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We study the viscous-fingering instability in a radial Hele-Shaw cell in which the
top boundary has been replaced by a thin elastic sheet. The introduction of wall
elasticity delays the onset of the fingering instability to much larger values of the
injection flow rate. Furthermore, when the instability develops, the fingers that form
on the expanding air–liquid interface are short and stubby, in contrast with the
highly branched patterns observed in rigid-walled cells (Pihler-Puzović et al., Phys.
Rev. Lett., vol. 108, 2012, 074502). We report the outcome of a comprehensive
experimental study of this problem and compare the experimental observations to the
predictions from a theoretical model that is based on the solution of the Reynolds
lubrication equations, coupled to the Föppl–von-Kármán equations which describe
the deformation of the elastic sheet. We perform a linear stability analysis to study
the evolution of small-amplitude non-axisymmetric perturbations to the time-evolving
base flow. We then derive a simplified model by exploiting the observations (i)
that the non-axisymmetric perturbations to the sheet are very small and (ii) that
perturbations to the flow occur predominantly in a small wedge-shaped region ahead
of the air–liquid interface. This allows us to identify the various physical mechanisms
by which viscous fingering is weakened (or even suppressed) by the presence of
wall elasticity. We show that the theoretical predictions for the growth rate of
small-amplitude perturbations are in good agreement with experimental observations
for injection flow rates that are slightly larger than the critical flow rate required for
the onset of the instability. We also characterize the large-amplitude fingering patterns
that develop at larger injection flow rates. We show that the wavenumber of these
patterns is still well predicted by the linear stability analysis, and that the length of
the fingers is set by the local geometry of the compliant cell.

Key words: fingering instability, flow–structure interactions, Hele-Shaw flows

† Email address for correspondence: draga.pihler-puzovic@manchester.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

40
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

en
dl

eb
ur

y 
Li

br
ar

y 
of

 M
us

ic
, o

n 
26

 S
ep

 2
01

8 
at

 0
9:

39
:5

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-7458-100X
http://orcid.org/0000-0002-4154-1888
http://orcid.org/0000-0002-4999-1904
http://orcid.org/0000-0003-3342-7388
mailto:draga.pihler-puzovic@manchester.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.404&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.404&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.404&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.404&domain=pdf
https://doi.org/10.1017/jfm.2018.404
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


164 D. Pihler-Puzović, G. G. Peng, J. R. Lister, M. Heil and A. Juel

1. Introduction
When a viscous fluid is displaced by a gas bubble in the narrow gap between the

rigid walls of a Hele-Shaw cell, small perturbations to an initially circular interface
readily develop into fingers whose tips subsequently become unstable themselves and
split. Repeated tip splitting combined with the near arrest of the bases of the fingers,
i.e. the portions of interface left behind the developing fingers, ultimately creates
highly branched patterns (Paterson 1981; Chen 1989; Lajeunesse & Couder 2000).
This fingering instability is an archetype for pattern-forming phenomena in a large
variety of systems (Saffman & Taylor 1958; Mullins & Sekerka 1964; Ben Jacob
et al. 1992; Clanet & Searby 1998; Hull 1999; Couder 2000).

In this paper, we study the development of viscous fingering in a radial elastic-
walled Hele-Shaw cell whose top boundary has been replaced by an elastic sheet
as shown in figure 1(a,b). The axisymmetric expansion of the interface in this
set-up has been characterized both experimentally and theoretically by Lister, Peng
& Neufeld (2013), Pihler-Puzović et al. (2013, 2015) and Peng et al. (2015). One
of the features of this flow is the presence of an exponentially damped oscillatory
perturbation to the thin liquid layer ahead of the interface, which is common to a
broad range of systems, see, e.g. Gaver III et al. (1996), Heil (2000), Salez et al.
(2012) and Dixit & Homsy (2013). In elastic-walled cells the injected gas works
against elastic, viscous and capillary forces to form a blister (Juel, Pihler-Puzović &
Heil 2018), thereby creating a converging gap into which the interface propagates
(see figure 1b). Pihler-Puzović et al. (2012) found that, in this system, the fingering
instability is weakened or even suppressed in the sense that the instability only arises
at much larger injection rates than in an equivalent rigid cell. When the interface
becomes unstable in an elastic-walled cell, the entire interface (i.e. the tips and the
bases of the fingers) continues to propagate outwards. As a result, a large number of
relatively short and stubby fingers develops on the interface as shown in figure 1(c,d).
Similar patterns have been observed in other examples of two-phase flows, where
a gas–liquid interface exists in a converging gap between solid boundaries, e.g. in
roll coating (Ruschak 1985; Rabaud, Couder & Michalland 1991; Couder 2000;
Weinstein & Ruschak 2004), tape peeling (McEwan & Taylor 1966) and models of
airway reopening (Ducloué et al. 2017a,b).

The suppression of fingering in radial elastic-walled cells was explored numerically
by Pihler-Puzović et al. (2013), who showed that the key mechanisms are the slowing
of the interface and the formation of a convergent gap ahead of the interface due
to the inflation of the sheet. These features have been exploited to control viscous
fingering in rigid Hele-Shaw cells, by varying e.g. the injection rate (Li et al. 2009;
Dias & Miranda 2010; Dias et al. 2012), the separation of the rigid bounding plates
(Zheng, Kim & Stone 2015) and the cell geometry (Al-Housseiny, Tsai & Stone
2012).

In radial elastic-walled cells, neither the unperturbed circular interface nor the
fingering instability itself grow at a constant rate when the injection volume flux is
fixed. Therefore, the fingering is transient in nature, similarly to other instabilities
with time-evolving base states (Trevelyan, Almarcha & De Wit 2011; Haudin et al.
2014). Viscous fingers grow initially but they do not saturate to a constant length,
and instead ultimately decay again.

In contrast, viscous-fingering instabilities in rectilinear geometries are not transient.
One of the earliest studies that reports the development of saturated finite-amplitude
fingers in such geometries and involves fluid–structure interaction is McEwan &
Taylor’s (1966) study of tape peeling. The paper shows photographs of saturated, short
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FIGURE 1. (Colour online) Schematic diagram of (a) the experimental apparatus and
(b) a radial cross-section of the cell during the experiment. (c,d) Superimposed top-view
images showing six successive positions of the gas–liquid interface in an elastic-walled
Hele-Shaw cell of initial depth h0=0.56 mm containing (c) silicone oil under a latex sheet
of thickness d = 0.33 mm or (d) glycerol–water mixture under a polypropylene sheet of
thickness d= 0.03 mm. Gas is injected with a constant volume flux of Q= 500 ml min−1.
The innermost interface was recorded at (c) t=0.67 s and (d) t=0.48 s after gas injection
started, and the increments are (c) 1t = 0.67 s; (d) 1t = 0.8 s. The central black circle
is the brass fitting which houses the gas-injection nozzle.

and stubby fingers on the air–liquid interface but the authors did not systematically
explore these patterns. Peng & Lister (2018) studied theoretically the fingering
instability in an idealized rectangular elastic-walled Hele-Shaw cell, which could
support a steadily propagating infinitely wide flat front. They used linear stability
analysis to show that the main stabilizing effect of the elastic sheet is due to the fact
that the deforming sheet creates a converging geometry with a taper angle αi, shown
schematically in figure 1(b), into which the interface advances. Approximation of the
geometry as a triangular wedge allowed the growth rate of the perturbations to be
expressed analytically in terms of αi and the base-state capillary number Ca=µU/γ ,
where γ is the surface tension at the interface, U is its steady speed and µ is the
dynamic viscosity of the viscous fluid.

