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Abstract 
 
Public energy research and development (R&D) is recognized as a key policy tool to transform the 
world’s energy system in a cost-effective way. However, managing the uncertainty surrounding 
technological change is a critical challenge for designing robust and cost-effective energy policies. The 
design of such policies is particularly important if countries are going to meet the ambitious greenhouse 
gas emissions reductions goals set by the Paris Agreement and the required harmonization with the 
broader set of objectives dictated by the Sustainable Development Goals.  The complexity of informing 
energy technology policy requires, and is producing, a growing collaboration between different academic 
disciplines and practitioners. Three analytical components have emerged to support the integration of 
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technological uncertainty into energy policy: expert elicitations, integrated assessment models, and 
decision frameworks. Here we review efforts to incorporate all three approaches to facilitate public 
energy R&D decision-making under uncertainty.  We highlight emerging insights that are robust across 
elicitations, models, and frameworks, relating to the allocation of public R&D investments, and identify 
gaps and challenges that remain.   
 
Introduction 
 
Predicting the future is extremely difficult1, yet it is nonsensical to ignore the knowledge and 
understanding we can acquire from experts when making decisions. It is well understood that using 
experts, and using them wisely, is a key component of evidence-based policy making2. 
 
In the energy sector, policy makers are faced with a number of near-term decisions, such as balancing 
technology R&D, performance standards, and subsidies; or designing energy technology R&D portfolios. 
Designing these policies involves managing the significant uncertainty that exists about how technologies 
will evolve with and without different policies3. In the wake of the December 2015 Paris Agreement, in 
which countries agreed to put in place national action plans to reduce greenhouse gas emissions, and in 
the context of tight government budgets around the world, designing robust and cost-effective energy 
innovation policies in the face of technological uncertainty has become  more pressing.4 The question of 
how to design portfolios of R&D investments across a range of energy technologies has received much 
attention, most recently after the launch of the Mission Innovation and Breakthrough Energy Coalition 
pledges to increase public energy R&D funding and follow-on private investments in energy 
technologies.  The R&D decision literature typically approaches this problem in two stages: first 
considering how R&D investments affect future technology costs5, then considering how future 
technology costs affect energy and climate policies (e.g., EMF286) . 
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One method for  informing policy decisions is to perform expert elicitations (a structured process for 
eliciting subjective probability distributions from subject-matter experts7). Over the past 10 years a 
number of researchers have performed expert elicitations to characterize the uncertainty around future 
cost and performance of various energy technologies, often subject to assumptions about public R&D 
investments. This information, however, is just one of the pieces of analysis needed to inform the design 
of optimal energy R&D portfolios. Supporting R&D policy decisions requires knowledge in a multiplicity 
of domains, ranging from forecasts for multiple technologies, the economics and engineering of 
integrating technologies in the energy system, the relationship between economic activities, emissions and 
the climate, and the role of risk and hedging strategies. For this reason, there has been an effort to 
integrate the data from expert elicitations about the future of energy technologies into integrated 
assessment models and decision making frameworks to provide results that can serve to support energy 
R&D decisions. Until recently, these three domains, illustrated by the analytical components in Figure 1, 
had largely resided in different literatures.  
 
The components in Figure 1 have been used to inform a range of questions, including both energy 
infrastructure planning and energy technology R&D policy. Expert elicitations have been used to calibrate 
deterministic analysis in both integrated assessment and energy-economic models (both of which we will 
refer to as IAMs from now on) through the use of means or medians. (Box 1 includes a description of 
IAMs and a discussion of the challenges associated with their use.) The greatest value of expert 
elicitations is that they allow researchers and policy makers to explicitly use probabilistic data to 
characterize uncertainties in their analysis, permitting the  design of policies capable of hedging against 
particular risks8–10.  Having an explicit characterization of uncertainty is particularly important when the 
problem or question under consideration includes non-linearities. Non-linearity may characterize 
preferences, as in the case of risk aversion, where a decision maker is willing to give up something, such 
as money or enjoyment, to avoid some level of risk. Such preferences are represented by concave utility 
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functions in economic models11.  Non-linearities can also reside in the underlying problem itself. In the 
case of energy R&D investments, there may be non-linearities in the impact of R&D investments on 
energy technology costs, in the competition and complementarity among  technologies in the market, and 
in irreversibilities or tipping points that might characterize environmental damages. A third type of non-
linearity emerges when decision makers can make additional decisions in the future once uncertain 
outcomes have been revealed.  As  has been demonstrated12, when future options are available, near- term 
decisions that avoid lock-ins or irreversible effects are more welfare enhancing than those that naively 
maximize the expected net present value.  Collectively, these non-linearities make it important to consider 
the full distribution of outcomes from decisions, including the tails and not just average values. This 
applies to multiple types of energy planning problems; the literature, however, has focused this kind of 
analysis on R&D problems. While in some cases  the full stochastic treatment does not yield significantly 
different results from a simple best guess13–15, at other times16,17 it does; unfortunately it is difficult to 
know a priori when it is important.  
 
An important distinction we make in Figure 1 is to classify integrated uncertainty modeling efforts into 
Learn-then-Act (comprising sensitivity analysis and uncertainty analysis) and Act-Learn-Act (which are 
often simply called Act-then-Learn in the literature and comprise one-stage and multi-stage decision 
making under uncertainty, DMUU). Learn-then-Act frameworks combine elicitations with IAMs; Act-
Learn-Act frameworks also integrate decision theory models (sometimes within IAMs themselves 18, 
sometimes in a multi-model framework8). 
 
The differences between Learn-then-Act and Act-Learn-Act frameworks are related to when decisions 
take place in relation to when uncertainty is resolved. The key uncertainty in the papers we review is 
technological outcomes. Learn-then-Act frameworks take near-term actions as given (in this case a 
particular level of public energy R&D investment), and explicitly model decisions which take place only 
after uncertainty has been realized (deployment decisions which take place within IAMs). Act-Learn-Act 
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frameworks are more realistic, explicitly modelling near-term decisions that must be made before 
uncertainty is resolved; the full probability distribution is taken into account when choosing an 
alternative. In all of the papers reviewed, the near-term decision is investment in public energy R&D. The 
remaining later stage decisions, including deployment, take place within the IAMs.  
 
In this Review, we discuss work combining expert elicitations on energy technologies with IAMs and 
frameworks for decision making under uncertainty to support public energy technology R&D policy 
decisions in the face of technological uncertainty. The insights stemming from the types of integrated 
quantitative analysis depicted in Figure 1 and described in this Review are, of course, just one input to 
public policy. There are many other factors, such as politics, stakeholder values, and the interactions 
between policies in the energy sector and other sectors that require government investment, to name a 
few. Nevertheless, insights about optimal public energy R&D portfolios arising from integrated 
quantitative analysis can usefully support decisions, by clarifying the presence of non-linearities and by 
providing clarity about assumptions, goals and tradeoffs of different investments. The aim of this Review 
is three-fold: to summarize and categorize recent research incorporating expert elicitations and IAMs in 
decision making frameworks; to highlight the most relevant insights coming from this literature for the 
design of public energy R&D portfolios; and to identify gaps and key research areas going forward.   
 
Expert Insights about the Future of Energy Technologies  
 
Before delving into the integrated approach presented in Figure 1, we review the literature on energy 
technology expert elicitations.  
 
