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Optical fibre sensors make use of diverse physical effects to measure parameters such as strain, 

temperature and electric field. Here we introduce a new class of reconfigurable fibre sensor, based on 

a ‘flying-particle’ optically trapped inside a hollow-core photonic crystal fibre (HC-PCF), and 

illustrate its use in electric field and temperature sensing with high spatial resolution. The electric 

field distribution near the surface of a multi-element electrode is measured with a resolution of ~100 

microns by monitoring changes in the transmitted light signal due to the transverse displacement of a 

charged silica microparticle trapped within the hollow core. Doppler-based velocity measurements 

are used to map the gas viscosity, and thus the temperature, along a HC-PCF. The flying-particle 

approach represents a new paradigm in fibre sensors, potentially allowing multiple physical 

quantities to be mapped with high positional accuracy over kilometer-scale distances. 

 

Their flexibility, compactness and immunity to unwanted electromagnetic interference has made fibre-

optic sensors, based on conventional step-index fibres, attractive in many contexts 1. Fibre Bragg 

gratings are routinely used to monitor changes in strain or temperature2–5, and if the fibre is coated 

with magnetostrictive materials, magnetic fields can be sensed 5,6.  The linear and nonlinear optical 

properties of the glass core have been used to measure temperature1,3 and magnetic field 7–9 and 

radiation-induced photo-darkening or luminescence is used in radiation dosimetry 10. Systems using 

optical time domain reflectometry can reach a spatial resolution of ~1 cm in strain and temperature 

sensing3, while resolutions of 10 µm have been reached in frequency-domain optical backscattering 

schemes11.  

 

In a non-fibre context, micrometre-scale spatial  resolution can be obtained by detecting the 

displacement or rotational speed of an optically tweezered microparticle 12. This has been used to 

measure pN-scale external forces 13, the viscosity of liquids 14,15 and gases 16 and (using charged 
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spheres) the electric field near microelectrodes in a liquid environment 17. The probe area must 

however lie within the field-of-view of a bulky high-resolution microscope, limiting the usefulness of 

this approach. The range over which microparticles can be positioned can be extended by optically 

propelling them inside capillary fibres; however, high transmission loss limits the propulsion length to 

a few cm at most18. Hollow-core photonic crystal fibre (HC-PCF) offers much lower optical loss, 

allowing microparticles to be positioned to micrometre precision over long distances, limited only by 

the fibre loss 19–23. PCF has also been used in a range of other sensing applications 24,25. 

 

Here we present a new class of sensor based on a microparticle optically trapped and propelled inside 

the core of a low-loss HC-PCF. A variety of different types of particle-environment interaction, or 

particle materials, can be used to map multiple physical quantities with high spatial resolution along a 

single fibre line. The surrounding glass cladding shields the transducer particle from unwanted 

external influences such as gas flow or chemical attack, potentially enabling measurements to be made 

even in harsh or challenging environments. 
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Figure 1| Schematic of measurement procedures. a, Measurement set-up and scanning electron 

micrograph of a HC-PCF (core diameter 12 µm) with a superimposed near-field optical mode profile (at 

1064 nm wavelength). A particle is initially trapped in front of the PCF. By adjusting the power in the 

forward and backward propagating beams (P+, P–) the particle can be moved along the fibre or held 

stationary. The transmitted power is monitored using a photodiode (PD). Different types of particle-

environment interaction can occur in the measurement region: b, An external force acting on the 

particle, c, a change in the environmental conditions, for example the temperature, or d, a change in 

particle state, for example, radioluminescence.  

A microparticle is first launched into the HC-PCF (Figure 1a) and its position controlled by adjusting 

the power in the counter-propagating optical modes (see methods). Once in the detection zone, its 

interaction with the environment is remotely probed by monitoring the transmitted and reflected light. 