Ducloué et al. (2017a,b) studied the two-phase displacement flow in a finite-width
elastic-walled rectangular Hele-Shaw channel; see also McCue (2018). In a rigid
channel this flow always results in the formation of a single Saffman–Taylor
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finger which propagates steadily and is linearly stable (Saffman & Taylor 1958;
McLean & Saffman 1981; Combescot et al. 1986). However, if one of the cell
boundaries is replaced by an elastic sheet then the propagating interface is prone
to instabilities which emanate from the tip of the finger. At high capillary numbers
Ca, the elastic-walled channel can support a modified Saffman–Taylor finger with a
locally flat front, which is in turn susceptible to Peng & Lister’s (2018) fingering
instability. The emerging finite-amplitude fingers are similar to the short and stubby
fingers shown in figure 1(c,d), but their average width and length do not vary in
time. They resemble the fingers observed in the printer’s instability that develop
on the meniscus between two cylinders co-rotating with the same speed (Couder
2000). Ducloué et al. (2017a) characterized the fingers as a function of the base-state
capillary number Ca and the peeling slope αi. It was not possible to compare the
growth rate of the instability to the predictions from Peng & Lister’s (2018) linear
stability analysis because the advancing front of the modified Saffman–Taylor finger
was flat only at sufficiently high Ca. This meant that the onset of fingering could
not be captured because the instability was strongly nonlinear for all values of Ca
investigated.

In this paper, we extend the axisymmetric models considered by Peng et al.
(2015) and Pihler-Puzović et al. (2015) to include non-axisymmetric perturbations
and perform a linear stability analysis similar to that of Peng & Lister (2018) to
obtain predictions for the growth rates of these perturbations in an elastic-walled
radial Hele-Shaw cell. We compare the predictions to experimental results and obtain
good quantitative agreement with the linear stability analysis for injection rates
slightly above the critical flow rates required for the onset of the instability. We also
characterize the large-amplitude fingering patterns at higher injection rates. We find
that while nonlinear interactions do not affect the pattern selection (i.e. the number
of fingers that form on the interface), they do control the maximum length to which
the fingers grow before they start to decay again.

The paper is organized as follows. We start by describing the experimental
method in § 2 and continue with an outline of the theoretical model and linear
stability analysis in § 3. The results are presented in § 4, where we compare the
predictions from the linear stability analysis with experimental measurements (§ 4.1),
and characterize the large-amplitude fingering patterns in the nonlinear regime (§ 4.2).
Conclusions are given in § 5.

2. Experiments
2.1. Experimental set-up

A schematic of the experimental set-up is shown in figure 1(a) (see also Pihler-
Puzović et al. (2012) and Pihler-Puzović et al. (2015)). The experiments were
performed in an elastic-walled Hele-Shaw cell with a rigid glass bottom and an
elastic top boundary separated by a latex spacer with a circular cutout of radius
Rcell = 180 mm. The top boundary was a thin square elastic sheet, made either of
latex (Young’s modulus E = 2.1 MPa and Poisson’s ratio ν = 0.5) or polypropylene
(E = 3.7 GPa and ν = 0.44) with side length 2Rlid = 400 mm and uniform
thickness d. The cell was initially filled with viscous liquid (silicone oil of viscosity
µ = 0.962 Pa s, density ρ = 961 kg m−3 and surface tension γ = 0.021 N m−1 for
the latex cell, or a glycerol–water mixture with µ = 0.305 Pa s, ρ = 1235 kg m−3

and γ = 0.065 N m−1 for the polypropylene cell) to a uniform height h0 equal to the
thickness of the spacer and radius Rfluid ≈ 150 mm.
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Cell Sheet thickness Initial depth Injection flux Theoretical marginal flux
name d (mm) h0 (mm) Q (ml min−1) Q35 (ml min−1)

Latex, D33 0.33± 0.01 0.56± 0.01 400–1300 206.5
Varying d D46 0.46± 0.01 0.56± 0.01 200–1000 151.4

D56 0.56± 0.01 0.56± 0.01 200–1200 124.8
D69 0.69± 0.02 0.56± 0.01 150–1100 100.8
D97 0.97± 0.01 0.56± 0.01 100–600 69.0

Latex, H46 0.56± 0.01 0.46± 0.01 150–1200 117.1
Varying h0 H56 0.56± 0.01 0.56± 0.01 200–1200 124.8

H69 0.56± 0.01 0.69± 0.02 250–1000 132.8
H79 0.56± 0.01 0.79± 0.02 200–1200 138.6

Polypropylene PP 0.03± 0.001 0.56± 0.01 300–1000 167.1

TABLE 1. Parameter values of d, h0 and Q used in the experiments. The values Q=Q35
yield zero growth rate at R̄= 35 mm in the linear stability analysis (see § 4.1).

Prior to the experiment, a small amount of gas was injected through a central
hole in the base to form a bubble with radius Rinit ≈ 5 mm. Nitrogen was then
injected at a fixed flow rate Q in the range 100–1300 ml min−1, which caused the
bubble to expand radially as well as inflate the sheet vertically. The evolution of the
expanding, initially approximately circular gas–liquid interface and the development
of the fingering instabilities were captured by a camera with a top-down view of
the experiment. Retraction of the interface due to dewetting in the case of the
glycerol/water solution on polypropylene occurred on time scales of the order of
minutes, which were much longer than the experimental time scales (615 s). Hence,
its influence on the fingering instability was negligible.

The values of d, h0 and Q used in the experiments are shown in table 1. In
the experiments with latex sheets, we either varied d while h0 was held constant at
0.56 mm (cells named D33–D97, respectively) or varied h0 while d was held constant
at 0.56 mm (cells named H46–H79, respectively). The cell with h0= d= 0.56 mm is
listed as both D56 and H56 in table 1. In the experiments with polypropylene sheets,
we investigated only one cell with h0 = 0.56 mm and d= 0.03 mm (named PP).

In order to quantify the variability inherent in the system, we performed at least
six experiments for each value of Q in each latex cell and three experiments for
each value of Q in the cell with the polypropylene sheet. In total, more than 650
experiments were performed, during which we observed the development of the
instability. Results for lower values of Q, for which the interface did not develop
fingers, are not shown in table 1 but were reported in Pihler-Puzović et al. (2015).
More details of the experimental protocol can be found in appendix A.