Verdolini et al. 19 provide a review of 29 expert elicitation studies performed between 2007 and 2012, 
covering eleven energy technology categories. The range of studies reviewed there (plus two additional 
recent wind studies, making it a total of 31 papers) are summarized in Table 1 and the key challenges and 
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gaps associated with energy technology expert elicitations are summarized in Box 2. It is important to 
note that none of the elicitations explored alternative scenarios of private-sector R&D investment due to a 
large extent to the lack of information regarding current private energy R&D investments by technology.  
 
The analysis of 31 papers included in Table 13,19 provides robust evidence of the significant uncertainty 
surrounding future energy technology cost and performance. The uncertainty characterized by elicitations 
goes beyond the uncertainty estimated from forecasting methods based historical data (e.g. learning  or 
experience curves, as a function of deployment20 or of time19). For example, using 20 year windows of 
historical data on solar photovoltaic (PV) module costs from Fraunhofer21 , the average annual cost 
reduction ranges between 2.7% and  4.6%, depending on the start date of the window; the average annual 
cost reduction over a 25 year period (1980-2015) is 2.8%.  For comparison, using individual expert 
answers from the Harvard solar PV expert elicitation22 on module costs,  implied average annual cost 
reductions between 2010 and 2030 show a much wider range, from 0.1% to 4.7%.  This range of 
uncertainty does not seem to depend on the level of R&D investment.5,23  It is also worth noting that most 
of the elicitations sought to isolate the impact of R&D, recognizing that there are factors beyond R&D, 
such as input prices, learning-by-doing and economies of scale that have driven previous cost reductions. 
This has, for example, been demonstrated for solar PV 20.  
  
According to the studies in Table 1 and the related discussion in Box 2, on average, with significant 
variation across technologies, experts expect that higher levels of R&D would lead to cost reductions of 
over 50% between 2010 and 2030.   Looking at the tails of the distributions, however, it is possible to 
detect  non-zero probabilities of more significant breakthroughs leading to sustained cost reductions on 
the order of 10% per year until 20303. Examining only the medians or means would result in ignoring low 
probability, high-impact events in decision making.  Among the studies, results vary by technology in 
terms of forecast rates of cost improvements; however, the uncertainty within and between studies 
dominates.  
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When comparing the rate of change in the future cost of technologies implied by the expert elicitation 
studies to projections based on historical data, it was found19  that the technologies differ in the degree to 
which the experts see the future as being similar to the past. For example, the median expert forecasts for 
nuclear power and biofuels are similar to historical data, while expert forecasts for bioelectricity are 
relatively pessimistic. This is consistent with the possibility that expert judgments represent a semi-
independent source of information: experts are influenced by historical trends as well as by their personal 
experiences and beliefs about future technological developments. 
 
There are many challenges and gaps associated with energy technology expert elicitations (see Box 2). 
Nevertheless, elicitations provide a systematic way, using the best available knowledge, to provide 
information on future technological change unavailable from other types of analyses.   
 
Modelling and Managing Technological Uncertainty  
 
It is not enough to have an understanding of the uncertainty surrounding the future cost and performance 
of energy technologies. The design of efficient and cost-effective energy policies requires understanding 
the broader social impact of changes in these technologies, including the impact of interactions across 
technologies and between R&D and other policies.  A large body of literature has explored the 
importance of technological costs on future mitigation pathways under uncertainty without using inputs 
from expert elicitations (see for example refs 24,25,26). In this section, we review studies that explicitly 
combine elicitation-based uncertainty on energy technology cost and performance with IAMs to support 
the design of energy technology policy.   
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Table 2 classifies modeling efforts into Learn-then-Act and Act-Learn-Act, categories introduced in 
Figure 1. Sensitivity analysis, which takes the energy R&D investment decision as given, addresses 
technological uncertainty by experimenting over a range of technological scenarios.  The result of 
sensitivity analysis is a range over the standard outputs of IAMs (e.g. investment levels, climate 
mitigation costs). Most sensitivity analysis efforts do not rely on expert elicitations, but Table 1 includes 
some sensitivity analysis studies that do.   
 
Uncertainty analyses also take the energy R&D investment decision as given, but move a step further, 
using probability distributions of future technology costs and performances as inputs, and providing 
outputs from IAMs as probability distributions. The most well-known method of uncertainty analysis is 
Monte Carlo analysis.  
 
The last two columns of Table 1 move into the realm of DMUU, which provides insight into near-term 
strategies given the current state of information.  In the 1-stage DMUU approach, as illustrated in Figure 
1, key decisions (in this case R&D investment decisions) are made before uncertainty is resolved. Multi-
stage DMUU approaches, on the other hand, allow for “recourse” — key decisions are revisited after 
uncertainty is revealed, including future climate policies or results from the previous  energy R&D 
investments. Thus, multi-stage DMUU models can identify near-term decisions or policies with option 
value12. Among multi-stage DMUU frameworks, it is most common to have two stages, but some models 
include a larger number of downstream decisions. The two most common methods for implementing 
multi-stage models are Dynamic Programming 27 and Stochastic Programming.  Dynamic Programming 
is increasingly being implemented with high-dimensionality solution techniques, such as Approximate 
Dynamic Programming (ADP)28. In general, computational challenges are difficult in all multi-stage 
frameworks due to the “curse of dimensionality”: while stochastic programming needs to manage the 
number of future uncertain states; ADP models need to manage the number of state variables.  Some have 
argued that  the addition of decision stages beyond two may not provide considerable insight25,29. In all 
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DMUU studies here, IAM-based deployment decisions take place after uncertainty is resolved. DMUU 
differs from sensitivity and uncertainty analysis, as the uncertainty explicitly feeds back into the near-
term decision.   
 
Sensitivity to Energy Technology Costs 
 
While expert elicitations have been used to calibrate IAMs, this does not fully utilize the probabilistic 
data assembled in expert elicitations. In Table 1, we include sensitivity analysis studies that use the range 
of values elicited from experts to analyze the impact of technology scenarios on model outputs. Typically, 
sensitivity analyses vary technology input parameters one at a time to assess the range of societal 
outcomes associated with extreme technology assumptions. This helps to identify critical uncertainties 
and to bound results.  Pugh et al.30 performed an informal expert elicitation over various technical 
outcomes across a wide range of technologies, and used the results to assess emissions reductions and 
return on investment.   Ricci et al.31 and Iyer et al. 32 each perform a simple sensitivity analysis to bound 
possible future costs and efficiency of a single technology (carbon capture and storage and nuclear, 
respectively) and its economic implications. Barron and McJeon33 investigate how much technologies 
would need to improve to significantly reduce the cost of climate change mitigation. Olaleye and Baker34 
perform a large scale, multi-parameter scenario analysis to identify technologies that are complements or 
substitutes in terms of utility.   
 
In recent years, there has been an effort to go beyond conventional sensitivity analysis, by allowing 
various input parameters to change together, thus capturing interaction effects. Such approaches can use  
elicited probability distributions for  random draws 35 and are referred to as global sensitivity analysis.  
Bosetti et al.36 perform a multi-model global sensitivity analysis of energy technology costs, drawing on 
three elicitation studies over five technologies.  Their results, robust to the choice of the IAM, indicate 
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that when there is no climate policy, among the technologies considered, nuclear cost assumptions are the 
biggest technology cost determinants of projected societal energy costs and baseline emissions, 
complementing findings about the role of nuclear with climate policy37. Sensitivity analysis is more 
computationally-tractable than the methods we discuss later, and is appropriate for identifying areas of 
interest that could be the subject of additional research. It has descriptive value and its results can be 
easily presented to policy makers or other users, usually in the form of scenarios representing particular 
narratives. Sensitivity analysis represents a first step towards understanding the resilience of a particular 
policy.  It has the weakness, however, of not taking into account many of the non-linearities mentioned 
above.  Thus, researchers and analysts should consider going beyond sensitivity analysis, even if this 
presents challenges to communication, because “decision makers are often far better served by examining 
the diversity of opinion” 38 and thinking about the robustness of policy approaches to the uncertainty. 

