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We propose to use cavity optomechanical systems in the regime of optical bistability for the detection of weak
harmonic forces. Due to the optomechanical coupling an external force on the mechanical oscillator modulates
the resonance frequency of the cavity and consequently the switching rates between the two bistable branches.
A large difference in the cavity output fields then leads to a strongly amplified homodyne signal. We determine
the switching rates as a function of the cavity detuning from extensive numerical simulations of the stochastic
master equation as appropriate for continuous homodyne detection. We develop a two-state rate equation model
that quantitatively describes the slow switching dynamics. This model is solved analytically in the presence of
a weak harmonic force to obtain approximate expressions for the power gain and signal-to-noise ratio that we
then compare to force detection with an optomechanical system in the linear regime.

PACS numbers: 42.65.Pc,42.50.Lc,42.50.Wk,07.10.Cm

I. INTRODUCTION

The field of cavity optomechanics is historically closely re-
lated to the problem of force sensing in the context of gravita-
tional wave detection [1–4], and the fundamental limit of force
sensitivity can be traced back to the quantum-mechanical na-
ture of the detector, the so-called standard quantum limit [5].

Most optomechanical devices to date operate in the regime
where the radiation pressure is sufficiently weak on the single-
photon level so the coupling between phonons and photons
can be linearized. Examples for exciting progress in this area
include the observation of ground-state cooling [6–8], pon-
deromotive squeezing [9–11], radiation-pressure shot-noise
[12, 13], and mechanical zero-point motion via sideband ther-
mometry [14–17] as well as the demonstration of displace-
ment detection close to the standard quantum limit [18–21].

Advances in fabricating optomechanical devices promise
increasingly large coupling strengths [22] making nonlinear
quantum effects [23, 24] a possible reality in the near future.
It is thus of great interest to study how the intrinsically non-
linear radiation pressure can be exploited in novel devices.

In this paper we propose sensitive force detection exploiting
optical bistability in an optomechanical system [25–27]. The
optomechanical system we consider consists of a laser-driven
optical cavity whose resonance frequency is modulated by the
displacement of a mechanical oscillator [28–30]. Under cer-
tain conditions the system exhibits an optical bistability, i.e. it
has two classically stable states with potentially largely differ-
ent cavity fields. Shot-noise fluctuations in the coherent drive
of the cavity will cause transitions between the two branches
whose switching rates can depend strongly on cavity detun-
ing. A weak periodic forcing of the mechanical resonator will
modulate the cavity detuning and thus the switching rates al-
lowing the detection of weak forces in the cavity spectrum.

Note that exploiting periodic modulation of switching rates
in bistable systems to detect small coherent signals has also
been discussed in the context of stochastic resonance [31–33]
and Josephson bifurcation amplifiers [34–36].

In the following we calculate numerically the switching dy-
namics in the single-photon strong-coupling regime and zero
temperature limit using a stochastic quantum master equation.

We obtain the switching rates and their dependence on the de-
tuning from the residence time distribution. We then develop a
two-state rate equation model allowing us to write the output
spectral density of the amplitude quadrature as the sum of a
low-frequency noise background and a signal peak caused by
the weak harmonic force. The homodyne signal amplitude de-
pends linearly on the force amplitude and on the difference be-
tween the cavity output fields. Bistable optomechanical sys-
tems can thus be used as linear amplifiers whose bandwidth is
the switching rate and which have a potentially large gain for
low-frequency signals.

The remainder of the present paper is organized as follows.
In Sec. II we introduce the model for an optomechanical sys-
tem (OMS) with an additional external force driving the me-
chanical oscillator and present the stochastic master equation
describing the system state conditioned on continuous homo-
dyne detection. In Sec. III we investigate numerically noise-
induced switching in a bistable OMS. We obtain time traces
of the homodyne photocurrent, the residence time distribu-
tions, and the switching rates as a function of cavity detuning.
In Sec. IV we describe the slow switching dynamics and the
influence of a harmonic force within a two-state rate equa-
tion model with periodically modulated switching rates. In
Sec. V we find expressions for the noise spectral density and
the signal amplitude of the homodyne photocurrent, based on
the two-state rate equation model, and compare them to quan-
tum trajectory results. Finally, we compare the power gain and
signal-to-noise ratio of force detection with a bistable OMS to
those achievable with an OMS in the linear regime.