The typical time evolution of the patterns observed in the latex and polypropylene
cells is shown in figure 1(b,c), using cells D56/H56 and PP with a volume flux
Q= 500 ml min−1. At the start of the experiment, the perturbation amplitude is not
uniform across modes and it is not a priori constant between experiments. Therefore,
each pattern includes a wide range of finger widths – even at the very early stages
of the system’s evolution. This is particularly visible in the innermost interface shape
in figure 1(c), indicating that the system is very sensitive to initial perturbations. Tip
splitting, most visible in the top right corner of the pattern in figure 1(c), occurs as
the mean radius (circumference) of the pattern increases.
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2.2. Image processing and extracted quantities

All images were processed in MATLAB 2013a by first converting each true colour
picture to a binary image using an input value for the intensity threshold, resulting
in a white image with black pixels representing the interface. Occasionally this
procedure resulted in discontinuities in the interface of up to two pixels, particularly
for the thicker (less translucent) latex sheets. Such discontinuities were filled in
using a morphological closing algorithm (bwmorph in MATLAB). An active contour
algorithm was then applied to extract the interface as a sequence of points xi, with
1 6 i 6 M, going around the gas bubble. (The total number of points, M, increased
as the interface expanded.) In regions where the interface was thicker than a pixel,
the active contour algorithm detected a meandering path, which we smoothed using a
Savitzky–Golay filter with a 31-point window and a third-order polynomial. A typical
result of the image processing is shown in figure 2(a), where the extracted interface
is superimposed onto a top view of the instantaneous interfacial pattern.

Once the interface of an instantaneous pattern had been identified, the number
N(t) of fingers was determined. This required a criterion to distinguish the local
minima of the interfacial radius associated with the base of a fully formed finger
from those arising from a slight indentation at the tip of a wider finger that was
only just beginning to split, and hence could be ignored (see e.g. figures 1–3). We
used the criterion that a minimum xj is counted if it lay closer to the centre than
the line segment connecting the points xj+λM and xj−λM, which are positioned λM
points along the circumference to either side of xj, as shown in figure 2(b). We used
λ = 0.015 in the experiments with latex sheets and λ = 0.0315 for the experiments
with polypropylene sheets. Hence, the point xi in figure 2(b) was counted as the base
of a finger, whereas the point xj was not. We confirmed that this method worked
well over the whole range of experiments performed with the same elastic sheet.
Alternative criteria based on Fourier decomposition of the patterns or local curvatures
of the interface were found to be less robust.

The local minima of the interfacial radius that were deemed to indicate the presence
of a finger were then connected with a spline to yield an inner envelope of the pattern
(the dot-dashed curve in figure 2a). A corresponding outer envelope was constructed
by fitting a spline through every local maximum; here we included multiple maxima
on the same finger.

From the outer and inner envelopes of the pattern, the corresponding radial
coordinates, Ri

outer and Ri
inner (for 1 6 i 6 M) were found at the M sampling points,

and the average radius of the interface was calculated as

R̄(t)=
1
M

M∑
i=1

Ri
outer(t)+ Ri

inner(t)
2

. (2.1)

Throughout this paper, we will plot the evolution of the instability as a function of
R̄(t) as a proxy for time t. This is because the interface undergoes rapid initial growth
followed by a much slower evolution, so that a nonlinear scale would be required if
t was used as the independent variable. Moreover, data could only be collected while
the interface was inside the field of view of the camera, so each data series ends at
approximately the same value of R̄ but at different values of t.
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FIGURE 2. (Colour online) Results from an experiment in the D56/H56 latex cell (see
table 1) with Q= 500 ml min−1. (a) Interfacial pattern in top view with results from the
image processing overlaid. The solid curve shows the extracted position of the gas–liquid
interface. The dashed and dot-dashed curves connect the finger tips and bases, respectively.
The dotted curve shows the circle of radius R̄. (b) Enlargement of the square region in
(a), showing points with locally maximum (crosses) and minimum (circles) radii. The line
segments illustrate the criterion for determining if a minimum is considered to be the base
of a finger, see text for more details. (c) Data extracted from the experiment, showing half
the finger length, R̂, with error bars indicating the standard deviation ±δR̂ in the pattern,
as a function of the mean radius R̄.

The amplitude of the perturbations to the interface is quantified using the average
and standard deviation,

R̂(t)=
1
M

M∑
i=1

Ri
outer(t)− Ri

inner(t)
2

, δR̂(t)=

√√√√ 1
M

M∑
i=1

(
Ri

outer(t)− Ri
inner(t)

2

)2

− R̂(t)2.

(2.2a,b)
We will refer to R̂ as the ‘perturbation amplitude’ or the ‘finger length’ (although the
average distance from the tip of a finger to its base is 2R̂). The standard deviation δR̂
is often a significant fraction of R̂ (see e.g. figures 1–3 and 11).

Finally, the time-series data for R̄, R̂ and δR̂ were all smoothed using the same
Savitzky–Golay filter used to smooth the raw interface. A typical result is shown
in figure 2(c). The error bars show one standard deviation δR̂ above and below the
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FIGURE 3. (Colour online) Comparison of three experimental runs (see table 1) in the
D56/H56 latex cell (left) and the polypropylene cell (right) at Q = 500 ml min−1. (a)
The finger length R̂ as a function of the average radius R̄. The circles indicate the
maximum finger length R̂peak during the pattern evolution. (b) Evolution of the growth
rate σ obtained from the smoothed data. The insets are enlargements of the region near
σ = 0. (c) The corresponding top views of the interface for the points 1–6 and the number
of fingers as determined by the criterion described in § 2.2.

average value R̂. Similarly, experimental results compiled in later figures are shown
as mean points with error bars indicating one standard deviation to either side.

As shown in figure 2(c), the perturbation amplitude R̂ initially increases rapidly
before reaching a maximum and subsequently decreases upon further expansion of
the interface. This behaviour is observed in all experiments. We define R̂peak to be the
maximal value of the perturbation amplitude R̂ reached in each experiment (i.e. its
value before the instability starts decaying) and R̄peak and Npeak to be the values of
the average radius R̄ and the number N of fingers at this point.

The variability in finger length observed within a single pattern and shown with
error bars in figure 2(c) is comparable to the variability between different experimental
runs performed under the same control parameters. This can be seen in figure 3(a),
which compares results for R̂ in three identical experiments, both in the D56/H56 latex
cell and in the polypropylene cell. Both R̂peak and R̄= R̄peak vary significantly between
runs as shown in figure 3(c). This is in contrast with the time evolution of the average
radius R̄(t) between different experimental runs which shows far less variability (see
Pihler-Puzović et al. (2015)).
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The fixed field of view of the camera used to record the interface in experiments
with latex sheets posed a problem for determining R̂peak because any maximum in R̂
appearing after R̄ ≈ 70 mm could not be detected. In some cases, such as run 1 in
figure 3(a), R̂ reached a clear maximum and started decaying well before R̄= 70 mm.
In other cases, such as run 3, the values of R̂ appear to plateau around R̂peak, but a
well defined global maximum was not seen implying that decay occurred for values
of R̄ > 70 mm. In these cases, the plateau value provided a good estimate of R̂peak,
but the value of R̄ at which the maximum occurred could not be detected. In the
experiments with polypropylene sheets, R̂ always reached a maximum value within
the field of view.

We characterize the instantaneous growth rate of the instability as

σ(t)=
1

R̂

dR̂
dt
. (2.3)

The plots of σ in figure 3(b) were obtained by differentiation of the data in figure 3(a)
and indicate the typical variability between different experimental runs performed
under the same control parameters. The results for σ form the basis of our comparison
with the linear stability analysis.