 
Towards Understanding Uncertainty 

 
Expert elicitation data can also be used in uncertainty analysis, most commonly Monte-Carlo analyses.  
Monte-Carlo type analyses use random draws from probability distributions as inputs to models, such as 
IAMs, resulting in probability distributions over the outputs of interest. Gillenwater39 uses an elicitation 
on wind to estimate the effect of policies on the probability of private sector deployment investment. A 
similar, but  more sophisticated method, Latin Hypercube Sampling (LHS)40, can reduce the number of 
needed simulations while preserving the probabilistic interpretation of the model outputs. Chan and 
Anadon (2016)41 account for the dependency between R&D-induced energy technology improvements 
across a set of twenty-five technologies (some of which are interrelated) using LHS. The results include 
probability distributions of future CO2 emissions, oil imports, consumer and producer surplus and other 
metrics under different R&D scenarios, with and without specific demand-side policies.  
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Another method of uncertainty analysis is to propagate probability distributions through a model. 
Olaleye42 uses large scale scenario analysis to estimate probability distributions over welfare for different 
R&D portfolios, by associating each technological outcome with a conditional probability derived from 
elicitations. Lemoine and McJeon43 combine energy technology elicitation results with an IAM to 
investigate the probability distributions of climate damages and mitigation costs.  Several elicitation 
studies use deterministic runs of an IAM combined with elicited probabilities of particular technology 
costs to derive conditional probability distributions over the impacts of R&D on the Marginal Abatement 
Cost curve, with a focus on the different ways in which different technologies impact the curve44–46.  
 
Nemet and Baker47 combine the results of a solar expert elicitation with a technology-economic model 
that allows them to derive probability distributions over the cost of solar conditional on both technology 
R&D and technology subsidies. Similarly, a set of interrelated papers propagate elicited distributions of 
the outcomes of R&D in carbon capture and storage (CCS) technology through different techno-economic 
models to produce probability distributions of the future technology costs and overall CO2 avoidance for 
various R&D investment and deployment policies 48,49,50. 
 
Uncertainty analysis forces researchers and policy makers to think about probabilities, with the added 
benefits (and added complexities) that this entails51. However, similarly to sensitivity analysis, uncertainty 
analysis by itself does not directly inform near-term decision-making, such as the optimal amount and 
allocation of R&D investments.  
 
Modelling Insights from DMUU Frameworks 
 
The studies presented in Table 3 and discussed in Box 3 show that there are tradeoffs involved in 
selecting DMUU strategies, involving the number of technologies that are explicitly modelled as 
uncertain, the number of decision stages, the representation of R&D, and use of reduced form decision 
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models. Baker and Solak (2014)52 consider only three technologies, but solve a technologically-detailed 
stochastic programing version of the IAM DICE, where investments into R&D impact the marginal 
abatement cost curve and are the first stage decision. All papers with 4 or more technologies feed outputs 
from IAMs into reduced-form decision models. Chan & Anadon (2016)41 include  continuous public 
R&D levels for 6 technology areas that affect the cost and performance of 25 individual technologies, but 
only one-stage DMUU. Six papers in Table 3 use two-stage DMUU8,42,53–56, but only have 3-6 technology 
categories; all but one56 use discrete R&D investment levels. Santen & Anadon (2016)17 use ADP to solve 
a four-stage DMUU, but consider R&D dependent uncertainty in only one technology (which competes 
with 3 others for deployment).  Most of the multi-stage DMUU frameworks include R&D as a first stage 
decision and deployment in later stages; Santen & Anadon (2016)17 include decisions on R&D and 
deployment in all 4 stages.  Some studies optimized given one or several budget constraints41,42,53,57, 
others solved for the optimal budget level8,17,52, and others do both54–56,58. 
 
 It is important for researchers and users of information to be aware of the crucial design decisions being 
made when conducting this analysis and to understand what tradeoffs are being made and why.  Key 
design decisions are the number of technologies that are modelled with R&D dependent uncertainty, the 
number of decision stages, whether or not R&D funding is continuous, and the decision framework. 
 
Another question for researchers and policy makers is whether one piece of the analytical framework 
depicted in Figure 1 is driving the results. Is it enough to look at the results of expert elicitations to 
determine which R&D investments are best to achieve a particular policy goal? Or, on the other hand, do 
the built-in assumptions of IAMs swamp the assumptions stemming from expert elicitations?  We find 
evidence that both components influence results, along with the decision framework. A comparative 
analysis8 reported in Figure 2 shows that the expert elicitation data matters: the IAM and decision 
frameworks were identical yet the R&D portfolio results vary by elicitations.  Figure 3 shows that the 
inclusion of more technologies (for example, some studies include vehicles and some do not) also has an 
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impact on results about optimal energy R&D portfolios.  Figures 2 and 4 both show that the decision 
framework matters. Comparing the results in Baker et al. (2015)8 that use the UMass elicitations with the 
McJeon study53 in Figure 2 shows that while both studies employ the same IAM and elicitation data, they 
have different  results. Santen & Anadon (2016)17 also find that the decision framework matters: the 
results presented in Figure 4 show that deterministic, Monte-Carlo, and 5-stage DMUU lead to different 
levels of R&D vs technology deployment investments. Finally, Barron (2015)57  shows that the choice of 
the IAM matters, with GCAM and MESSAGE providing different optimal R&D portfolios using the 
same elicitations and decision frameworks.  
 
Policy Insights  
 
One important dimension that emerges when thinking about designing optimal energy R&D portfolios is 
to what extent they depend on the context, including other policies or policy goals.   In particular, climate 
policy stringency, and the availability of resources for R&D investments and for deployment of energy 
technologies are key factors prevalent in policy debates in the energy sector.  
 
We now turn to reviewing the insights for policy that emerge from the literature introduced above.  We 
organize these insights into three areas: the impact of climate change targets on optimal R&D portfolios; 
the impact of R&D budget constraints on the allocation of R&D investments; and a comparison between 
funding allocated to public R&D and to technology deployment. 
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Optimal R&D Portfolios under Different Climate Targets  
 
Figure 2 summarizes a range of studies investigating the extent to which different climate constraints 
affect optimal R&D portfolios.  Results are organized into Groups with common elicitations, IAMs, and 
decision methods. Of the six Groups analyzed, which come from 4 major studies41,53,56,59, four Groups (1-
4) compare a baseline “no policy” scenario with either a lenient and stringent climate stabilization 
scenario or with just a stringent climate stabilization scenario (the Figure caption provides information 
about the specific studies), Group 5 compares a lenient and a stringent climate stabilization scenario and 
Group 6 presents the optimal R&D allocation under a lenient climate stabilization policy. Although the 
climate scenarios are not entirely comparable, we group them into the broad categories of stringent and 
lenient climate target scenarios; details and assumptions are reported in Table 3 and in Box 3. 
 