Several different sensing schemes are possible. If for example the whole fibre is subject to transverse 

mechanical vibration or linear acceleration, the particle will be perturbed from its trapped position, 

causing a change in the transmitted optical signal (Figure. 1b). If the particle has charge q, 

displacements caused by electric (qE) and magnetic (qvp×B) forces can be measured. If the particle is 

itself magnetised, the local magnetic field could be monitored even for a stationary particle. Another 
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sensor type makes use of the fact that the particle velocity is inversely proportional to the viscosity of 

the gas (or liquid) filling the core, which is itself dependent on the temperature (Figure 1c). Doppler 

velocimetry can be used to measure the temperature with very high spatial resolution. In yet another 

scenario, radio-luminescent or radiochromic particles could be used to monitor radiation levels in the 

local environment 10 (Figure 1d). Such microdosimeters could be held at specific locations along the 

fibre, their optical properties being remotely monitored via the waveguide modes. If a fluorescent 

particle is used, the local temperature could be monitored via changes in the luminescence intensity or 

lifetime.  

 

Here we report the results on electric field and viscosity-based temperature sensing, using silica 

microspheres as particles. In the first experiment, a length of HC-PCF was placed between two planar 

electrodes, so as to generate an electric field E perpendicular to the fibre axis. A silica particle (radius 

3 µm), randomly charged by triboelectric effects, was launched into a HC-PCF with core diameter 7.8 

µm and trapped between the electrodes at a fixed position. A pulsed laser (Ti:sapphire, 800 nm) was 

used for the trapping beams, so as to reduce the effects of intermodal beating and maximize the 

homogeneity of the optical potential along the fibre (see Methods). A sinusoidally modulated voltage 

was then applied to the electrodes, causing the particle to oscillate about its trapping position, thus 

altering the fraction of light scattered by the particle and modulating the transmitted signal (Figure 1b).  

 

The trapped particle may be treated as a damped harmonic oscillator. For small displacements x from 

the trapping position the optical restoring force takes the form , where the spring constant k 

is proportional to the optical power 26. The transfer function between the sinusoidal driving amplitude 

 at frequency  and the response  may be written in the standard form: 

   (1) 

where  ,   is the damping rate, m the particle mass and a its radius, and  

the viscosity of air. is a correction factor that takes into account the additional drag force due to 
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confinement of the particle in a narrow cylindrical channel. Note that the damping rate can be reduced 

by lowering the air pressure (this is done by enclosing both fibre ends in windowed gas cells 

connected to a vacuum pump), via the pressure-dependent viscosity, which follows the relationship 27:  

  
 

(2) 

where (for air)  Pa  s, = 1.231, = 0.469 and = 1.178. The Knudsen number Kn 

= Λ/Lc where  is the mean free path, Lc is the characteristic dimension of the 

system (see below), kB is Boltzman's constant, T the temperature, p the pressure in Pascal and d = 

103.6 10 m−×  is the collision diameter of the molecules. The resulting damping rate at atmospheric 

pressure is  kHz, reducing by one order of magnitude at a pressure of 10 mbar.  

 

Figure 2a shows the measured frequency response for a particle of diameter 3 µm trapped by 22 mW 

(11 mW in each direction) of guided optical power in a HC-PCF at a pressure of 14 mbar. The data 

shows a clear harmonic oscillator response in phase and amplitude, with a resonant frequency of 3.3 

kHz. The modulation of transmitted optical power depends on x(t) in a generally nonlinear way, being 

caused by scattering into high-loss higher-order core and cladding modes. Since clearly the dominant 

response will at the second harmonic of the driving electrical signal, good fits to the experimental data 

are obtained if the signal is represented as: 

   (xx) 

where the constants an are chosen to give the best fit to the data and the phase relative to the driving 

electric signal is . Since there is a linear relationship between the 

amplitudes of the applied electric field and the mechanical oscillations (equation (1)), the system can 

be calibrated by measuring the amplitude of the optical signal at  for a range of different electric 

field amplitudes (Figure 2a, inset). A good fit was obtained for a2 = 1.5 (cm/kV)2 and a4 = 0.04 

(cm/kV)4. The resulting theoretical curves are in excellent agreement with the measured data for a 

resonant frequency of 3.3 kHz and a damping rate of 560 Hz. 
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The damping rates, measured for pressures between 4 and 100 mbar (Figure 2b), are in very good 

agreement with the viscosity expected from the Cunningham correction factor (equation (2)). This 

enabled us to extract the characteristic size of the system as Lc = 1.2 µm and the drag correction factor 

as K = 2.5. This value of K is comparable with the previously reported value (2.8) for particles of a 

similar size, moving perpendicular to a single flat interface 28.  