II. MODEL

We consider an optomechanical system (OMS) in which the
position of a mechanical oscillator modulates the resonance
frequency of an optical cavity. The system consists of a me-
chanical mode with resonance frequency ωm and an optical
mode with frequency ωc which are coupled by the radiation-
pressure interaction. The optical mode is driven by a laser
with strength ε and frequency ωd. In a frame rotating at the
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drive frequency ωd the Hamiltonian reads (~ = 1)

Ĥ = −∆0â
†â−iε

(
â− â†

)
+ωmb̂

†b̂−g0â
†â
(
b̂+ b̂†

)
, (1)

where â and b̂ are bosonic annihilation operators for the op-
tical and mechanical mode, ∆0 = ωd − ωc is the detuning
between driving and cavity frequency, and g0 is the optome-
chanical coupling. We also add an external periodic force on
the mechanical resonator with amplitude g1 and frequency Ω

ĤF = −g1 sin(Ωt)
(
b̂+ b̂†

)
. (2)

A complete description of the system additionally requires
the optical damping rate κ, the mechanical energy dissipation
rate γm, and the mean phonon number in thermal equilibrium
nth = 0 corresponding to a zero-temperature reservoir.

The dissipative dynamics of the OMS undergoing contin-
uous homodyne measurement of the cavity output can be de-
scribed with the Itô stochastic master equation (SME) [37, 38]

dρ̂c = L[ρ̂c]dt+H[ρ̂c]dW , (3)

L[ρ̂c] = −i
[
Ĥ + ĤF , ρ̂c

]
+ κDâ[ρ̂c]

+ (nth + 1) γmDb̂[ρ̂c] + nthγmDb̂† [ρ̂c] , (4)

H[ρ̂c] =
√
κ
(
âρ̂c + ρ̂câ

† −
〈
â+ â†

〉
c
ρ̂c
)
, (5)

where dρc = ρ̂c(t+dt)−ρ̂c(t), 〈â+â†〉c = Tr[(â+â†)ρ̂c], and
dW is a Wiener increment with E[dW ] = 0 and E[dW 2] =
dt. E[−] is the ensemble average and the Lindblad terms have
the usual form, Dô[ρ̂] = ôρ̂ô† − (ô†ôρ̂ + ρ̂ô†ô)/2. The first
term in Eq. (3) is the Liouvillian describing the coherent evo-
lution due to the Hamiltonian and the decoherence originating
from the coupling to the environment. The second term called
innovation describes the effect of a measurement of the ampli-
tude quadrature, X̂ = â+ â†, with homodyne detection of the
cavity output field. The innovation term conditions the evolu-
tion of the quantum state ρ̂c(t) on the homodyne photocurrent

Ic(t) =
√
κ
〈
X̂(t)

〉
c

+
dW

dt
, (6)

which is the sum of a conditioned expectation value of X̂ and
a fluctuating term originating from the shot noise of the local
oscillator (here we have assumed unit detection efficiency).

We will refer to the result for a particular noise realization
of ρ̂c(t) and Ic(t) as a quantum trajectory. Taking the ensem-
ble average of Eq. (3) we recover the unconditional quantum
state ρ̂(t) = E[ρ̂c(t)] which is a solution to the quantum mas-
ter equation

˙̂ρ = L[ρ̂] . (7)

In the following we calculate the evolution of the quantum
state ρ̂c(t) by numerically integrating Eq. (3) [39] and use the
time traces of the homodyne photocurrent Ic(t) to investigate
the switching dynamics in the regime of optical bistability.

To quantify the influence of the external mechanical force
on the cavity output we use the time-averaged spectral density

Sout
II (ω) = lim

t→∞

∫
dτ eiωτE [Ic(t+ τ)Ic(t)] . (8)

FIG. 1. (Color online) Noise-activated switching in a bistable op-
tomechanical system (OMS). (a) Homodyne photocurrent Ic(t) for a
representative quantum trajectory. The OMS switches between two
bistable states that are close to the two stable solutions X̄± (dashed
lines) of the nonlinear mean-field equations (MFEs) (10). From the
time trace Ic(t) the residence times τ± can be extracted. We show
both the conditioned expectation value of the amplitude quadrature
〈X̂(t)〉c (grey solid) and the homodyne photocurrent Ic(t) after ap-
plying a low-pass filter (black solid). (b) From a sufficiently long tra-
jectory we can obtain the probability distribution p(Ic) of the filtered
homodyne photocurrent whose double-peak structure is a signature
of the bistable behavior. (c) Stable X̄± (black solid) and unstable
(black dashed) solutions to the MFEs (10) as a function of the bare
detuning ∆0. We indicate the stable states (circles) between which
the system shown in (a) and (b) switches. The figure also shows
the steady-state expectation value 〈X̂〉ss (red solid) interpolating be-
tween the bistable solutions X̄±. (d) A blow-up of the region marked
grey in panel (c). Additionally, we plot the weighted average of the
mean-field solutions pss

−X̄− + pss
+X̄+ (black dots) where the prob-

abilities pss
± are given by Eq. (11). The parameters are ωm/κ = 5,

γm/κ = 1/2, g0/κ = 1/
√

2, ε/κ = 1.5, and ∆0/κ = −1.45 (a,b).