3. Lubrication model and linear stability analysis
3.1. The model

Following Pihler-Puzović et al. (2013), Pihler-Puzović, Juel & Heil (2014), Peng et al.
(2015) and Pihler-Puzović et al. (2015), we employ horizontal polar coordinates (r, θ )
centred at the injection point and model the deflection of the elastic sheet using the
Föppl–von-Kármán equations

∇
4φ +

Ed
2
{h, h} = 0, p=

Ed3

12(1− ν2)
∇

4h− {φ, h}, (3.1a,b)

where h(r, θ, t) is the cell depth, φ(r, θ, t) is an Airy stress function (related to the
components of the stress tensor σij via σrr = (1/r)(∂φ/∂r) + (1/r2)(∂2φ/∂θ 2), σθθ =
(∂2φ/∂r2) and σrθ =−(∂/∂r)((1/r)(∂φ/∂θ))), p is the net upward pressure acting on
the sheet and

{f , g} =
1
r2

(
∂2f
∂r2

∂2g
∂θ 2
+
∂2g
∂r2

∂2f
∂θ 2

)
+

1
r
∂

∂r

(
∂f
∂r
∂g
∂r

)
− 2

∂

∂r

(
1
r
∂f
∂θ

)
∂

∂r

(
1
r
∂g
∂θ

)
(3.2)

is the Monge–Ampère bracket.
We describe the motion of the viscous fluid occupying the narrow gap underneath

the deformed elastic sheet using the lubrication approximation, which yields the
equations for the vertically averaged velocity u(r, θ, t) and the fluid pressure as

u=−
h2

12µ
∇p,

∂h
∂t
=−∇ · (hu)=∇ ·

(
h3

12µ
∇p
)

in r> R(θ, t), (3.3a,b)

where R(θ, t) is the bubble radius.
In the region r < R(θ, t), the gas bubble has a uniform pressure pg(t). We note

that since the liquid wets the walls of the cell, thin films of liquid are left behind
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the advancing bubble tip. We assume that the films have no dynamical effect in this
region, so that the pressure acting on the elastic sheet is given by

p= pg(t) in r< R(θ, t). (3.4)

At r= R(θ, t), we impose the kinematic and dynamic conditions

(1− f1)Un = u · n, [p]+
−
=−γ

(
π

4

[
1
R
−

1
R2

∂2R
∂θ 2

]
+

2
h

f2

)
, (3.5a,b)

where Un is the speed of the gas–liquid interface in the direction of the unit normal,
n, to that interface. The functions f1 and f2 model the effect of the films that are
deposited on the upper and lower walls. Comparisons against full free-surface Navier–
Stokes simulations by Peng et al. (2015), Pihler-Puzović et al. (2015) showed that, for
the capillary numbers encountered in our experiments, the presence of these films has
a significant effect on the axisymmetric base flow. The choices

f1(Ca)=
Ca2/3

0.76+ 2.16Ca2/3
,

f2(Ca)= 1+
Ca2/3

0.26+ 1.48Ca2/3
+ 1.59Ca, for Ca=

µUn

γ
,

 (3.6)

which were obtained by a fit to Reinelt & Saffman’s (1985) computational data for the
width of the finger penetrating a viscous fluid between parallel plates and the pressure
drop across the tip of that finger as a function of the capillary number, produced
results that were in excellent agreement with solutions of the full Navier–Stokes
equations. We neglect the small corrections to the expressions (3.6) due to the walls
of the cell being non-parallel, and refer to papers by Halpern & Jensen (2002)
and Jensen et al. (2002) which study the asymptotic structure of the flow in similar
geometries with non-parallel walls. The effect of the films deposited on the upper and
lower walls can be neglected by taking f1 = 0 and f2 = 1. Alternative models which
also account for the effect of the films in rigid cells can be found in Martyushev &
Birzina (2008), Anjos & Miranda (2013) and Jackson et al. (2015).

In the experiments, the sheet rests freely on the viscous layer and there is no
significant deformation far ahead of the gas–liquid interface. We mimic this behaviour
in the outer boundary conditions of the elastic sheet, but use simplified conditions
for the fluid, by imposing

h= h0,
∂h
∂r
=

1
r
∂φ

∂r
+

1
r2

∂2φ

∂θ 2
=−

∂

∂r

(
1
r
∂φ

∂θ

)
=
∂p
∂r
= 0 at r= Rout, (3.7a,b)

with Rout = 200 mm. We checked that changing Rout from 150 mm (edge of the fluid
layer in experiments) to 300 mm (corresponding to the diagonal of the elastic sheet)
changed the data reported in § 4 by less than 2 %.

Initially, the cell is unperturbed and, as in the experiments, contains a small bubble
of radius Rinit = 5 mm, so we imposed the initial conditions:

h(r, θ, t= 0)= h0, R(r, θ, t= 0)= Rinit. (3.8a,b)

Finally, mass conservation requires that∫ Rout

0

∫ 2π

0
(h− h0)r dθ dr=Qt. (3.9)
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3.2. Linear stability analysis
We investigate the early states of the fingering instability using linear stability analysis.
The base state is axisymmetric, so we employ a Fourier decomposition of the linear
perturbations in the azimuthal direction and consider each mode separately. Each
quantity f is thus decomposed into a sum

f (r, θ, t)= f̄ (r, t)+ ε Re[f̂ (r, t)einθ
] +O(ε2) (3.10)

of an axisymmetric but time-dependent base solution f̄ and a perturbation with small
amplitude ε � 1 and azimuthal wavenumber n. The resulting equations are given
in appendix B. At O(1) we recover the governing equations for the axisymmetric
base state (B 1), which were analysed by Peng et al. (2015), and at O(ε), we obtain
the governing equations for the perturbations (B 2), which we shall analyse here.
Henceforth, we use primes and dots to denote differentiation with respect to r and t,
respectively.

The evolution of the perturbation was followed from the initial conditions

R̂= 1, ĥ= 0, (3.11a,b)

which corresponds to an initial perturbation to the interface position only.
We solve the governing equations, (B 1) for the base flow and (B 2) for each

linear perturbation with wavenumber 16 n6 50, simultaneously using a fully implicit
backward-Euler finite-difference scheme with adaptive spatial grid and adaptive time
stepping (for details see appendix B). We define σ for each azimuthal wavenumber
n as in (2.3). We also compare the instantaneous growth rates to the growth rates
obtained using the ‘frozen-time’ approximation (the eigenvalue analysis of (B 2),
conducted at each time step using the numerical solutions to (B 1)).

In figure 4(a) we show the time evolution of a representative base-state height
profile h̄ and interfacial position. The injected gas deflects the sheet upwards and
causes the gas–liquid interface to spread outwards. Ahead of the interface, the
displaced liquid accumulates in a wedge whose size increases with time. In figure 4(a)
below the axis h̄ = 0 the symbols show the interface observed in experiments, with
each point corresponding to one of the 12 repeated experimental runs and the
horizontal bars indicating the range R̄± R̂ observed in them. The model can be seen
to capture the mean position of the interface in the experiments satisfactorily.