 
Figure 2| Measurements of the particle response at different pressures. a, Typical frequency 

response of the second harmonic signal plotted versus applied electric field frequency for a particle 

trapped in HC-PCF and driven by an external electric field (14 mbar, 22 mW, 760 V/cm). The dots are 

experimental datapoints and the full curves fits to the theory. The inset shows a calibration curve at 6.2 

mbar and 22 mW (M is the modulation depth). b, Damping coefficients extracted from the theoretical 

fits, plotted against pressure. The full curve is a theoretical fit. 

The resonant frequency was next measured at a constant pressure of 6.5 mbar for optical powers 

between 6 and 27 mW. Two typical response curves are plotted in Figure 3, and show excellent 

agreement with theory, the resonant frequency shifting from 3.3 kHz (at 26.6 mW) to 2.9 kHz (at 21.2 

mW). As expected at constant pressure, the damping rates are almost identical in both measurements 

(254 and 256 Hz). The inset in Figure 3 shows that the square of the resonant frequency is 

proportional to the optical power, as expected if the spring constant k scales linearly with optical 

power. The results demonstrate that the frequency response of the detector can be optimized for 

specific measurement tasks simply by changing the stiffness of the optical trap. 
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Figure 3| Measurement of the particle response at different powers. Frequency spectrum of the 

response at 6.5 mbar pressure plotted versus applied electric field frequency for two different optical 

powers (21.2 mW, blue curve with filled-in symbols; 26.6 mW, black curve with open symbols). The 

applied electric field amplitude was 95 V/cm. Inset: scaling of the square of the measured resonant 

frequency (fres) with the total optical power at the particle position. The slope is 0.4 kHz2/mW. 

To demonstrate spatially resolved sensing, a position-dependent electric field was created by placing 

part of the fibre between two electrodes (Figure 4a), one of which consisted of a pattern of metallic 

stripes of different width, the smallest being 200 µm wide (Figure 4b). To ensure constant spacing 

between the electrodes, two 400 µm thick glass slides were used as a spacer. The fibre (outer diameter 

110 µm) was placed on the patterned electrode. A sinusoidally modulated voltage (frequency 250 Hz, 

amplitude 16 V) was applied to the system. The expected profile of the transverse electric field in the 

PCF core was obtained from finite element modelling (COMSOL Multiphysics) and is shown in 

Figure 4c (upper). The field strength near the centre of each electrode strip is 400 V/cm, and sharp 

spikes in electric field appear at the edges of each electrode. 

 

To spatially resolve the electric field, a charged silica microparticle was optically trapped and 

launched into the fibre.  As a first step, the sensor amplitude was calibrated using two unstructured 

electrodes, located near the fibre entrance. The resonant frequency was then set by adjusting the power 

in the trapping beams.  Next, the particle was propelled along the fibre at a speed of about 1 mm/s. An 

additional weak probe laser (830 nm, continuous wave - CW) was used to monitor the particle velocity 
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by Doppler velocimetry 21, while the transmitted intensity of one of the trapping beams was used to 

monitor the field-induced transverse oscillations. The data was analysed by taking fast Fourier 

transforms of 50-ms-wide windows (representing 12.5 oscillations of the electric field at 250 Hz). 

Combined with the particle velocity of 1 mm/s, this yielded a spatial resolution of 50 µm. A detailed 

description of the measurement procedure is available in Methods. The measured electric field profile 

(Figure 4c, lower) is in very good agreement with the calculations. All the features in the calculated 

field pattern are well-resolved, including the ~100 µm wide spikes near the edges of the electrodes. 