For finite, but sufficiently long sampling times T the spectral
density can be obtained using the Wiener-Khintschin theorem
from a quantum trajectory as Sout

II (ω) = |IT (ω)|2 where

IT (ω) =
1√
T

∫ T

0

dt eiωtIc(t) (9)

is the windowed Fourier transform of the homodyne photocur-
rent Ic(t). In this way we replace the ensemble average by a
time average. In the following we will numerically simulate
a single, sufficiently long quantum trajectory instead of calcu-
lating averages over an ensemble of quantum trajectories.

III. NOISE-ACTIVATED SWITCHING IN BISTABLE OMS

We investigate the dynamics of an OMS in a regime where
the mechanical resonator acts like an effective Kerr nonlinear-
ity for the optical mode [27]. As a consequence the system
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can exhibit optical bistability, a phenomenon characterized by
the presence of two stable mean-field states. In a semiclassi-
cal approximation the steady-state amplitudes of the optical ā
and mechanical modes b̄ are obtained by solving the coupled
mean-field equations (MFEs)

0 =
(
i∆0 −

κ

2

)
ā+ ig0ā

(
b̄+ b̄∗

)
+ ε,

0 = −
(
iωm +

γm
2

)
b̄+ ig0|ā|2 .

(10)

An analysis of the nonlinear MFEs (10) shows that the OMS
undergoes a bifurcation when the driving amplitude exceeds
the threshold value εbif = 31/4(κ3ωm/18)1/2/g0. As a con-
sequence three solutions for ā exist in a certain range of nega-
tive detuning ∆0. The two solutions ā± with the smallest and
largest amplitude |ā| are stable and referred to as the upper
and lower branches of the bistable system.

Shot-noise fluctuations in the cavity drive will cause transi-
tions between the stable branches. This effect dubbed noise-
activated switching has been investigated e.g. in the case of a
Kerr medium theoretically [40–44] and experimentally [45].

In Fig. 1(a) we show the homodyne photocurrent Ic(t) for a
representative quantum trajectory. We observe that the OMS
switches between two bistable states characterized by two dif-
ferent values of Ic(t) and corresponding approximately to√
κX̄± where X̄± = ā± + ā∗±. After applying a low-pass

filter to the raw quantum trajectory data we can extract the
residence times τ± from the time trace Ic(t). From a suffi-
ciently long trajectory we obtain the probability distribution
p(Ic) for the homodyne photocurrent, shown in Fig. 1(b). It
features a double peak, a signature of the bistable behavior.

In Fig. 1(c) we show the mean-field amplitude quadrature,
X̄ = ā + ā∗, as function of the detuning ∆0 obtained from
the solutions to the nonlinear MFEs (10). We also calculate
the steady-state expectation value 〈X̂〉ss from the QME (7)
which interpolates between the two bistable solutions X̄±.

Figures 2(a) and 2(b) show histograms R(τ±) of residence
times in the upper and lower branches, respectively, which we
extracted from the quantum trajectory shown in Fig. 1(a) in-
cluding statistical error bars. We fit the data with exponential
distribution functions Rfit(τ±) = W∓ exp(−W∓τ±) and de-
termine the switching rates W∓ from the upper to the lower
branch and vice versa [46]. In Fig. 2(c) we plot the switching
rates W± as a function of cavity detuning ∆0.

In steady state the probability to find the OMS in the upper
or lower branch, pss

±, is related to the switching rates via

pss
± =

W±
W+ +W−

. (11)

The probability pss
± is the fraction of time spent by the system

in the upper and lower branch, respectively. It can be written
as T±/(T++T−), where T± is the average residence time and
is given by T± =

∫
τ±R(τ±)dτ± = W−1

∓ .
If the fluctuations in each branch ā± are small compared to

their phase-space separation |ā+−ā−|, the average homodyne
photocurrent Iss = E[Ic(t)], or equivalently the steady-state
expectation value 〈X̂〉ss = Iss/

√
κ, is well approximated by

FIG. 2. (Color online) Residence time distributions and switching
rates. (a) Histogram R(τ+) of residence times in the upper branch
extracted from the quantum trajectory in Fig. 1(a) with statistical er-
ror bars. The solid line is an exponential fit Rfit(τ+) = W−e

−W−τ+

excluding the first bin. (b) Same as (a) but for the residence times in
the lower branch. We determine the switching rate W+ by fitting the
histogramR(τ−) with the distributionRfit(τ−) = W+e

−W+τ− . (c)
Switching rates W± as a function of ∆0. Parameters are identical to
those in Fig. 1 and with ∆0/κ = −1.45 (a,b).

the weighted average of the mean-field solutions

Iss '
√
κ
(
pss
−X̄− + pss

+X̄+

)
. (12)

In Fig. 1(d) we show a blow up of Fig. 1(c) for detunings in
the bistable regime. Additionally, we also plot pss

−X̄−+pss
+X̄+

where the probabilities pss
± are given by Eq. (11). We see that

the switching dynamics of bistable OMS in this regime can be
accurately captured by a two-state model.