To analyse the characteristic features of the perturbations, we focus on the mode
that is predicted to grow to the largest amplitude R̂ in figure 4, namely n= 25. The
height perturbations ĥ are shown in figure 4(b) using solid lines, for the same three
times as in figure 4(a). They have multiple undulations in the vicinity of the wedge
region, but are otherwise very small. A more detailed inspection of the data shows that
the perturbations to the fluid pressure and to the position of the air–liquid interface
are much larger than the perturbations to the deflection of the sheet. Specifically,
(ĥ/h̄)/(R̂/R̄) never rises above a value of O(10−6) in the time interval shown in this
figure. In contrast, the corresponding pressure perturbations p̂, illustrated in figure 4(c)
using solid lines, are much more significant, with (p̂/p̄)/(R̂/R̄) being in the range
O(102–103) over the same time interval. We will exploit this observation in § 3.3
below.

In figure 4(b), we also show the results obtained from the ‘frozen-time’
approximation using dotted curves. We find that within the experimental field of
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FIGURE 4. (Colour online) Results of the linear stability analysis for the D56/H56 latex
cell with Q= 400 ml min−1. (a) Instantaneous base-state profiles h̄ (solid curves), and the
corresponding approximate wedge profiles (dashed curves) at t = 0.36, 2.38 and 7.38 s,
respectively. The solid vertical lines indicate the position of the interface, and points
with the horizontal error bars below indicate the position R̄ ± R̂ observed in each of
the 12 experiments. (b,c) The perturbations to the height and pressure profiles for a
wavenumber n= 25, normalized by the maximum absolute value. In (b), the dotted curves
show the results from the ‘frozen-time’ approximation. In (c), p̂ is only plotted in the
range r> R̄, and the dashed curves show the profiles from the rigid-wedge approximation.
(d) The evolution of amplitudes R̂ for a range of different wavenumbers, comparing the
results from the full analysis (solid curves) to those obtained when using the rigid-wedge
approximation (dashed curves). The maximum for each wavenumber is marked by a
vertical bar.

view the maximum instantaneous growth rate σ obtained using this approximation
is no more than 1 % larger than that obtained from the direct calculations for all
wavenumbers between 5 and 50.

In figure 4(d), we show the logarithm of the perturbation amplitude R̂ as a function
of the mean radius R̄ for wavenumbers between 10 and 40 in increments of 5. A
large number of modes can be seen to have comparable (positive) growth rates and
the linear analysis predicts all of these modes to grow to a maximum amplitude
before decaying. Which one of these modes will actually become dominant in a
specific experiment depends on the relative initial amplitudes of the perturbations and
on nonlinear effects that start to play a role when the amplitude of the perturbation
becomes sufficiently large, an issue we will discuss in more detail below. It is,
however, interesting to observe that in figure 4(d) a single mode (n= 25) maintains
the largest instantaneous growth rate throughout the system’s evolution and therefore
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also grows to the largest amplitude. This behaviour was found to be typical for all
the cases considered in this study (see table 1).

3.3. The rigid-wedge approximation and the physical mechanism of fingering
suppression

The results in figure 4 show that the most rapidly growing modes have relatively
large wavenumber, n > 10, and hence comparatively short azimuthal (lateral) length
scales. As discussed in § 3.2, we also find that the pressure perturbations p̂ only
generate a small perturbation ĥ to the sheet (i.e. gap height), suggesting that ĥ can
be neglected. Moreover, since the perturbations were found to be mostly confined
to the wedge region (see figure 4b,c), we approximate the perturbation flow ahead
of the interface as a flow inside a wedge-shaped domain with straight converging
walls. These are precisely the ‘rigid-lid’ and ‘wedge’ approximations, first introduced
by Peng & Lister (2018) for the idealized rectangular elastic-walled Hele-Shaw cell.
Using these approximations, we will now derive an analytical expression for the
instantaneous growth rate σ of the different modes in terms of the (numerically
calculated) base-state quantities at the interface. This will then allow us to identify
the physical mechanisms by which the presence of the elastic sheet weakens (or even
suppresses) the fingering instability.

In order to simplify the notation, we denote the base-state height, slope and
(compressive) longitudinal velocity gradient at the interface (subscript ‘i’) by

hi = h̄, αi =−h̄′, ci =−ū′ at r= R̄+. (3.12a−c)

By assuming ĥ = 0 (the ‘rigid-lid’ approximation), substituting ˙̂R = σ R̂ and using
(B 1d), the interfacial conditions (B 2e), (B 2f ) become

(1− f1 −Caf ′1)σ =
û

R̂
− ci, (3.13a)

p̂

R̂
=

12µ ˙̄R
h2

i
(1− f1)− γ

[
π

4
n2
− 1

R̄2
+

2f2

h2
i
αi

]
−

2f ′2
hi
µσ, (3.13b)

where û and p̂ are evaluated at r= R̄+.
The dynamic condition (3.13b) describes how the pressure perturbation is generated.

The first term on the right-hand side describes how the base viscous pressure drop
associated with the mean advance of the interface results in a relative increase in
pressure at the tip of the fingers. This is the driving force of the instability, as the
increased pressure drives a perturbation flow that causes growth of the fingers. The
term includes a stabilizing correction due to the wetting films left behind the interface,
as these films reduce the amount of fluid that needs to be displaced to achieve a
given interfacial speed ˙̄R and hence reduce the base viscous pressure drop. There
are also two stabilizing surface-tension terms in (3.13b). The first term is due to the
perturbations to the in-plane curvature; this is the main restoring effect in the classical
case of viscous fingering in a rigid-walled Hele-Shaw cell. The second term is due to
surface tension acting on the vertical curvature of the interface as observed in a radial
cross-section of the cell. Due to the converging geometry of the cell, the tip of the
finger sits in a narrower gap and hence has a larger vertical curvature. The result is
a lowering of the pressure at the tip, which has a restoring effect. This is the ‘taper’
mechanism described by Al-Housseiny et al. (2012).
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In the kinematic condition (3.13a), the first term on the right-hand side describes
how perturbations to the interface grow or decay due to advection of the interface
by the perturbation velocity, which is driven by the pressure perturbation from
(3.13b). The second term describes how spatial variations in the base flow affect the
advection of the finger tip. The simulations show that typically ci =−ū′ > 0, so this
is a stabilizing effect and we call it ‘kinematic compression’. (In Juel et al. (2018),
the term ‘geometry’ is used instead.) The correction factors in the parentheses on the
left-hand side account for the effects of the thin wetting films left behind the tip.

In order to solve for σ in (3.13), we need to calculate the ratio û/p̂=−h2
i p̂′/(12µp̂)

by solving the perturbation lubrication equation (B 2c) (while neglecting ĥ). We
introduce a local variable x = R̄ + hi/αi − r, and approximate the base-state height
profile as a wedge h̄=αix with slope αi and height hi at the interface r= R̄. Assuming
that the wedge is short compared with the radius, x� R̄, allows us to simplify the
lubrication equation further by neglecting the terms arising from the radial geometry
to obtain

0=
∂

∂x

(
x3 ∂ p̂
∂x

)
−

n2

R̄2
x3p̂ in 0< x<

hi

αi
, p̂′ = 0 at x= 0, (3.14)

where the boundary condition is analogous to (B 2i). The solution is p̂∝ I1(nx/R̄)/x,
where I1 is the order-1 modified Bessel function of the first kind. Following Peng &
Lister (2018), we rescale the ratio û/p̂ (evaluated at r= R̄+ or equivalently x= hi/αi)
to define the ‘admittance’

Y =
R̄
n

12µ
h2

i

û
p̂
=

R̄
n

1
p̂
∂ p̂
∂x
=

I′1(s)
I1(s)
−

1
s
, where s=

nhi

αiR̄
. (3.15)

The scaling is chosen so that Y = 1 for an infinite cell with rigid and parallel walls,
while the restricted flow in a converging wedge gives a smaller value of û/p̂ and hence
Y < 1.