The ultimate spatial resolution is limited only by the microparticle size, which can be as small as 1 

µm. It would also be possible to enhance the sensitivity by using smaller particles, optimizing the fibre 

design, or by increasing the particle charge prior to launching into the fibre.  
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Figure 4| Spatially resolved measurements of the electric field. a, Schematic of the set-up used for 

spatially-resolved measurements. b, Cross-section of the patterned electrode (not to scale). The smallest 

three electrodes have widths 0.05, 0.1 and 0.2 mm and the gap widths are 10, 5, 3, 2, 1, 0.5 and 0.3 mm. 

c, Field component normal to the fibre axis, calculated by solving the Helmholtz equation (upper) and 

flying particle measurement of the field (lower). The red shading represents the estimated error, 

obtained from the experimentally measured noise level in absence of an external electric field.  

The flying-particle system can also be used to measure temperature, via the dynamic viscosity  

which is given by the Sutherland’s formula 29: 

   (3)  

where  is the viscosity at a reference temperature  and S the Sutherland constant. For air these 

values are  kg/m s, K and S = 111 K 30. The viscosity was measured by 

monitoring the velocity of a particle optically propelled along an air-filled HC-PCF. In the experiment 

a CW laser with wavelength 1064 nm was used (its longer coherence length was need for the Doppler 
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measurements) in combination with a HC-PCF of core diameter 12 µm. The steady-state particle 

velocity is reached when the viscous and optical forces exactly balance: 

 
  (4) 

where Vp is the particle velocity, a the particle radius and K is the correction factor mentioned above 

31.  To demonstrate spatially-resolved temperature sensing, a silica microparticle (4 µm diameter) was 

optically propelled along 2 m of HC-PCF, while its velocity was monitored by Doppler velocimetry.  

The first 1.8 m of fibre was kept at room temperature (  K) and used as a reference. A 20 cm 

length of the fibre was passed into a temperature-stabilized furnace. The resulting speed trace for a 

furnace temperature of 614 K is shown as a blue curve in Figure 5a,b. The data shows a 40% drop in 

velocity as the particle enters the heated furnace, as expected from the temperature-related viscosity 

increase. The velocity trace also reveals a periodic speed fluctuation with 20% modulation depth along 

the entire fibre. 

These fluctuations are caused by beating with higher order modes (unavoidably excited – see 

Methods) and currently limit the spatial resolution to a few cm 21. To reduce this effect, a moving 

average of the speed trace was taken over a 2-cm-wide window (dashed red curve). The experiment 

was repeated at a range of different temperatures. Figure. 5c shows that the temperature obtained from 

each speed measurement indeed matches the set temperature. Importantly, for constant optical power, 

the measured change in particle speed depends on the ratio only. As a result, the temperature 

profile can be obtained without knowing the refractive index or diameter of the particle, or the wall 

correction factor K, resulting in a self-calibrated sensing scheme. 
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Figure 5| Temperature measurements. a, Position-time plot (black line) of the particle as it passes 

through the reference region (Tref = 293 K) and the furnace (at 614 K). The velocity at each point 

(measured by Doppler velocimetry) is also plotted (light blue curve: the fluctuations are caused by 

intermodal beating – see text).  The solid blue curve is the speed averaged over a moving window 1.3 

seconds wide. b, Smoothed speed profile (moving average over a 2-cm-wide window) of the particle 

with exponential fits (dashed red curves). c, Measured temperature versus set temperature. Error bars 

were obtained from the standard deviation of the measured microparticle speed. 

Conclusions and outlook 
Flying-particle sensors, based on microparticles optically guided along HC-PCF, represent a new 

paradigm in reconfigurable fibre sensors, potentially allowing multiple physical quantities to be 

mapped with very high positional accuracy over long distances. The maximum length over which 

particles can be trapped is limited by the input laser power and the fibre loss. In the experiments 

reported here, the losses were 80 dB/km (for the 1064 nm fibre), resulting in a maximum manipulation 

length of ~400 m, assuming a maximum laser power of 10 W. This could be extended to tens of km if 

low-loss HC-PCFs are used (the best HC-PCFs have losses of ~1 dB/km at 1550 nm 32). The motion of 

the trapped microparticle could be also stabilised by spinning it in a circularly polarized laser beam33 

or by using parametric feedback34 . The flying particle system could be readily extended to measure 

other physical quantities such as vibration, magnetic fields and ionizing radiation, all of which can be 

detected remotely through the waveguide modes. The system uniquely allows high-resolution, 

multiparameter sensing in a single length of fibre and is of particular interest for use in highly 
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radioactive environments (e.g., inside a nuclear reactor) where conventional solid-glass cores rapidly 

darken due to radiation damage. 