IV. TWO-STATE MODEL WITH SLOWLY AND
PERIODICALLY MODULATED SWITCHING RATES

The influence of the periodic force (2) on the switching dy-
namics can be described with a two-state rate equation model

ṗ±(t) = ±W+(t)p−(t)∓W−(t)p+(t)

= −W (t)p±(t) +W±(t) (13)

where p±(t) is the probability for the system to be in the vicin-
ity of the branch ā± satisfying p+ + p− = 1, W±(t) are the
time-dependent switching rates, andW (t) = W+(t)+W−(t).

For a mechanical forcing that is slow on the time scale of
intra-branch fluctuations, i.e. Ω� κ, ωm, the influence of ĤF

can be reduced to an adiabatic change of the resonator equi-
librium position that is given by 2(g1/ωm) sin(Ωt) in units of
its zero-point amplitude. This leads to a slow variation of the
cavity detuning ∆0+2(g0g1/ωm) sin(Ωt) and will only affect
the long-time dynamics of the optical mode, i.e. the switching
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behavior, by modulating the switching rates

W±(t) = W 0
± +W 1

± sin(Ωt) . (14)

Here,W 0
± denote the switching rates in absence of the external

force g1 = 0 and, assuming that for a weak force the switching
rates depend linearly on the detuning, we have

W 1
± =

2g0g1

ωm

∂W 0
±

∂∆0
. (15)

The steady-state solution to the rate equation (13) for peri-
odic switching rates W±(t) with period TΩ = 2π/Ω is itself
periodic and given by [47]

p±(t) =
1

1− e−WTΩ

∫ TΩ

0

dt′W±(t− t′)

× e−Wt′ exp

[
−
∫ t

t−t′
δW (t′′)dt′′

] (16)

with W =
∫ TΩ

0
W (t)dt/TΩ and δW (t) = W (t) −W . For

the transitions rates W±(t) in Eq. (14), W = W 0
+ + W 0

− and
δW (t) = (W 1

+ + W 1
−) sin(Ωt). Expanding the exponential

in Eq. (16) and neglecting higher harmonics, we obtain in the
limit |W 1

+ +W 1
−| � Ω the long-time solution

p±(t) '
W 0
±

W
±
W 1

+W
0
− −W 1

−W
0
+

W

√
W

2
+ Ω2

sin (Ωt− φ) (17)

where φ = arctan
(
Ω/W

)
. The first term in Eq. (17) corre-

sponds to pss
±, the steady-state probability to find the system

in the upper or lower branch in absence of the external force.
The second term is a slow periodic modulation of these prob-
abilities and we will use them to characterize the influence of
an external force on the homodyne photocurrent Ic(t).

V. DETECTION OF WEAK PERIODIC FORCES WITH A
BISTABLE OPTOMECHANICAL SYSTEM

We will now analyze our force detection scheme by exam-
ining the output spectral density of the homodyne photocur-
rent Sout

II (ω). In brief, the spectral density is the sum of two
contributions, a noise background and a signal contribution,

Sout
II (ω) = Snoise

II (ω) + Ssignal
II (ω) . (18)

The noise background Snoise
II (ω) quantifies the power per unit

bandwidth of the noise interfering with detection at frequency
ω. As we will show, in our detection scheme, the main contri-
bution to Snoise

II (ω) at low frequencies originates from the in-
coherent switching of Ic(t) between the two stable branches.
A weak harmonic force with frequency Ω produces a coher-
ent modulation of the homodyne photocurrent with amplitude
I(Ω) and thus contributes a delta peak to the spectral density

Ssignal
II (ω) =

π

2
I(Ω)2 [δ(ω − Ω) + δ(ω + Ω)] . (19)

For a finite sampling time T one expects the signal peak height
to be Ssignal

II (Ω) = πI(Ω)2/(2∆ω) where ∆ω = 2π/T is the
finite frequency resolution of the spectral density.