There are five technology-specific results that emerge from the analysis presented in Figure 2.  First, solar 
gets the smallest share of R&D and its role slightly decreases as the target gets more stringent. This is 
mainly due to the different magnitude of solar R&D investments compared to the other type of 
technologies. Second, the stricter the climate constraint, the greater the share of CCS in energy R&D 
portfolios, with the exception of one study8 using the UMass elicitations. CCS is critical for negative 
emissions (bioenergy plus CCS), which in turn is an increasingly important strategy for stricter climate 
targets. Third, stricter climate constraints lead to an equal or smaller share of nuclear in energy R&D 
portfolios, with the exception of one  study8 using the Anadon et al. (2014) 22 elicitations. This appears to 
be due to large nuclear investments under low-stringency targets, with less room to grow as target gets 
more stringent.  Fourth, all studies that include vehicles find that a significant share of the overall budget 
is devoted to advanced vehicles R&D, ranging from 30 to 80% of the total R&D investments; this 
fraction increases with stricter climate constraints. Fifth, R&D funding for utility scale energy storage, a 
technology area included in only one study, increases with stricter climate constraints.  
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It is important to note that this is a summary of emerging insights, and many gaps and challenges exist, 
such as model biases and missing or poorly modeled technologies, making it difficult to extract 
recommendations about the precise level of R&D investments into specific technologies.  However, one 
general conclusion does appear: technologies which provide flexibility see higher R&D investments as 
climate stringency increases. CCS allows for ex-post emission decreases from fossil plants; storage 
allows higher penetration of intermittent technologies; and vehicles allow abatement to reach into the 
transportation sector. The fact that we do not see this pattern for biofuels reflects elicitation results, 
particularly in the US studies, which may in turn reflect high existing levels of R&D.  
 
Optimal R&D Portfolios for Different R&D Budget Constraints 

 
Another pressing question in the minds of policy makers, particularly in times of financial crisis, is how 
R&D investment portfolios should change for different public energy R&D budget constraints. Figure 3 
summarizes the results of seven papers,22,42,52,54,56,58,41 that consider multiple public energy R&D budget 
constraints.  
 
Results show that with tighter R&D budgets, portfolios become less diverse, with some technologies not 
funded at all. Among the four studies that include vehicles41,22,42,53  there is a decrease in the share of 
vehicles R&D with greater R&D budgets.  This is likely because vehicle R&D (in particular batteries) get 
a large share to begin with in constrained budgets; and because the marginal improvement seen in the 
elicitations above and beyond those levels is smaller than that of other technologies, especially CCS.  
Among the three studies that include bioenergy41,42,56 the fraction of R&D devoted to total bioenergy (the 
combination of biofuels and bioelectricity) stays relatively constant, driven to some extent by 
assumptions about the availability and cost of biomass.  
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Solar plays an interesting role in these portfolios. First, we note that, as the R&D budget constraint is 
relaxed, and consequently the number of technologies considered grows, the share of R&D for solar 
decreases precipitously (more so than nuclear, CCS, or vehicles). Moreover, the share of solar is non-
monotonic in a number of studies, more prominently than any of the other technologies. This may 
indicate that solar plays the role of a kind of “filler” technology in these portfolios. The problem of 
finding an optimal portfolio subject to a constraint is what is known as a “knapsack problem”. It is well 
known that knapsack problems can lead to non-monotonic results as the constraint (in this case the total 
energy R&D budget) relaxes. Solar R&D plays this role since, especially in comparison to CCS and 
nuclear, it can be productive even at lab scales.  On the other hand, in the absence of cost-effective 
storage technologies, solar PV has a limited impact on the overall economy, due to structural assumptions 
about intermittency in many of the IAMs. 
 
The main disagreement in the results in Figure 3 is for the fraction of R&D devoted to nuclear versus 
CCS.   In two of the papers42,54 nuclear increases at the expense of CCS as the R&D budget grows; while 
for the other 4 papers41,52,53,58 that include both technologies  this trend is reversed.   Nuclear and CCS 
tend to be strong substitutes; thus, depending on the specific IAM assumptions, different technologies 
take a larger share. Both of these technologies are associated with significant socio-technical issues that 
are difficult to model, such as public acceptance. Thus, factors embedded in IAMs beyond future cost 
(e.g., limits on the rate of deployment) are likely to play a role on whether one or the other technology 
receives the largest share of R&D portfolios.  
 
We can also ask to what degree R&D expenditures are justified: what amount is the right amount? This 
question has been asked in the theoretical literature using hypothetical probability distributions or the 
comparative statics of risk (see 60 for a review). Some of the papers reviewed here have taken on this 
question using elicitation-based distributions. McJeon53 finds that the savings in abatement costs are 2-3 
orders of magnitude higher than the R&D investment costs for all portfolios considered; Anadon, Chan, 
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and Lee22 find that current US public energy R&D budgets could be increased by at least an order of 
magnitude and still be cost effective in terms of consumer and producer surplus; there are similar results 
in other papers, especially when opportunity costs are low, potential benefits are high, and a limited set of 
projects is available. Most papers, however, find that the optimal investment in R&D includes only a 
subset of the total available projects. Thus, the opportunity cost of R&D investment does play a role. A 
few papers have found that R&D is more valuable in second-best worlds 8,52,61; that under-investment may 
be more costly than over-investment 52; and that the optimal investment decreases in the discount rate and 
the opportunity cost, and appears to be non-monotonic in risk, first increasing then decreasing as risk 
increases 52,54.   
 
R&D vs. Deployment Expenditures 

 
A key debate in innovation and climate policy is the question of how to balance public support for R&D 
as opposed to technology deployment.  A recent study67 highlighted this as one of the hardest questions in 
crafting comprehensive energy policy. In Figure 4 we highlight the ratio of (mostly public sector) R&D 
investments compared to the long term (mostly private sector) investments in deployment resulting in 
some of the elicitation-based studies.  Figure 4 shows the proportion of R&D investment to the total 
investment (including R&D and all deployment costs, such as capacity investments and government 
subsides) between 2010 and 2040; this proportion ranges between 0.1 – 9.2%.  
 
While the innovation literature has highlighted the need for both technology-push and market-pull 
technology policies63, and the energy economics literature has discussed the need for two instruments to 
address two market failures of environmental and knowledge externalities64,  we are not aware of any 
attempt to obtain an estimate of what the optimal range of public R&D is when compared to total 
deployment costs, given our current knowledge.  While the range, including uncertainty, spans over one 
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order of magnitude, no study found that the fraction of R&D should be more than 9.2% of the total 
investment, with the median result around 3.5%.  For reference, this ratio for solar PV in the United States 
in 2015 was roughly 1.1% (this estimate was calculated65 using a federal R&D investment in solar PV in 
2015 of US$231 million; and a rough deployment investment  of US$20.6 billion--estimated from a total 
of 7.3 GW of installed solar capacity, approximately 4.3 GW for utility scale solar and 3 GW for non-
utility scale solar66, and assuming average solar costs in 2015 of 2 US$/W for utility scale solar (about 4.3 
GW) and 4  US$/W for non-utility scale solar67).  The question of R&D vs deployment is a ripe area for 
future research, since only limited studies were available for this analysis.   
 
In addition to shedding light on these three areas, the existing literature also includes a few studies that 
investigate different questions.  Ziolkowska68 combines a biomass  and bioenergy elicitation  with a 
multi-objective decision framework, considering economic, environmental and social policy objectives in 
evaluating  different biomass feedstocks to inform energy policy. Bistline61 investigates the optimal 
electricity capacity investment portfolio under uncertainty about technology prices derived from 
elicitations. Using a two-stage stochastic program, the paper finds that natural gas prices and the 
stringency of climate policy are the main risks associated with capacity expansion planning.  
 