Methods:  

Particle manipulation in HC-PCF  

A schematic of the particle sensing set-up is shown in Figure 1a. A laser beam is adjustably split into 

two beams (power levels P+ and P–), which are then launched into opposite ends of the HC-PCF. Two 

different laser-plus-fibre combinations were used. In the first, a CW 1064 nm laser was used along 

with a HC-PCF of core diameter 12 µm. The long coherence length of the laser allowed Doppler 

velocimetry to be used to monitor particle velocity, although with the drawback that intermodal 

beating perturbed the particle velocity (excitation of higher order modes was very difficult to eliminate 

experimentally). In the second, a Ti-sapphire laser (800 nm, ~7 ps chirped pulses, 30 nm bandwidth, 

80 MHz repetition rate) was used in combination with a HC-PCF of core diameter 7.8 µm. In free-

space the effective trapping potential of a pulsed laser with a sufficiently high repetition-rate is 

identical to that of a CW laser with the same average optical power 35. Inside HC-PCF, modal 

dispersion causes temporal walk-off between pulses propagating in different higher-order modes, 

effectively eliminating intermodal beating effects. As a result, except for exponential decay due to 

loss, the transverse trapping potential did not vary along the fibre.  

 

To launch a single particle into the PCF core, it was first held in a dual-beam trap created by the two 

counter-propagating beams in front of the fibre 19. To load a particle into the trap, a small quantity of 

silica microspheres was placed on a glass slide. Particles are detached from the glass plate by driving it 

at resonance (~10 kHz) using a piezoelectric transducer, until a single particle is optically trapped. The 

particle can then be moved into and along the fibre by adjusting the power ratio between the two 

counter-propagating modes.  

Microparticle speed and distance measurement 

A fibre-based Doppler velocimetry technique was used to monitor the particle velocity 21. A small 

fraction of the light scattered by the moving particle is Doppler-shifted and reflected into the backward 
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propagating mode. This light is mixed with unshifted light reflected from the fibre end-face and 

detected at a photodiode. By monitoring the frequency of the resulting beat-node, the velocity of the 

particle can be monitored along the entire length of the fibre (within the coherence length of the laser).  

Monitoring of the transmitted power  

In the case of a sinusoidally varying external force and perfectly symmetric fibre modes and 

microparticle we would see a response only at double the drive frequency ω; this is because there is no 

difference between upwards and downwards particle movement. Asymmetry in the modal pattern 

(caused, e.g., by higher order modes) or asphericity in particle shape will cause the appearance of 

hard-to-interpret frequency components at ω. As a result, only the second harmonic amplitude, 

extracted using an RF spectrum analyser, was used in the experiments. 

Fitting the amplitude resonance curves 

To interpret the experimental results, a transfer function between the amplitude of particle oscillation 

and the transmitted optical power is needed. Since it is clear that this function is likely to be nonlinear, 

it is appropriate to use a polynomial expansion and write the optical response (the fluctuating intensity 

at the detector) as follows: 

  . (5) 

Since the particle is held in an optical trap, the maximum optical signal is expected to be strongest at 

twice the frequency of the driving electrical signal. Extracting the second harmonic amplitude from 

(5): 

   (6) 

which yields a temporal response of: 

   (7) 

where . Writing with redefined constants: 

  . (8) 