We will use two quantities to quantify the amplification and
the sensitivity of our proposed detector scheme. The first one
is the ratio I(Ω)/g1 which relates the modulation amplitude of
the homodyne photocurrent I(Ω) (output signal amplitude) to
the forcing amplitude g1 (input signal amplitude). This ratio
characterizes amplification with a dimensionless power gain

G(Ω) = κ

(
I(Ω)

g1

)2

(20)

expressing the ratio of the signal output power∝ I(Ω)2 to the
signal input power ∝ g2

1 . To quantify the sensitivity of our
scheme we will use the signal-to-noise ratio (SNR) defined as

SNR =

1

∆ω

∫ Ω+∆ω/2

Ω−∆ω/2

Sout
II (ω)dω

Snoise
II (Ω)

. (21)

For a sufficiently long sampling time T , the noise background
Snoise
II (ω) is approximately constant over the frequency win-

dow ∆ω = 2π/T . Thus, SNR = Ssignal
II (Ω)/Snoise

II (Ω) + 1,
i.e. the SNR depends only on the ratio of the output signal and
the noise background power at the signal frequency Ω.

Our two-state rate equation model allows us to find approx-
imate expressions for the noise spectral density Snoise

II and sig-
nal amplitude I(Ω). We will compare these analytical results
to quantum trajectory simulations below. Using the gain G(Ω)
and SNR to characterize our detection scheme we will be able
to compare its performance to force detection with an OMS
in the linear regime. We will derive analytical expressions for
the modulation amplitude Ilin(Ω), the power gain Glin, and the
noise background Snoise

II,lin. We then express Snoise
II,lin as a func-

tion of the power gain Glin and the OMS parameters ωm, κ,
and γm so we can compare the sensitivity of the two different
schemes, bistable OMS and linear OMS, at fixed power gain.

A. Two-state approximation for the output spectral density

Describing the switching dynamics within the two-state rate
equation model allows us to find analytic expressions for the
low-frequency part of the output spectral density Sout

II (ω). As
stated above, Eq. (18), Sout

II (ω) can be separated into a noise
background Snoise

II (ω) and the signal part Ssignal
II (ω).

In absence of the external force incoherent switching causes
autocorrelations of the homodyne photocurrent to decay ex-
ponentially on a time scale W

−1
. We find the autocorrelation

function (up to an irrelevant constant I2
ss) is given by

E [Ic(t+ τ)Ic(t)] = e−W |τ |κpss
+p

ss
−(X̄+ − X̄−)2 + δ(τ) .

(22)
The second term stems from the shot noise of the local oscilla-
tor. The first term is proportional to the steady-state variance
Var(X̂)ss = 〈X̂2〉ss − 〈X̂〉2ss ' pss

+p
ss
−(X̄+ − X̄−)2. Calcu-

lating Var(X̂)ss from the QME (7), we find that this two-state
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FIG. 3. (Color online) Detection of weak force with a bistable OMS.
(a) Spectral density for the homodyne photocurrent Sout

II (ω) in pres-
ence of a weak external force on the mechanical oscillator (black).
The spectral density features a noise background and a signal peak.
At small frequencies the noise background Snoise

II (ω) (red) can be ap-
proximated by a Lorentzian of width W at zero frequency, Eq. (23).
(b) and (c) Signal peak height Ssignal

II (Ω) = Sout
II (Ω) − Snoise

II (Ω) as
a function of forcing amplitude g1 (b) and forcing frequency Ω (c).
Black squares are quantum trajectory simulations with statistical er-
ror bars. Black lines are analytical results based on the two-state rate
equation model, Eq. (27), as discussed in the main text. The param-
eters are the same as in Fig. 1 but for ∆0/κ = −1.4. The weak
external mechanical force has a frequency Ω/κ = 0.1 (a,b) and an
amplitude g1/κ = 0.2 (a,c). The spectral density for each pair of
parameters (Ω, g1) is obtained from an average over hundred spectra
with a frequency resolution ∆ω = 10−3κ.

approximation overestimates the variance in the presence of
appreciable intra-branch fluctuations around mean-field solu-
tions. In fact, the noise background is smaller and more accu-
rately given by

Snoise
II (ω) = 2κVar(:X̂:)ss

W

W
2

+ ω2
+ 1 , (23)

where Var(:X̂:)ss = Var(X̂)ss − 1 is the normally-ordered
variance of the amplitude quadrature, the colon denoting nor-
mal ordering of the optical creation and annihilation opera-
tors. Equation (23) satisfies the constraint that the total power
of the homodyne photocurrent minus the shot-noise contribu-
tion must satisfy [37],

∫
[Snoise
II (ω) − 1]dω2π = κVar(:X̂:)ss.

The noise spectrum consists of a shot noise contribution and
a Lorentzian centered at zero frequency with a half width at
half maximum given by W .