Gaps and Challenges in Combining the three Approaches 
 
We have discussed the insights that can be drawn about public energy technology R&D policy through an 
integrated analytic approach which combines expert elicitation, IAMs, and DMUU frameworks.  We now 
address some gaps in knowledge and methodology and potential challenges to this combined approach.  
 
First, the combined approach is necessarily limited by the availability of expert elicitations and the 
limitations of IAMs. The set of technologies that can be included in a combined framework is limited to 
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those for which elicitations have been performed and which IAMs represent in some detail. In addition, 
the representation of the energy system in IAMs can strongly influence results. For example, the result 
that solar PV plays a small role in many R&D portfolios may be related to how IAMs model the 
challenges of grid integration. Recent work69 has revisited the representation of wind and solar across 
multiple models,  leading to higher shares of these technologies in more recent versions of the models. It 
will be important to test expert elicitation data on this new generation of IAMs.  Beyond these gaps, the 
limitations of IAMs and expert elicitations (discussed in Boxes 1 and 2, respectively) affect the combined 
analysis, and thus must be considered when interpreting results.  
 
A second issue relates more generally to all optimization frameworks used in policy assessments: how, 
and by whom, is the objective function defined? The papers reviewed here are primarily aimed at a high 
level, relevant to national governments or international agencies. However, much decision-making takes 
place at lower levels, such as sub-national agencies. Moreover, it has long been acknowledged that the 
problem of identifying an objective function, even in the case of a single decision-maker, is quite 
challenging70. This becomes even more challenging when the problem is in the public realm and consists 
of multiple policy goals71, stakeholders72, and long timeframes. The role of optimization and decision 
frameworks in this case is not to provide a single optimal solution, but rather to shed light on the impact 
of decisions, uncertainty, and preferences in a quantitative framework; ultimately decision-makers are 
faced with value judgments over particular optimization criteria. There are considerable gaps in the 
objectives that have been explored by this approach in the literature so far. Most of the papers employing 
DMUU either minimize the cost of achieving a climate goal (such as a particular stabilization scenario) or 
minimize the combined cost of abatement and damages. A few papers explore other objectives, such as 
maximizing consumer and producer surplus, reducing carbon price, or reducing CO2 emissions in the 
US22. Ziolkowska68 uses a multi-criteria approach, including  criteria such as economic efficiency, 
reducing GHGs and water use, and supporting local communities. The wide range of possible policy 
objectives (which might vary based on the geographical and socio-economic context of the decision 
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maker) has yet to be explored using these frameworks. Some objectives of interest may be general 
economic development, reduction of inequality or poverty, energy access, and many others. To truly 
address this gap, researchers must collaborate with policy-makers to support decisions in specific 
contexts. Nevertheless, there is the danger of “lamp-posting” — of only addressing questions that current 
models are set up to answer.   
 
A third area that could help address some of the limitations of  the combined approach is to perform 
structured multi-model comparisons; including sets of IAMs with different assumptions about technology 
diffusion, built-in objectives, and decision frameworks, as well as multiple elicitation studies to 
parameterize technological uncertainty  performed using different methods. Structured multi-model 
comparisons have shown great promise in increasing the robustness of insights in the context of IAMs 
and the Energy Modeling Forum (EMF) studies6,69,73, and could help increase the robustness of existing 
insights from the integrated approach presented here, or provide new policy insights. 
 
A fourth area in need of additional attention by the research community is that of understanding the 
private sector response to government policy, both in terms of R&D investments and the challenges to the 
commercialization of technologies74, and on the interaction between innovation in different technologies 
through spillovers. While some headway has been made using patent studies75, little is known about 
private R&D spending, its effectiveness, and its relation to public R&D and other policies76. Thus, this 
important piece of the puzzle often gets left out of technology policy analyses.  Similarly, the challenges 
related to spillovers —  between locations and between energy R&D and other areas —  are not included 
in the reviewed papers due to the limited availability of data and analysis. A particular concern is a lack of 
representation of R&D in emerging economies, and related international spillovers. Most broadly, it is 
important to note that these important mechanisms, including private R&D response and first phase 
deployment challenges, have not been considered in expert elicitations nor are well-represented in IAMs.  
These mechanisms have an important role, and thus are ripe for more research. 
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Current decision making on public energy R&D investments is generally opaque: it is unclear to external 
analysts, stakeholders, or taxpayers where assumptions about future costs and R&D effectiveness come 
from, and what goal or goals are being prioritized22. The type of analytical approach presented here can 
serve as a complement to inform and scrutinize public decisions, since the source of the technology 
assumptions (the names of the experts) is clear, and the models and optimization criteria are specified. 
However, this approach is only useful to the degree that policy makers buy in to the results and insights. 
This is a major challenge, not just for this combined framework, but for all approaches that explicitly 
include uncertainty in the analysis. And thus, a fifth and final area for future work is in uncertainty 
communication, including two-way communication with policy makers through a process of research co-
design, so that frameworks, such as those we have reviewed here, are informed by both the insights of 
policy makers and responsiveness to their needs.  
 
Outlook 
 
Governments are increasingly turning their attention to questions about energy technology R&D 
portfolios and energy innovation policy.  The U.S. Department of Energy recently created the Office of 
Technology Transitions, responsible for developing and overseeing delivery of strategic vision77 and 
goals around technology commercialization, including considerations about R&D portfolios.  Various 
global efforts are emerging aimed at improving energy technologies, including Mission Innovation, the 
Breakthrough Energy Coalition, and the UNFCCC Green Climate Fund.   
 
Decisions about how to best support innovation in energy technologies are hard for a number of reasons, 
but among the most important is the deep uncertainty about the outcomes of R&D and other policies, the 
interactions of technologies, and the science of climate change. The approach we review in this paper — 
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integrating expert elicitations, IAMs, and decision frameworks — is complex. Yet the transition pathway 
ahead of us demands radical changes in policies and in the economy, as well as strategies to enable such 
radical changes, in all their complexities. Thus, governments have an imperative to acquire, integrate, and 
use the best available information in order to support this important decision making process. Many 
governments are developing capabilities in IAMs, allowing them to use this set of tools to inform 
decisions (for example, the U.S. Department of Energy78, and the UK Department of Business, Energy 
and Industrial Strategy 79,80). It would be worthwhile for governments to develop capabilities similar to 
those presented in this paper to understand the full ramifications of expert elicitations alongside other 
data, and DMUU frameworks81.  
 
Of course, expert elicitations, IAMs, and decision frameworks, while crucial, are themselves only part of 
the full range of available information and analytic tools that can be used to inform policy decisions. An 
open question for the future is how to go beyond the already complex and integrative approach presented 
here, as additional data becomes available. This additional information could come from sources as 
diverse as prediction markets, increased computing power, and hybrid data-human based forecasting 
methods. The challenge rests in incorporating this body of information while all the while maintaining a 
firm control on the various components of the analysis and ensuring a rigorous validation of the whole 
process, through methods such as repeated elicitations of experts, controlled comparison of elicitation 
methods, open source code for integrated assessment models and frameworks, randomized control trials, 
and open data sets. Nonetheless, we hope this Review has shown that expert knowledge reflecting 
uncertainty can be profitably integrated with sophisticated modelling methods to inform energy 
technology R&D policy. 
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TABLES 
Table 1: Summary of energy technology expert elicitation studies.   Authors’ own analysis, expanding the work reviewed in 
Verdolini et al.19.  