Using the admittance, we can eliminate the unknowns p̂/R̂ and û/R̂ from (3.13) to
obtain

σ(t)=
˙̂R

R̂
=

n ˙̄R
R̄

Y
[

1− f1 −
1

12Ca

(
π

4
h2

i

R̄2
(n2
− 1)+ 2f2αi

)]
−

R̄ci

n ˙̄R

1− f1 −Caf ′1 +
2n Yf ′2hi

12R̄

. (3.16)

The evolution of the perturbation amplitude is then given by

R̂(t)= exp
[∫ t

0
σ(t′) dt′

]
. (3.17)

The denominator in (3.16) is always positive, so the stability of the perturbation is
determined by the sign of the numerator. The perturbation decays, i.e. σ < 0, provided
that

f1(Ca)+
2f2(Ca)
12Ca

αi +
π/4

12Ca
h2

i

R̄2
(n2
− 1)+

R̄ci

n ˙̄RY
> 1. (3.18)

These four terms represent the stabilizing effects of films deposited behind the
interface, taper, horizontal surface tension and kinematic compression, respectively,
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and they give a quantitative measure of the stabilization due to each physical
mechanism.

Using the base-state equations (B 1b) and (B 1d), we can further decompose the
longitudinal compression into

ci =−ū′(R̄+)=
˙̄Rf1αi

hi
+
(1− f1)

˙̄R
R̄

+
dhi/dt

hi
. (3.19)

These three terms represent three mechanisms that stretch the base flow near the
interface in the azimuthal and vertical directions, and cause the base flow to compress
longitudinally through mass conservation. In order to understand these three terms,
we consider the local frame of reference moving with the interface at velocity ˙̄R so
that the interface is stationary.

The first term in (3.19) is the same as in the unidirectional steady peeling case
(Peng & Lister 2018), and describes how the flow towards the interface, with velocity
ū− ˙̄R=−f1

˙̄R, experiences a vertically widening cell at the relative rate αi/hi per unit
length in the longitudinal direction. The second term is due to the radial geometry
of the cell, and is the relative expansion rate ˙̄R/R̄ of the circumference multiplied by
the correction factor (1− f1) to account for the deposited films. Finally, the third term
is the relative rate of change of the interfacial gap height (in the frame of reference
moving with the interface). Typically, the height is (slowly) increasing with time, so
this represents a stretching in the vertical direction. All three terms in (3.19) are
positive and therefore contribute to the suppression of the instability.

For n� 1, the expression (3.16) for σ reduces to the expression found by Peng &
Lister (2018) if we identify the lateral wavenumber as k = n/R̄. The only difference
is in the compression term involving the velocity gradient ci = −ū′. The kinematic
compression was also found to be stabilizing in the cell studied by Peng & Lister
(2018), but in their two-dimensional time-independent system the peeling process did
not involve the additional mechanisms provided by the second and third terms on
right-hand side of (3.19). Hence, we conclude that the present radial time-evolving
system is more stable than the one studied by Peng & Lister (2018).

Our numerical results (e.g. figure 4) show that, in the regime under consideration,
the perturbation pressure profiles obtained using the full calculation and the rigid-
wedge approximation agree well overall, particularly near the interface (see figure 4c).
Consequently there is excellent agreement between the models regarding the evolution
of the perturbation amplitudes R̂ and growth rate σ (figure 4d). Thus, for simplicity,
we focus henceforth on results from the rigid-wedge approximation only.

4. Results
We discuss the development of fingers as the interface expands by direct comparison

between the experiments and the rigid-wedge model in § 4.1. Nonlinear pattern
formation in the experiments is then explored in § 4.2.

4.1. Small-amplitude perturbations
The curves in figure 5(a) show the theoretically predicted instantaneous growth
rate σ as a function of the wavenumber n from (3.16), at three different instants
when the average radius is R̄ = 25, 35, 45 mm, for the D56/H56 latex cell with
injection rate Q = 400 ml min−1. Positive growth rates are observed for a range
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(a) (b)
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4 Experiments
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R = 35 mm
R = 45 mm

FIGURE 5. (Colour online) Direct comparison of the growth rate σ between experiments
and the linear stability analysis (using the rigid-wedge approximation), for the D56/H56
latex cell with Q=400 ml min−1: (a) the numerical spectrum (solid curves) with a vertical
bar indicating the maximum and the experimental results (observed wavenumber N and
growth rate σ ) plotted as points at three instants corresponding to the vertical dashed
lines in (b); (b) evolution of the mean of 12 experiments with shading corresponding to
the standard deviation of the data and the numerical results for the maximum over all
wavenumbers (the dominant mode).

of intermediate wavenumbers, while modes with smaller or larger wavenumber are
seen to decay. The experimental data from each of 12 repeated runs with the same
parameters are plotted with symbols. At R̄= 25 mm, there is a rather large spread in
both wavenumber and growth rate, likely due to the sensitivity to initial conditions
discussed in § 2.1. However, near R̄= 35 mm and R̄= 45 mm the model satisfactorily
captures the development of the fingering pattern, although the wavenumbers observed
in the experiment are generally smaller than that of the mode for which the linear
stability analysis predicts the maximum instantaneous growth rate.

A typical example of the evolution of the growth rate σ with the average radius
R̄ is shown in figure 5(b), for the same cell as in figure 5(a). The experimental
data are obtained by averaging 12 repeated runs from figure 5(a) and the shading
indicates the standard deviation. We find that the instantaneous growth rate of the
most rapidly growing mode (over all wavenumbers) calculated numerically provides
an upper limit on the growth rates obtained in the experiments. Initially it is very
large (see also figure 4d), but at later times, the growth rate decreases and eventually
becomes negative (figure 5b). Henceforth, we refer to the maximum (i.e. dominant)
growth rate across all wavenumbers in the numerical simulation as simply the growth
rate σ .

In figure 6, we show σ35, the value of the growth rate measured at R̄= 35 mm, as
a function of Q for all the experimental parameters given in table 1. We compare the
experimental data (symbols) with predictions from the linear stability analysis (solid
lines) for Q ranging from 50 to 1300 ml min−1 in increments of 50 ml min−1 or less.
The values Q = Q35, for which σ35 = 0 in the linear stability analysis, are shown in
table 1.