Spatially resolved measurements 
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The set-up used for spatially-resolved measurements is shown on Figure 4a. To measure microparticle 

speed/position via Doppler velocimetry a weak (~10% of the power in the pulsed trapping light) CW 

probe at 830 nm was introduced. The different wavelength meant that the trapping light (at 780 to 810 

nm) could be blocked away using suitable filters. Photodiode 1 was used to monitor the transmitted 

power of the pulsed trapping laser and thus to measure the electric field. Photodiode 2 was used to 

monitor the Doppler signal and measure the speed/position of the particle. The input section of the 

fibre was placed between two capacitor plates spaced by 2.1 mm and used to calibrate the response of 

the sensor to the electric field, i.e., the modulation depth as a function of electric field amplitude. It 

was important to have the same optical stiffness at the calibration and measurement positions, so that 

the response of the sensor is identical. This was done by adjusting the power so that the resonant 

frequency of the trap (related to the optical stiffness) is the same in both the calibration region and the 

measurement site. Another approach makes use the Langevin force caused by Brownian motion of the 

gas molecules. By monitoring the resulting spectrum, the trap stiffness can be remotely measured at 

any particle position, and controlled by adjusting the optical power in the trapping beams. Once the 

electric field is calibrated and the optical stiffness is maintained at a constant value, an unknown 

electric field can be measured at any position along the fibre (Figure 4c, bottom). 
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Figure legends 

Figure 1| Schematic of measurement procedures. a, Measurement set-up and scanning electron 

micrograph of a HC-PCF (core diameter 12 µm) with a superimposed near-field optical mode profile 

(at 1064 nm wavelength). A particle is initially trapped in front of the PCF. By adjusting the power in 

the forward and backward propagating beams (P+, P–) the particle can be moved along the fibre or 

held stationary. The transmitted power is monitored using a photodiode (PD). Different types of 

particle-environment interaction can occur in the measurement region: b, An external force acting on 

the particle, c, a change in the environmental conditions, for example the temperature, or d, a change 

in particle state, for example, radioluminescence.  

 

Figure 2| Measurements of the particle response at different pressures. a, Typical frequency 

response of the second harmonic signal plotted versus applied electric field frequency for a particle 

trapped in HC-PCF and driven by an external electric field (14 mbar, 22 mW, 760 V/cm). The dots are 

experimental datapoints and the full curves fits to the theory. The inset shows a calibration curve at 6.2 

mbar and 22 mW (M is the modulation depth). b, Damping coefficients extracted from the theoretical 

fits, plotted against pressure. The full curve is a theoretical fit. 
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Figure 3| Measurement of the particle response at different powers. Frequency spectrum of the 

response at 6.5 mbar pressure plotted versus applied electric field frequency for two different optical 

powers (21.2 mW, blue curve with filled-in symbols; 26.6 mW, black curve with open symbols). The 

applied electric field amplitude was 95 V/cm. Inset: scaling of the square of the measured resonant 

frequency (fres) with the total optical power at the particle position. The slope is 0.4 kHz2/mW. 

 

Figure 4| Spatially resolved measurements of the electric field. a, Schematic of the set-up used for 

spatially-resolved measurements. b, Cross-section of the patterned electrode (not to scale). The 

smallest three electrodes have widths 0.05, 0.1 and 0.2 mm and the gap widths are 10, 5, 3, 2, 1, 0.5 

and 0.3 mm. c, Field component normal to the fibre axis, calculated by solving the Helmholtz equation 

(upper) and flying particle measurement of the field (lower). The red shading represents the estimated 

error, obtained from the experimentally measured noise level in absence of an external electric field.  

 

Figure 5| Temperature measurements. a, Position-time plot (black line) of the particle as it passes 

through the reference region (Tref = 293 K) and the furnace (at 614 K). The velocity at each point 

(measured by Doppler velocimetry) is also plotted (light blue curve: the fluctuations are caused by 

intermodal beating – see text).  The solid blue curve is the speed averaged over a moving window 1.3 

seconds wide. b, Smoothed speed profile (moving average over a 2-cm-wide window) of the particle 

with exponential fits (dashed red curves). c, Measured temperature versus set temperature. Error bars 

were obtained from the standard deviation of the measured microparticle speed. 
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