Equation (17) allows us to find an approximate expression
for the signal part Ssignal

II to the output spectral density. In the
long-time limit a periodic time-dependence of the probabil-
ity p±(t) yields a periodically modulated average homodyne
photocurrent

E[Ic(t)] =
√
κ
[
p+(t)X̄+ + p−(t)X̄−

]
= Iss + I(Ω) sin(Ωt− φ)

(24)

with the modulation amplitude in two-state approximation

I(Ω) =
√
κ
(
X̄+ − X̄−

) W 1
+W

0
− −W 1

−W
0
+

W

√
W

2
+ Ω2

. (25)

The relationship between the average steady-state homodyne
photocurrent Iss =

√
κ〈X̂〉ss, the probabilities pss

±, and the
transitions ratesW i

± given by Eqs. (11), (12), and (15) provide
a direct interpretation of I(Ω). The zero-frequency expression
I(0) = (2g1g0/ωm)(∂Iss/∂∆0) is the linear response of Iss
to a change in the detuning ∆0. The prefactor 2g1/ωm is the
zero-frequency response of the mechanical oscillator, i.e. the
change in the mechanical equilibrium position (in units of its
zero-point amplitude) caused by a static force with amplitude
g1. This displacement leads to a change of the cavity detuning
∆0 by g0(2g1/ωm). Relaxation of a bistable OMS at rate W
causes an attenuation of this response at finite frequencies Ω,

I(Ω) =
2g0g1

ωm

√
κ
∂〈X̂〉ss

∂∆0

W√
W

2
+ Ω2

. (26)

As stated in Eq. (19), the signal contributes a delta peak to the
spectral density since the autocorrelation function of the ho-
modyne photocurrent is dominated by periodic modulation in
the limit τ �W

−1
, and hence factorizes, E[Ic(t+τ)Ic(t)] =

E[Ic(t+ τ)]E[Ic(t)]. For a finite frequency resolution ∆ω,

Ssignal
II (Ω) =

πκ

2∆ω

(
2g1g0

ωm

∂〈X̂〉ss

∂∆0

)2
W

2

W
2

+ Ω2
. (27)

In Fig. 3(a) we plot the spectral density for the homodyne
photocurrent Sout

II (ω) in the presence of a weak external force.
An average over hundred spectra is shown. The spectral den-
sity features a low-frequency Lorentzian noise background
whose frequency dependence agrees very well with our two-
state approximation Snoise

II (ω), Eq. (23). The height of the sig-
nal peak relative to the noise level, Ssignal

II (Ω) = Sout
II (Ω) −

Snoise
II (Ω), is obtained for a range of forcing amplitudes g1 and

forcing frequencies Ω. Comparing these quantum trajectory
simulations to Eq. (27), we find that Ssignal

II (Ω) exhibits the
correct quadratic dependence on the forcing amplitude g1 and
Lorentzian dependence on the forcing frequency Ω. The mod-
ulation amplitude I(Ω) is about 20% smaller than expected.
We suspect that this quantitive disagreement is due to the large
amplitude of intra-branch fluctuations reaching a considerable
fraction of the inter-branch separation and the fact that the lin-
ear approximation to the modulation of switching rates (15) is
only satisfied for the smaller values of g1 in Fig. 3.

The expected power gain of a bistable OMS is

G(Ω) =

(
2g0κ

ωm

∂〈X̂〉ss

∂∆0

)2
W

2

W
2

+ Ω2
. (28)

We notice that amplification occurs over a bandwidth given
by the switching rate W . As can be seen in Fig. 1(c), the
slope ∂〈X̂〉ss/∂∆0 in the center of the bistable region is ap-
proximately proportional to the difference between the two
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mean-field solutions X̄+ − X̄−. As a consequence, a large
difference in the cavity output fields leads to a strongly am-
plified homodyne signal. If the cavity is driven further away
from bifurcation, the slope increases, but the switching rateW
decreases. Thus, the gain can be made larger at the expense of
reducing the bandwidth. For low signal frequency, Ω . W ,
for which the shot-noise contribution to the noise background
Snoise
II is negligible, the SNR is independent of Ω,

SNR ' π W
∆ω

(
g1g0

ωm

)2

(
∂〈X̂〉ss/∂∆0

)2

Var(:X̂:)ss
+ 1 , (29)

with Var(:X̂:)ss and (∂〈X̂〉ss/∂∆0)2 obtained from Eq. (7).
These two quantities have a similar dependence on the detun-
ing ∆0 and reach their maximum at an optimal value of ∆0 in
the center of the bistable region. As a consequence, both the
SNR and the gain G are maximal.

Figure 4 shows the dimensionless signal output power
I(Ω)2/κ (a,b) and SNR (c,d) as a function of the signal input
power (g1/κ)2 (a,c) and signal frequency Ω (b,d). We com-
pare results from quantum trajectory simulations and from our
two-state rate equation model. In panel (a) we see that the
bistable OMS exihibits nearly constant power gain for small
forcing amplitudes g1. In panel (b) we observe that its detec-
tion bandwidth is in good agreement with predictions of the
two-state model and given by the switching rate W . As ex-
pected, the SNR is approximately constant over the detection
bandwidth as can be seen in panel (c).