In each case the value of σ35 increases with Q, because a larger injection rate leads
to faster spreading and hence a stronger viscous force driving the instability. The
growth rates observed in the experiment are in excellent agreement with the linear
stability analysis when Q is only slightly larger than Q35 (see the regions where
symbols overlap with the lines in figure 6). The deviation of the experimental growth
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FIGURE 6. (Colour online) The growth rate σ35 at R̄ = 35 mm, as a function of the
injection flow rate Q, obtained experimentally (points with error bars that correspond to
the standard deviations) and (maximized over all wavenumbers) using the linear stability
analysis (curves), for each cell listed in table 1. The vertical bar at the start of each curve
indicates Q= Q35 for which σ35 = 0. (a–e) Experiments with latex sheets, a fixed initial
cell depth h0 = 0.56 mm and increasing sheet thickness d (D33–D97). ( f –i) Experiments
with the latex sheet with d= 0.56 mm and increasing initial cell depth h0 (H46–H79); ( j)
Experiments with the polypropylene sheet (PP).

rates from the theoretical predictions for larger values of Q suggests that nonlinear
effects become important within the experimental field of view.

A closer analysis of the data shown in figure 6 reveals that the value of the growth
rate σ35 predicted by linear stability analysis increases with the sheet thickness d (cells
D33–D97) and decreases with the initial cell depth h0 (cells H46–H79). Increasing
d stiffens the sheet so that it deforms relatively less. This allows the interface to
propagate faster (i.e. with a larger capillary number Ca = µ ˙̄R/γ ) and also reduces
the stabilizing taper angle αi. Both of these effects result in a faster growth of the
instability, as discussed in § 3.3. On the other hand, we find that an increase in the
value of h0 for a given volume flux results in the interface propagating more slowly,
which reduces σ35, but also in a decrease in the taper angle αi, which increases σ35.
Therefore, an increase in h0 could in principle be stabilizing or destabilizing depending
on the relative magnitude of these opposing effects; see also Pihler-Puzović et al.
(2012).

We quantify the balance of stabilizing and destabilizing effects in our system using
the criterion (3.18). Figure 7 shows the evolution of the four stabilizing terms from
(3.18) in the D56/H56 latex cell with Q = Q35 (see table 1) for the mode n = 13,
which is the last one to decay. We observe that the sum of the terms initially lies
below 1, indicating that the mode is unstable. Following a short initial decay, the sum
then grows steadily and crosses 1 when R̄ = 35 mm, where the mode stabilizes. At
the time of stabilization, we find that all four physical mechanisms have a significant
contribution. However, at late times, when Ca�1, the taper mechanism has the largest
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FIGURE 7. (Colour online) Evolution of the contribution towards stability of various
physical mechanisms for n= 13 (the last mode to decay) in the D56/H56 latex cell with
Q=Q35 (see table 1), as a function of the average radius R̄. The magnitude of each of the
four terms in (3.18) is shown with a coloured band and their cumulative total indicates
the contribution towards stability. Stability is achieved if the sum of these contributions is
greater than or equal to 1. The kinematic-compression term is further subdivided according
to the three terms in (3.19), again in order from bottom to top.

10 mm
20 mm30 mmåi

Ca

D33
D46
D56
D69
D97
H46
H56
H69
H79
PP

0.02 0.05 0.1 0.2 0.5 1 2 50.01

0.05
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FIGURE 8. (Colour online) Numerically calculated evolution of the capillary number and
taper angle (i.e. the slope of the sheet at the interface) for each cell in table 1 with
Q=Q35. The arrow indicates the direction of the evolution, and the symbols indicate when
R̄= 10 mm, 20 mm, etc. The vertical bars show R̄= 35 mm where the system stabilizes
according to the rigid-wedge model. The shaded region indicates where a rectilinear
steady-peeling solution is stable (Peng & Lister 2018).

contribution towards stability as was argued by Al-Housseiny, Christov & Stone (2013)
and Peng & Lister (2018), although taper alone would only stabilize the system at
R̄≈ 70 mm. Similar behaviour is observed for all other cells in table 1.

Figure 8 shows the path taken by the system in Ca–αi space, for each cell in table 1
with Q=Q35. In each case, the system initially has a large capillary number and small
interfacial slope. However, immediately after the volume flux is imposed the slope
quickly increases, and then remains approximately constant as the capillary number
decreases due to the interface slowing down. At R̄ = 35 mm, marked with vertical
bars in figure 8, the system becomes stable, while the capillary number continues to
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FIGURE 9. (Colour online) The number of fingers Npeak observed at the maximum of R̂
in experiments (points with error bars indicating standard deviation) and the wavenumber
Npeak of the mode that grows to the largest amplitude before decaying in the linear
stability analysis (solid curves), as a function of the injection volume flux Q, for each
cell in table 1. The theoretical data were calculated for Q ranging from 50 ml min−1

to 1300 ml min−1 in increments of 50 ml min−1 and the corresponding integer values
of Npeak were connected with straight lines, which appear as steps in the curves. (a–e)
Experiments with latex sheets, a fixed initial cell depth h0 = 0.56 mm and increasing
sheet thickness d (D33–D97). ( f –i) Experiments with the latex sheet with d = 0.56 mm
and increasing initial cell depth h0 (H46–H79); ( j) experiments with the polypropylene
sheet (PP).

decrease. The shaded region in figure 8 is the stable region calculated by Peng &
Lister (2018) for steady unidirectional-peeling solutions. It underestimates the stability
of the present time-dependent axisymmetric system, but only by a small amount, as
can be expected from our discussion in § 3.3.

4.2. Nonlinear evolution and pattern formation
Next we study the pattern formation beyond the early development of fingering. As
discussed above, a key feature of the fingering instability in the radial Hele-Shaw
cell is that the instability is always transient: small-amplitude perturbations to the
axisymmetrically expanding interface start to decay once its radius has exceeded a
certain value. Thus even the linearized analysis of § 3.2 predicts that fingers grow
to a maximum length before decaying; see, e.g. figure 4(d). However, the maximum
finger length and the time of its occurrence predicted by the linear analysis differs
significantly from experimental observations, indicating that the saturation and the
ultimate decay of the fingers occurs in a nonlinear regime.

Nevertheless, figure 9 shows that the wavenumber Npeak observed at R̄peak in the
experiments is close to the wavenumber of the mode that is predicted to grow to
the largest amplitude before decaying by the linear stability analysis. Recall that, as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

40
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

en
dl

eb
ur

y 
Li

br
ar

y 
of

 M
us

ic
, o

n 
26

 S
ep

 2
01

8 
at

 0
9:

39
:5

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.404
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


182 D. Pihler-Puzović, G. G. Peng, J. R. Lister, M. Heil and A. Juel

200 400 600 800 1000 1200 14000

1

2

3

4

5

6
D33
D46
D56
D69
D97

Q (ml min-1)

R p
ea

k (
m

m
)

^

FIGURE 10. (Colour online) Experimental results (points with error bars indicating
standard deviation) for the maximum finger length R̂peak during the pattern evolution, as
a function of the injection volume flux Q, for the latex experiments (see table 1) with
different sheet thicknesses d and fixed initial cell depth h0 = 0.56 mm. The dashed lines
show the region where the finger length varies. The dot-dashed lines show the region of
the nonlinear saturation.

discussed in § 3.2, this mode also tends to have the largest instantaneous growth rate
throughout the system’s evolution, particularly during the early stages of the instability
when the linearized analysis can be expected to be accurate. This suggests that the
number of fingers is set during the early development of the instability when the linear
stability analysis applies.