Technology 
Category 

Name of the home 
institution of the 
research group 
doing the study* 

Number of 
studies  

Studies 
without 
explicit 
questions 
about R&D 

Publication 
year(s)§ 

Geographic 
regions of 
experts 
included 

Target year for 
technological 
change (number 
of studies with 
that target year) 

Studies with that 
target year 

Bio-electricity FEEM82, Harvard22 
UMass59 

3  2007-11 EU/US 2030 
2050  

Refs 83, 22 
Ref. 84 

Biofuels FEEM83, Harvard22, 
UMass84 

3  2008-11 EU/US 2030 
2050 

Refs 85, 22 
Ref. 86 

Carbon Capture 
& Storage 

CMU85, 
ERG&Duke86, 
FEEM&UMass31, 
Harvard87, NRC88, 
UMass (x2)44,48  

7 Ref. 44 2006-12 EU/US 2015 
2025  
2030  
2050 

Ref. 85 
Refs. 31, 48, 90, 
 
Refs 88, 89 
Ref. 44 

Nuclear CMU89, 
FEEM&Harvard90, 
UMass91 

3 Ref. 89 2007-11 EU/US 2030  
2050  

Refs 91 
Ref. 91 

Solar CMU92, FEEM93, 
Harvard22, 
NearZero94, 
UMass45 

5 Ref. 94 2007-11 EU/US 2030  
2030/2050 
2050  
Unspecified  

Refs 22, 94 
Ref. 93*** 
Ref. 45 
Ref. 95 

Vehicles, 
batteries 

FEEM95, Harvard22, 
UMass46  

3   2008-12 EU/US 2030  
2050  

Refs 96, 22 
Ref. 46 

Utility scale 
storage 

Harvard22 1  2011 US 2030 Ref. 22 
Integrated 
gasification 
combined cycle 
(IGCC) 

NRC88 1  2006 US 2025 Ref. 89 

Natural Gas Stanford96 1  2012 US 2025 Ref. 97 
Wind Princeton97 

LBNL98 
2 Refs 97, 98 

 
2010-15 EU/US 2011 (1) 

2020/2030/2050 
Ref. 98 
Ref. 99*** 

Low carbon 
electricity** 

UCL16 1 Ref. 16 2010 EU 2030 Ref. 16 
 
* CMU: Carnegie Mellon University, Department of Engineering & Public Policy; Duke: Duke University, Nicholas School of the Environment; 
ERG: Eastern Research Group, Ltd; FEEM: Fondazione Eni Enrico Mattei; Harvard: Harvard University, Harvard Kennedy School; LBNL: 
Lawrence Berkeley National Lab; NearZero: Near Zero: nearzero.org;  NRC: National Research Council; Princeton: Princeton University,  
Woodrow Wilson School of Public and International Affairs; Stanford University, Department of Management Science & Engineering; UCL: 
University College London, Energy Institute; UMass: University of Massachusetts Amherst. §. Elicitations were typically conducted between 0.5 
and 2 years before publication. 
** In this study by UCL researchers experts were asked about the levelized cost of electricity for any low-carbon technology that could contribute 
to a 20% share in the UK electricity market by 2030. Experts provided costs and identified that the following low-carbon technologies may be 
able to achieve this: on-shore and off-shore wind, nuclear and gas or coal with carbon capture and storage (CCS), with one individual mentioning 
that solar could technically also contribute this quantity of electricity in the UK.  
*** These two studies provided cost estimates from elicitations for more than one end year.  
 
Table 2: Studies relying on technological uncertainty from expert elicitations. Studies are organized by decision method and 
type and number of technologies.  Note that the only studies that can provide results on optimal R&D investments are in the last 
two columns. BE: Electricity from Biomass; BF: Liquid biofuels; CCS: Carbon capture and storage; F: fossil fuel; NG: natural 
gas; S: solar technologies; W: wind. Note:* Santen & Anadon (2016)17 optimized R&D funding for one technology (solar PV) 
and deployment for four technologies: solar PV, wind, gas and coal and used continuous variables for solar R&D and solar costs. 
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Table 3: Details of the papers used to produce the Figures. 

 
Technology 

 
 

Sensitivity 
 

Uncertainty analysis 
 

1-stage DMUU 
 

Multi-stage 
DMUU 

Individual Technologies 
Biofuels (BF)   Ziokowska 201368  
Batteries for vehicles 
(V) 

 Baker, Chon, Keisler 
(2010)46  

  
Carbon Capture and 
Storage (CCS) 

Ricci et al 
(2014)31 

Baker, Chon, Keisler 
(2009)44; Nemet et al 
(2013)48; Nemet et al 
(2015)99 

  

Nuclear Iyer et al 
(2014)32 

Baker, Chon, Keisler 91   
Solar (S)  Baker, Chon, Keisler 

(2009)45; Nemet & 
Baker (2009)100 

 Santen & Anadon 
(2016)17 * 

Wind (W)  Gillenwater (2013)39   
Multiple Technologies 

CCS; Natural Gas 
(NG); Nuclear(N) 

   Bistline & Weyant 
(2013)101 

CCS; Nuclear; S  McJeon et al 
(2011)102 

Lemoine and McJeon 
(2013)43 

Barron, 
Djimadoumbaye, 
and Baker (2014)54 

Baker & Solak 
(2011, 2014)45,55 
 

BF; S; V    Marangoni  et al. 
(2017)56 

CCS; N; S; V    McJeon (2012) 53 
CCS; NG; N; S    Bistline (2016)58 
BioEnergy(BE); BF; 
CCS; N; S 

Barron and 
McJeon 
(2015)33; 
Bosetti et al 
(2015)36  

Olaleye & Baker 
(2015)34 

Baker, Bosetti, Salo 
(2016)103 

Baker et al 
(2015)8; Barron 
(2015)60 

BE; BF; CCS; N; S; V    Olaleye (2016)42; 
BE;BF;CCS;F;W;S   Pugh et al (2011) 30   
BE; BF; CCS; N; S; V;  
Storage 

 Webster et al (2013)104  
Anadon, Chan & Lee 
(2014)22; Chan & 
Anadon (2016)41 

Chan & 
Anadon(2016)41; 
Anadon, Chan & 
Lee (2014)22  
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Study Elicitations IAM Objective DMUU 
Framework 

Timeframe 
and Climate 
Targets 

R&D Budgets Number of 
technologies 

Baker et 
al. 
(2015)8 

UMass, 
Harvard, 
FEEM59 

GCAM minimizes cost 
of climate 
stabilization plus 
damages plus 
R&D cost 

1-stage, using 
dynamic 
programming. 
[paper also 
includes 2-
stage, results 
not in figures] 

 To 2050 or 
2100 
depending on 
elicitation 
(uncertainty 
resolved in 
2030) 

Each technology can be 
invested in at low, mid, or 
high, as follows (NPV in 
US$ Billion) 
Solar,1.7,4.0,33.0; 
Nuclear 6.2,19.2,178.3;  
CCS 5.3, 17.1,168.2; 
Bio-fuels,1.6,3.7,20.3;  
Bio-electricity 1.6,3.0,16.9 

5 

McJeon 
(2012)53 

UMass59   GCAM minimizes cost 
of climate 
stabilization 
under R&D 
budget 

2-stage, using 
dynamic 
programming 

To 2100 NPV R&D budgets in US$  
Billion are 0.6, 0.72, 1. 