B. Force detection with an OMS in the linear regime

In the linear regime the dissipative dynamics of an OMS,
including the noise and signal spectral densities of its out-
put field quadratures, can be obtained exactly from the input-
output formalism [48, 49]. The linear regime is character-
ized by a small optomechanical coupling rate, g0 � κ, ωm,
and a cavity driven to a coherent state with large amplitude
|ā| � 1. Under these conditions, the radiation-pressure in-
teraction can be approximated by a bilinear interaction, with
an enhanced coupling rate g = g0|ā|, between the resonator
position, b̂ + b̂†, and the amplitude quadrature, â + â†. The
static shift of the resonator position results in an effective cav-
ity detuning ∆ = ∆0 + g0(b̄ + b̄∗). A displacement of the
mechanical resonator imprints a phase shift on the output light
field, which is best probed by driving the cavity on resonance,
∆ = 0, and by measuring the phase quadrature at the output
[30].

Analogous to Eq. (26) we find an expression for the am-
plitude modulation Ilin and the spectral density Ssignal

II,lin of the
phase quadrature in homodyne detection due to the force

Ilin(Ω) =
√
Glin(Ω)

g1√
κ
,

Ssignal
II,lin(ω) =

π

2
I2

lin(Ω) [δ(ω − Ω) + δ(ω + Ω)] .
(30)

Here, the equivalent power gain at frequency ω for an OMS in

FIG. 4. (Color online) Power gain and signal-to-noise ratio (SNR).
Signal output power (a,b) and SNR (c,d) as function of the signal
input power (a,c) and signal frequency (b,d). The expected values
of I(Ω)2 and the SNR according to the two-state model discussed
in the main text (black line) are compared to quantum trajectory re-
sults shown in Fig. 3 (black squares). Grey lines are a fit to the data
indicating that the power gain G(Ω) and the SNR have the correct
dependence on the signal input power and signal frequency. The ob-
served power gain has a value about 40% smaller than expected. In
panel (b), the dotted blue line indicates the result for the largest pos-
sible power gain of an OMS operating in the linear regime G(max)

lin ,
Eq. (33). In panels (c) and (d), the dashed red line indicates the SNR
for an OMS in the linear regime operating at the same power gain
(extracted from the quantum trajectory results) and obtained from
Eq. (36). The parameters are identical to Fig. 3, with an external
forcing frequency Ω/κ = 0.1 (a,c) and amplitude g1/κ = 0.2 (b,d).

the linear regime reads

Glin(ω) = |2gκχc(ω) [χm(ω)− χ∗m(ω)]|2 , (31)

with χc(ω) = (κ/2 − iω)−1 the cavity susceptibility and
χm(ω) = [γm/2 + i(ωm−ω)]−1 the mechanical susceptibil-
ity. The zero-frequency response can be written as Ilin(0) =
(2g0g1/ωm)[∂∆(

√
κĪ)]∆=0, i.e. the product of a shift of the

cavity detuning caused by a static force with amplitude g1 and
the derivative with respect to ∆ of the average homodyne pho-
tocurrent,

√
κĪ , where Ī = −i(ā− ā∗) is the mean-field value

of the optical phase quadrature and ā = ε/(κ/2−i∆). At low
frequency, ω � κ, ωm, the power gain is approximately con-
stant,

Glin(ω) =

(
2g0κ

ωm

[
∂Ī

∂∆

]
∆=0

)2

, (32)

which is analogous to Eq. (28).
The low-frequency power gain, Eq. (32), can as well be ex-

pressed as Glin(ω) = (8g0/ωm)2n̄, and is proportional to the
average cavity occupation on resonance, n̄ = |ā|2 = 4(ε/κ)2.
An OMS can only operate in the linear regime below bifurca-
tion, ε < εbif, that is for a cavity occupation below the critical
value nbif = 2κωm/(3

√
3g2

0). As a consequence, the power
gain cannot be made arbitrarily large and the maximal gain
has the universal value

G(max)
lin (ω) ' 128

3
√

3

κ

ωm
. (33)
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The spectral density of the noise interfering with the de-
tection of a force signal far from the mechanical resonance,
|ω − ωm| � γm, referred back to the input signal is [30, 49]

Snoise
II,lin(ω)

Glin(ω)
=

1

Glin(ω)
+ Glin(ω)

(
ω2
m − ω2

)2
16κ2ω2

m

+

(
nth +

1

2

)
γm
κ

ω2 + ω2
m

2ω2
m

.

(34)

Equation (34) expresses the total measurement noise as fluc-
tuations in the forcing amplitude and has three contributions.
The first term is the imprecision noise due to the shot noise of
the local oscillator. The second term is the back-action noise
or radiation-pressure shot noise. The last term originates from
thermal and quantum fluctuations of the resonator position.

