared to experts in
the European Union. All of the above controls are significant
across all five models in table 2 in which they are included.
The inclusion of the fixed effects in models 6 and 7 leads
to increases in the magnitude of the coefficients for expert
characteristics controls, although the sign and statistical
significance remain the same. The in-person variable becomes
negative and significant when expert fixed effects are included
(model 7), although it is difficult to draw conclusions about
this effect since it requires inclusion of unobserved expert
characteristics for it to become significant. In-person effects
will be a focus of future work assembling additional elicitation
data so that more than the 3% of observations are in person.
We focus our interpretation on models 1–5, without fixed
effects. But the role of expert fixed effects does suggest that
additional expert characteristics might be important to gather
in future work.

Figure 2 shows how the estimated returns to public
RD&D vary when accounting for observable expert, study
and technology characteristics (models 1 and 3 compared).
The x-axis shows public RD&D investment plotted in a
log scale, while the y-axis shows the associated overnight
capital costs in 2030, also plotted in a log scale. The lines
in the graph represent the returns to RD&D estimated without
controlling for other observable characteristics (discontinuous

line—model 1) and including additional controls (continuous
line—model 3). As already mentioned, not controlling for
observable characteristics leads to a 25% underestimation of
the effect of public RD&D investment on nuclear technology
costs (meaning, the discontinuous line is 25% less steep than
the continuous line). In addition, observable characteristics
account for the distance between the two lines.

The SI includes additional specifications, all of which
produced results in line with those above. These include:
a normalized cost variable (calculated dividing the 2030
estimate by the 2010 estimate for the observations in the
FEEM and Harvard studies) in both the linear, log–log and
semi-log model; diminishing marginal returns to RD&D
investments (RD&D2); interacting dummies with RD&D and
with each other; and Box–Cox transformation to further
investigate the most appropriate functional form.

4.2. Predictors of dispersion in costs

Here we test whether dispersion in technology costs is
affected by the level of RD&D funding and the observable
expert, technology and study characteristics. Table 3 reports
specifications in line with those included in table 2 but where
the dependent variable is now the measure of the range of
uncertainty, (p90− p10)/p50.

We find that public RD&D investments are not
statistically significant predictors of the uncertainty range
provided by the experts. That is, higher or lower levels or
investments are not systematically associated with narrower or
wider uncertainty ranges under any of the seven specifications
tested. US experts have significantly wider uncertainty ranges
when compared to EU experts, approximately 16% larger
according to model 5. In this case, the in-person variable
is significant, and suggests that the uncertainty ranges for
experts providing answers in person for the BAU RD&D
scenario were about 40% lower, although the sign of this
effect is not robust to the inclusion of expert fixed effects.
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Table 3. Estimates of effects on variation in nuclear costs. Y = ln[(p90− p10)/p50]. (Note: robust p-values in brackets.)

(1) (2) (3) (4) (5) (6) (7)

ln(RD&D) 0.0119 0.0207 0.0162 −0.001 28 −0.001 28

[0.599] [0.366] [0.480] [0.925] [0.925]

RD&D recommended 0.0108 0.0189
[0.877] [0.788]

RD&D high −0.0279 −0.0228
[0.717] [0.766]

Public 0.0629 0.0692 0.0689 −0.620a
−1.463a

[0.371] [0.323] [0.328] [6.62×10−11] [0]

Industry 0.0619 0.0601 0.0905 −0.883a
−0.993a

[0.441] [0.455] [0.254] [0] [4.90× 10−6]

USA 0.154b 0.151b 0.163a 0.405a
−0.439b

[0.0136] [0.0152] [0.009 14] [0] [0.0264]

GEN IV −0.0433 −0.0335 −0.0793 −0.0544 −0.0544

[0.551] [0.649] [0.278] [0.247] [0.247]

SMR −0.101 −0.0925 −0.139c
−0.0821c

−0.0821c

[0.163] [0.209] [0.0573] [0.0876] [0.0876]

In person −0.398c 0.843a

[0.0615] [2.30× 10−5]

Expert FE dummies No No No No No Yes Yes

Constant −0.770a
−0.678a

−0.913a
−0.765a

−0.857a
−0.0648 0.778a

Observations 389 389 389 389 389 389 389

Adjusted R-squared −0.002 −0.005 0.009 0.005 0.018 0.694 0.694

a p < 0.01.
b p < 0.05.
c p < 0.1.

The uncertainty range for SMRs is around 14% smaller than
that for large-scale Gen. III/III+, suggesting that experts
are relatively confident about their cost estimates on these
systems, which are expected to be delivered to the site fully
constructed from the manufacturing facilities, even though
the current experience is limited and no operating licenses
have been issued in the United States or the EU. The group
workshop conducted by the FEEM and Harvard teams also
shed some light regarding the uncertainties they considered
when making their estimates, which included the costs
of materials, increased safety requirements, differences in
contract structures, and the outcomes of RD&D on materials
and fuel fabrication. As shown in the SI, the results on
the uncertainty range are generally robust to changes in the
functional form used in the empirical estimation.