3 

Marang
oni et al. 
(2017)56 

FEEM59 WITCH maximizes 
welfare under 
budget constraint 
and climate 
constraint 
(moderate 
pledges, 2.8°C in 
2100) 

2-stage, using 
ADP 

To 2150, 
(moderate 
pledges, 2.8°C 
in 2100) 

Annual R&D budgets for 
all technologies in 
$billions are 9 (halved 
R&D budget) and 19 
(unconstrained). 
When only results on solar 
R&D budgets are 
presented (Fig. 4) these are 
US $ Billion 1.6 (halved 
R&D budget)  and 2.4 
(unconstrained scenario) 

4 

Chan & 
Anadon 
(201641)*
*  

Harvard105 
 

MARKA
L - U.S. 

maximizes 
consumer and 
producer 
surplus*  

1-stage, using 
LHS 

To 2050 Annual energy R&D 
budget constraints in US$ 
Billion are 3 (consistent 
with BAU), 5, 7, 10, 
normalized to the value of 
the lowest R&D 

6 R&D 
programs (they 
influence 25 
individual 
technologies) 

Barron 
et al 
(2014)54 

UMass59 GCAM/D
ICE 

minimizes 
abatement costs 
(including R&D 
expenditures) 
plus damages 

2-stage To 2185 
(uncertainty 
resolved in 
2050) 

NPV R&D budgets in US$ 
Billion are 0.2, 1.5, 5 

3 
 

Baker & 
Solak 
(2011)55 

UMass59 GCAM minimizes 
abatement costs 
(including R&D 
expenditures) 
plus damages 

2-stage To 2185 
(uncertainty 
resolved in 
2050) 

NPV R&D budgets are in 
US$billions 0.2, 1.5, 5;  

3 

Olaleye 
(2016)42 

UMass59 GCAM/D
ICE 

maximizes 
welfare 

2-stage, 
stochastic 

To 2185 
(uncertainty 
resolved in 
2050) 

NPV R&D budgets in US$ 
Billions 0.3, 1.5, 4.9, 10.2, 
29.5 

 

6 

Bistline 
(2016)58 

Stanford, 
UMass, 
Harvard59 

Purpose 
built 
model  

minimizes 
energy system 
costs (accounting 
for a $30/tCO2-
eq carbon tax) 
subject to budget 
constraints 

3-stage To 2050, with 
uncertainties 
resolving in 
2025 

Annual R&D budgets in 
US$ Billion are 0.25, 0.5, 
1.4 

4 

Nemet 
and 
Baker 
(2009)47 

UMass59 Purpose 
built 
model 

18 scenarios with 
different levels 
of R&D, subsidy, 
and carbon tax  

Sensitivity 
Analysis 

To 2050 
(results 
reported here 
only to 2040) 

Results shown in Figure 4 
reflect low and high R&D 
(15 and 80 US$ Million 
per year) and no carbon tax 

1  

Santen 
& 
Anadon 
(2016)17 

Harvard59 Purpose 
built 
electricity 
expansion 
including 
DMUU 

minimizes total 
system cost 

4-stages, using 
ADP 

To 2050 
(although 
results 
reported here 
only show 
2010-2040) 

Solar PV R&D budgets 
optimized for different 
stages under no carbon 
policy and stringent carbon 
policy 

R&D in PV (1)  
and PV 
competes with 
wind, coal & 
gas in 
deployment 

NPV: Net Present Value. 
* The study also optimizes other objective functions but they are not used in this Review. 
** An earlier less detailed version was published in Anadon Chan and Lee (2014)22. 
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FIGURES

 
 
Figure 1: Analytic Approach to Support Energy R&D Decisions Using Expert Elicitations. (a) Analytical components in 
this Review are expert elicitations and IAMs, illustrated here by the two different schematic diagrams.  (b)  Two main types of 
decision making under uncertainty (DMUU) frameworks to support policy are illustrated here: Learn-then-Act frameworks, in 
which we include sensitivity and uncertainty analysis; and Act-then-Learn-then-Act (Act-Learn-Act) frameworks, where we 
include 1-stage and multi-stage DMUU. (c) Illustrated here are the types of outputs that emerge from the different types of 
analysis: deterministic scenarios of future CO2 emissions under different R&D levels, probabilistic outcomes of future CO2 
emissions under different R&D levels, and optimal energy R&D portfolios for 3 technologies under two different climate policies 
in terms of the level of stringency. More details can be found in the text.. 
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Figure 2: Optimal R&D portfolios under different climate stabilization levels. This figure shows the fraction of the R&D 
portfolio devoted to different technology areas for different climate stabilization levels, as determined by different approaches. In 
the color key, bioenergy refers to an R&D program in which biofuels and bio-electricity R&D were not differentiated, even if 
technologies were. Note that many technologies such as wind were not included in these modelling approaches using elicitation 
data. Group 141 uses elicitations from Harvard22,59,106, the MARKAL IAM, 1-stage DMUU, and maximizes consumer and 
producer surplus under a US$5 billion total R&D constraint under no carbon policy (BAU) and a strict carbon policy (Stringent) 
of 83% reduction of energy CO2 emissions by 2050 compared to 2005 levels.  Groups 2, 3 and 4 use harmonized elicitations 59 
conducted by Harvard, UMass and FEEM, respectively, the GCAM IAM, and minimize the cost of climate stabilization  at 450 
and 550 ppm plus damages and R&D cost8.  Group 5 uses the elicitation from UMass 59 , the  GCAM IAM,  2- stage DMUU, and 
minimizes the cost of achieving climate constraints of 450 and 550 ppm53. Group 6 uses FEEM elicitations59, WITCH IAM, 2-
stage DMUU, and minimizes costs of achieving a 2.8°C global average temperature by 56. Note that the definitions of “lenient” 
and “stringent” are not identical in the different studies.  BAU, business as usual. 
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Figure 3: Optimal R&D portfolios under different total energy R&D budget constraints. This figure shows the fraction of 
the R&D portfolio devoted to different technology areas for different budget constraints, as determined by different approaches. 
The R&D budget constraint level is normalized by the lowest R&D budget constraint for each group: for each Group an R&D 
level of 1 represents the lowest budget considered in that study, with the subsequent budget levels shown as multiples of that 
value. Group 141 uses elicitations from Harvard22,59,105,106. Group 256 uses elicitation from FEEM59, Groups 354, 452, and 542 use 
elicitations from UMass59 in different frameworks. Group 658 uses elicitations from Harvard22,59,106, UMass59 and Stanford96. 
Group 753 uses elicitations from UMass59, Note that many technologies such as wind were not included in these modelling 
approaches using elicitation data. Climate constraints are the most stringent available in each of the studies, see Table 3 for 
details. Not all studies included all technologies. Table 3 includes additional details. 
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Figure 4: Public investment in energy R&D as a percentage of the total investment energy technologies. Total investments 
are estimated as the sum of public energy R&D investment and investment in energy technology capacity deployment. Energy 
investment is defined here as energy R&D plus deployment capital investment and subsidies between 2010 and 2040.  Results from 
Santen & Anadon (2016)17 include the percentage of R&D to total electricity capacity investment using three decision frameworks  
(no uncertainty, uncertainty analysis, and DMUU with 5 decision stages) Including continuous variables for R&D investments and 
for R&D-dependent solar technology costs. Nemet and Baker (2009)47 optimize deployment for a given level of R&D. Marangoni 
et al. (2017)56  optimize under two-stage DMUU. The results shown here are scaled down to reflect only the contribution of the 
United States. The uncertainty ranges for Santen & Anadon (2016)17 include the range of future period decisions, which are 
conditional upon realizations of the past; the marker represents the median of these values.   
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BOXES 
Box 1: Energy-Economic and Integrated Assessment Models 
 