At each frequency ω, there is an optimal gain G(opt)
lin (ω) =

2κ|χm(ω) − χ∗m(−ω)| for which the measurement noise is
minimal and the SNR maximal. In the limit of small frequen-
cies, the optimal gain is then

G(opt)
lin ' 4κ

ωm
. (35)

The low-frequency noise level for the optimal gain and a me-
chanical resonator coupled to a zero-temperature bath (nth =
0), Snoise

II,lin ' 2 + γm/ωm, is minimal. This is commonly re-
ferred to as the standard quantum limit (SQL) of force (or
position) detection. At the SQL the back-action noise and the
imprecision noise are both equal to the shot-noise term.

C. Comparison of bistable and linear detection

An OMS in the regime of optical bistability exhibits a
power gain G much larger than the gain Glin of a linear
OMS. The low-frequency expressions for the power gain of a
bistable or linear OMS, Eqs. (28) and (32), depend on the co-
efficients (∂〈X̂〉ss/∂∆0)2 and (∂Ī/∂∆)2, respectively. These
coefficients characterize the response of the steady-state value
of the optical amplitude and phase quadratures, respectively,
to a change in the detuning. The second coefficient is propor-
tional to the average cavity occupation, which is limited by
n̄ < nbif. For a bistable OMS, ∂〈X̂〉ss/∂∆0 is proportional to
the difference between the mean-field solutions X̄+−X̄− and
can exceed ∂Ī/∂∆ far from the bifurcation. For small signal
frequency Ω < W , the gain G(Ω) is much larger than the opti-
mal gain G(opt)

lin (Ω) at which the SQL applies, and can even be
larger than G(max)

lin (Ω), i.e. the maximal gain for a linear OMS
below bifurcation.

Figure 4(b) shows the dimensionless signal output power
I(Ω)2/κ as a function of the signal frequency Ω obtained from
quantum trajectory simulations and from the two-state model.
In addition, we indicate the results corresponding to a linear
OMS operating at its maximal power gain G(max)

lin . Note that
G(Ω) > G(max)

lin (Ω) within the detection bandwidth, i.e. for
signal frequencies Ω .W .

As a consequence of the large gain G � G(opt)
lin , the mea-

surement noise Snoise
II unavoidably exceeds the SQL value that

applies to an OMS in the linear regime, Snoise
II,lin ' 2 +γm/ωm.

Thus, instead of comparing the sensitivity of our scheme to a
linear OMS operating at the SQL, we compare it to the sen-
sitivity of a linear OMS with identical gain. The SNR of a
linear OMS can be expressed as a function of its power gain
Glin to compare it to results of quantum trajectory simulations.
From Eqs. (30) and (34), we obtain, for small signal frequen-
cies Ω� κ, ωm and nth = 0,

SNR =
πg2

1

2∆ωκ

[
1

Glin(Ω)
+ Glin(Ω)

ω2
m

16κ2
+
γm
4κ

]−1

. (36)

In Fig. 4, we plot the SNR of a bistable OMS as function
of the signal input power (g1/κ)2 (c) and signal frequency Ω
(d). In addition, we plot the SNR of a linear OMS with identi-
cal parameters ωm, γm, and κ and operating at the same gain
Glin(Ω) = G(Ω), where G(Ω) is extracted from quantum tra-
jectory simulations. An important feature can be observed in
panels (b) and (d) at signal frequencies in the detection band-
width, Ω . W . The power gain of the bistable OMS exceeds
G(max)

lin , while the SNR is still comparable to what is expected
for a linear OMS with equal gain. Our results therefore indi-
cate that large-gain force detection with an OMS can be real-
ized beyond bifurcation, while preserving a sensitivity that is
comparable to an equivalent linear OMS.

VI. CONCLUSION

We have proposed bistable optomechanical systems as de-
tectors of weak harmonic forces. An external mechanical
force modulates the cavity frequency and thus the switching
rates between the stable branches. A large difference in the
respective optical output fields will thus lead to a strong am-
plification of the weak signal. The noise-induced switching
dynamics in the presence of a harmonic force is described by
a two-state rate equation model with periodically modulated
switching rates. Using this model, we have calculated the
output signal and noise spectral density relevant to homodyne
detection of the optical field and compared them to quantum
trajectory simulations. Finally, we have also compared the
power gain and signal-to-noise ratio of our detection scheme
to those of an optomechanical system in the linear regime.
We find that a potentially larger gain can be achieved for low-
frequency force signals while preserving comparable force de-
tection sensitivity. These results point out a new direction for
the use of optomechanical devices exhibiting an appreciable
single-photon coupling rate for sensing applications requiring
strong amplification.
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