5. Conclusion

Because nuclear power is one of the few large-scale
low-carbon power technologies available, understanding its
future cost is important for the design of climate change
mitigation efforts. As expert elicitations and models relying
on expert elicitation data are increasingly used in science
policy contexts, scrutiny of their reliability is certain to
increase. But at present, knowledge about the impact of design
factors on the probabilistic estimates emerging from these

studies is scarce. In this letter we combined three recent
elicitations on the future (2030) cost of three types of nuclear
power reactor types: large-scale Gen. III/III+ systems,
large-scale Gen. IV systems, and small modular reactors. We
provide insights about: (a) how the design of the elicitation
and the selection of the experts affect nuclear elicitation
results—thereby providing guidance for future elicitations;
and (b) the expected returns to government nuclear RD&D.
The results show that sector and geographic location of the
expert, reactor type, and RD&D investment are statistically
significant factors affecting experts’ estimates of overnight
capital cost and are robust to the two specifications supported
by the literature: a ln–ln specification and a linear specification
with a quadratic term.

Controlling for expert characteristics increases the
estimated public RD&D elasticity of expected costs by
25%. We also show that academic experts are the most
optimistic about the future costs of nuclear reactors. On
average public and industry experts expect costs to be
approximately 14% and 32% higher, respectively than
academics. Since academic experts are typically more
removed from technology commercialization than their
counterparts, this may be expected, although the significance
and magnitude of the effect had never been estimated. US
experts were more optimistic than their EU counterparts, with
expected costs that were on average about 22% lower. This
could be related to the fact that the EU has more recent
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experience building nuclear power plants than the USA, and
that these projects have suffered from cost overruns. Both of
these findings indicate that expert selection has a large impact
on elicitation results.

This result applies beyond expert elicitations to other
efforts to estimate the cost of meeting climate change targets,
which inevitably rely on assumptions about technology costs.
It suggests that more transparency about the source of the
estimates in integrated assessment models and other policy
analysis models may be necessary. If academic experts are
indeed more optimistic about future costs, current efforts that
emphasize academic assessments could underestimate costs.
Sensitivity analysis thus becomes paramount.

In the elicitations included in this study, the normalized
uncertainty range—defined by the difference between the
90th and 10th percentile estimates divided by the 50th
percentiles—is on average 58% of the experts median
estimates, highlighting the large uncertainty around future
nuclear costs. Further, public RD&D investments do not affect
uncertainty ranges, but experts provided lower uncertainty
ranges for SMRs when compared to Gen. III/III+ and Gen.
IV reactors. This seems somewhat surprising given the greater
level of experience with Gen. III/III+ systems, but could be
explained by a greater confidence of experts in the ability
of centralized manufacturing of SMRs to deliver reactors on
time and on budget when compared to large-scale projects,
which have had widely varying costs in the past. Gen.
III/III+ systems are expected to still be cheaper than Gen.
IV and SMRs by 2030. In fact, even though the uncertainty
around future SMR costs is lower, overnight capital costs are
expected to be on average about 23% greater than that of Gen.
III/III+ systems and only a little above large-scale Gen. IV
systems.

These differences indicate that the specificity with which
technologies are defined is an important elicitation design
characteristic to consider. We find no evidence that the method
of administering the survey (in person) has a significant
impact on costs, although our analyses have low power since
so few observations involved in-person interviews. We do see
that the uncertainty range decreases when the elicitation was
administered in person when compared to online, although
it is possible that differences in the background information
of the survey or the online displays have contributed to this.
Finally, even though academic experts had lower estimates of
costs, their uncertainty ranges were not different from those
of industry and public institution experts.

We also find strong evidence that public RD&D
investments present decreasing marginal returns. This
indicates that when experts assess the impact of RD&D on
cost their mental model includes considerations of depletion
of improvement opportunities within a limited period of time.

Overall, this study shows quantitatively the importance
of expert selection and elicitation design and of the need
to increase transparency in modeling and policy analysis
exercises about the source of technology assumptions. More
precise estimates are likely to become available as a larger
body of elicitation study results is included into this type
of analysis. The RD&D elasticity estimates condense the

literature available and could be used in modeling exercises.
This work also provides a condensed view of central estimates
that may be useful directly for research program managers
and policy makers. On average, a doubling of public RD&D
is expected to result in cost reductions around 8% in 2030,
but uncertainty is very large. Overall, these insights regarding
future costs, their uncertainty, the expected returns to public
RD&D, and the importance of the source of estimates are
important for more efficient and transparent analysis about
technology strategies to meet climate challenges.
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