Energy economic models (EEMs) are typically bottom-up models that represent the energy sector with a 
fine level of detail on individual technologies. They may represent a particular geographic area or region 
(although EEMs covering the whole globe exist) and they are typically used to estimate how changes in 
input parameters representing resources prices, technologies characteristics, climate or energy policies, 
and energy demand all shape energy use, investments in the energy system, and the energy system’s 
impacts on environmental or economic metrics. Technologies are deployed on a least cost basis, given 
assumptions about the rate at which the lowest cost options can penetrate the market. Energy-economic 
models also do not require assumptions about the economic cost of environmental impacts (e.g., climate 
damages) or impacts that the energy sectors may have on other sectors, such as trade.  These 
simplifications come at the cost of not representing interactions between the energy sector and other 
sectors in the economy that may be affected by fuel and power prices; i.e. energy-economic models do 
not allow modelers to calculate the impact on GDP of various factors.  An example of a widely used 
energy-economic model by policy makers and analysts in academia and the NGO community is 
MARKAL107.     
 
Integrated assessment models108 are models that integrate different scientific domains in a unique 
framework in order to model the implications and feedbacks between systems (a common example being 
the energy system, the climate system and the earth system).  IAMs may represent the energy sector at 
different levels of detail (typically lower than energy system models) but they also represent the 
interaction between this sector and other economics sectors (e.g. the oil extraction) or even other systems 
(e.g. forests). IAMs, similarly to EEMs provide to the climate modelling community emissions scenarios 
of greenhouse gases, and to the impacts community projections of socioeconomic states. IAMs are used 
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to study the implication of climate policies on the energy systems, given assumptions about technologies 
cost, penetration potentials and conditional on other socio-economic assumptions. A subset of IAMs 
models the feedback effects of climate impacts on the economy, thus studying the optimal level of 
admissible climate change, given the balance of mitigation costs and benefits from avoided climate 
change. As large uncertainties affect this feedback link, several criticisms have been made of IAMs 
employed to perform this type of analysis109. However, most of the analyses presented in this Review 
abstract from the climate damage feedback and assume a given climate policy, rather than endogenously 
calculating it. Some prevalent IAMs include DICE110, GCAM111 or WITCH94. Note that in the main text 
we refer to both energy-economic models and integrated assessment models as IAMs. 
 
Both categories of models face the challenge of calibrating the dynamic evolution of a large array of 
technological parameters and of the penetration of different technologies, which is affected by model 
structure. Therefore, coupling these types of models with expert judgments as input for these key 
parametric assumptions about technology costs and performance and their associated uncertainties is an 
important step towards more informative, robust and transparent investigations. Insights robust to 
differences in model structure can only be addressed through multi-model comparisons. Further 
investigations in the area of technology diffusion also based on historical evidence can also play an 
important role. 
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Box 2: Overview of Energy Elicitations, Challenges and Gaps 
 
Table 2 provides an overview of the energy technology expert elicitations to date. Studies are organized 
by the research institution that was home to the research, whether or not studies had explicit questions 
about the future of technologies contingent on public R&D, the year of publication, the geographic 
coverage, and the year that was the focus of questions about the future of technologies.  We then discuss 
the challenges associated with expert elicitations and research gaps in the area of energy technology 
expert elicitations that will improve the robustness and scope of the insights of future analysis. 
 
In spite of the fact that expert elicitations overcome some of the challenges of using learning curves or 
deterministic estimates to forecast future energy technology costs and characteristics, expert elicitations 
(which are time and resource intensive7) have other limitations.  First, expert elicitations are subject to a 
number of biases, such as availability, anchoring, and overconfidence112 and thus  should only be used 
when there is no other good source of information. In the case of energy technology expert elicitations, 
we argue that this condition is met: while past aggregate data can give insights on overall effectiveness of 
public R&D, it has so far not provided probabilistic information about the impact of R&D on particular 
technologies or programs.  This problem is particularly acute when the technology of interest is novel and 
there is little historical data; more traditional methods, based on historical data, might be fine with more 
mature technologies. Indeed, Wiser et al.98 find strong agreement between experience curves and expert 
forecasts for onshore wind, but not for much-newer offshore wind.  In addition, expert elicitations should 
only be used when there are knowledgeable experts that can provide insights about questions that involve 
“matters of fact”7  Some technologies may be too early in their development for experts to reasonably 
project costs.  
 
Another challenge is that expert elicitation studies may be particularly difficult to compare with each 
other.  The studies listed in Table 2 include different questions asked through different survey modes to 
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different types of experts. For example, the studies vary considerably in their level of disaggregation, 
ranging from studies that question experts on the levelized cost of electricity for an entire technology 
category (e.g., for CCS in the NRC study88), to those that ask for a probability distribution over specific 
technical parameters (e.g., for sorbent concentrations in Amine based CCS systems as in the CMU 
study85)   
 
Third, it is often difficult to validate forecasts from expert elicitations with realized data.   Energy 
technology expert elicitations look into the future, with endpoints typically between 2022 and 2050. 
Nevertheless, there is some evidence that some technologies have evolved on the faster end of what 
experts predicted.  For example, the prices in solar PV electricity in Barbose et al.113 are lower than all but 
the most optimistic experts in the meta-analysis of solar elicitations by Verdolini et al23. A similar 
preliminary finding on the faster rate of decrease of solar PV in particular periods is shown in Verdolini et 
al.19 
 ).  Even once sufficient time has passed, it is difficult to evaluate the accuracy of elicitations that are 
conditional on things like R&D investments since the conditions may have changed.  For the same 
reason, it is difficult to provide feedback to experts about their projections to help them adjust and 
improve their forecast. This is obviously an issue affecting all distant future elicitations. 
 
Fourth, there is continuing controversy on the best way to use multiple, conflicting expert judgments (see 
for example a discussion on whether it is best to aggregate—average in some fashion—elicitations or not 
in refs. 38,114). Whether or not multiple expert judgments are combined (and how) can impact the ultimate 
results. The studies reviewed here used multiple methods, ranging from simple linear averaging41,  to 
scenarios selecting optimistic, median, and pessimistic experts22. 
 
Finally, there are gaps in the technologies that have been covered by elicitation studies. The bulk of the 
attention has gone to the electricity sector, with biofuels being the notable exception. To the best of our 
knowledge, no elicitations have been published on residential or industrial efficiency technologies. And, 
within the electricity sector, the supply-side has gotten much more attention than the demand-side, with 
the three studies on electric or hybrid vehicles as the main exception. Even within the supply side some 
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technologies have received less attention than others. For example, there are two studies on wind97,98, two 
on non-CCS fossil technology88,96, one on advanced storage22, and none in nuclear fusion, geoengineering, 
biopower with CCS, or storage potentials. In addition, available expert elicitation studies include experts 
from the US and the EU, which means that wider regional coverage, including developing countries and 
especially China and India, is a really important gap.  
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