Comparing the results for different cells with latex sheets in figure 9, we find that
the number of fingers Npeak decreases with increasing initial cell depth h0 (H46–H79)
and with increasing sheet thickness d (D33–D97) (or equivalently with extensional
stiffness Ed), although it is much less sensitive to the latter. Indeed, increasing d by a
factor of three from D33 to D97 reduces Npeak only by a small amount. A significant
change in Npeak was only seen when comparing the latex sheets with the polypropylene
sheet, whose extensional stiffness is two orders of magnitude larger than that of the
latex sheets. However, we note that a different liquid was used in the experiments with
polypropylene sheets, which may be an additional contributory factor to the observed
variation.

The dependence of the maximum finger length R̂peak on the injection flux Q is
shown in figure 10 for latex sheets of different thickness and h0 = 0.56 mm; the
same behaviour was observed for different values of h0. R̂peak initially grows with
increasing Q before it reaches an approximately saturated plateau. This apparent
saturation correlates with the taper angle created by the inflation of the elastic
membrane reaching an approximately constant value (see below); see also Ducloué
et al. (2017a). We refer to this range as the ‘saturation regime’ with respect to the
parameter Q rather than to the time t. In figure 10, we fit a straight line through the
region of growth in R̂peak and a horizontal line in the region of approximate saturation
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FIGURE 11. (Colour online) Typical patterns in the saturation regime for each cell (see
table 1), using the values shown for the injection volume flux Q.

in R̂peak minimizing the overall mean-squared error to find the approximately constant
value R̂sat of R̂peak observed for each cell in the saturation regime.

The typical fingering patterns observed in the saturation regime are shown in
figure 11. The finger length increases with both the sheet thickness (figure 11,
D33–D97) and the initial cell depth (figure 11, H46–H79). We quantify this increase
by plotting the variation of R̂sat with d and h0 in figure 12. Since the sheet thickness
d affects the system mainly by altering the extensional stiffness Ed of the sheet,
we plot the data for both latex (D33–D97) and polypropylene (PP) sheets with
h0 = 0.56 mm on a semi-logarithmic scale in the inset to figure 12(a). The trend of
increasing finger length for the latex sheet experiments, for which Ed varies by a
factor 3, is consistent with the polypropylene data point, for which Ed is two orders
of magnitude larger.

Looking back at figure 4(a,b), we notice that at late times the finger length observed
in the experiments is comparable to the length L̄w of the liquid wedge ahead of the
interface in the numerical simulation of the axisymmetric base state. (We define L̄w
as the distance from the interface r = R̄ to the first point ahead of the interface
where h̄(r, t) crosses h0.) Since the maximum R̂peak is attained in each experiment at
a slightly different time, and the saturation regime spans different ranges of Q, we
simply calculated the minimum and maximum values of L̄w obtained in the numerical
simulations across all times corresponding to the range 60 mm 6 R̄ 6 80 mm, for
all flow rates in the range 400 ml min−1 6 Q 6 1300 ml min−1. We found that L̄w

was comparable to 2R̂sat, i.e. the distance from base to tip of the fingers. Hence, we
plot the results for L̄w/2 in figure 12, using boxes that span the range between the
minimum and maximum values, for comparison with R̂sat. The correlation between
L̄w/2 and R̂sat is an indication that the nonlinear saturation process is acting on a
length scale comparable to the length of the wedge.

Our results are consistent with those reported by Ducloué et al. (2017a). Their
experiments studied the fingering of a flat front that propagated steadily below an
elastic sheet, thus yielding truly saturated fingers (of constant length R̂peak) both in
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FIGURE 12. The maximum finger length R̂sat (average and standard deviation) in the
nonlinear saturation regime for the latex experiments (see table 1) as a function of (a)
the sheet thickness d with fixed initial cell depth h0 = 0.56 mm (D33–D97), or (b) h0

with fixed d= 0.56 mm (H46–H79). The inset of panel (a) shows R̂sat as a function of the
extensional stiffness Ed for both D33–D97 and polypropylene. The boxes show the span of
L̄w/2 obtained across all numerical simulations with 400 ml min−1 6 Q 6 1300 ml min−1

when the average radius is in the range 60 mm 6 R̄ 6 80 mm.

time as well as in the control parameter Ca. Firstly, they found a linear dependence of
the finger length R̂peak on the initial layer thickness h0, which agrees with our results
in figure 12(b). Secondly, their data indicate that R̂peak is approximately proportional
to 1/tan(αi), which in their set-up is equivalent to R̂peak increasing with the wedge
length. This is also consistent with our results in figure 12. Similar behaviour is
observed in the printer’s instability. We conclude that cells with stiffer walls have
a smaller peeling angle and hence a longer wedge, which in turn leads to longer
saturated fingers. In the experiments of Ducloué et al. (2017a) this implied that the
ridges of viscous fluid that separate adjacent fingers terminated (at the upstream end)
when they reached a critical height within the tapered channel. In the limit of infinite
stiffness (rigid cell with parallel walls), the finger length does not saturate (Saffman
& Taylor 1958; Paterson 1981).

5. Conclusion
We have studied viscous fingering in an elastic-walled Hele-Shaw cell, from the

early-time linear growth to the late-time nonlinear saturation and decay. A direct
comparison between experiments and a linear stability analysis confirms that the
fingering initially develops as a linear perturbation to an axisymmetric base state.

The linear analysis elucidates several physical mechanisms by which the elasticity
of the sheet has a stabilizing effect on the viscous-fingering instability. Firstly, since
the instability is driven by the injection of gas at a constant flow rate Q, the inflation
of the sheet reduces the spreading rate ˙̄R of the interface and hence the capillary
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number Ca, which is the main parameter controlling the strength of the instability.
Secondly, the inflation of the elastic sheet implies that the interface propagates into
a converging cell gap, which introduces additional stabilizing effects compared with
a classical parallel-walled cell, even at the same value of Ca. Our ‘rigid-wedge’
approximation reveals that the elasticity of the top wall affects the instability mainly
in this indirect way via the change in cell geometry, while the non-axisymmetric
perturbations to the elastic wall can be neglected.

The following physical mechanisms affect the instability, and all have stabilizing
effects. The films of liquid deposited on the cell walls behind the advancing interface
reduce the viscous driving force of the instability. Surface tension interacts with the
horizontal (in-plane) curvature as well as the radial variation of vertical (transverse)
curvature in the converging cell, and provides a restoring force. The kinematic
compression in the base flow (i.e. the presence of a negative radial velocity gradient)
advects the perturbed interface back to its mean position; it is due to the diverging
radial flow, the converging cell gap and the lifting of the sheet. In the parameter
regime covered by this study, all of these mechanisms have a significant effect on
the stabilization of the system. In general, a more compliant wall results in a larger
change in the cell geometry, and hence yields a smaller capillary number Ca and a
larger slope αi, both of which have a stabilizing effect on the system.

The linear stability analysis does not apply to the nonlinear late-time evolution
observed in the experiments. However, the wavenumbers observed in the experiments
agree well with those predicted by the linear theory. This suggests that they are set
by the linear evolution at the early stages of development and are not significantly
altered by the nonlinear effects. Similar conclusions were reached by Ducloué et al.
(2017a), who found that the number of fully grown fingers in an elastic-walled
channel followed the scaling predicted by the linear stability analysis of a planar
front in the Saffman–Taylor problem (Saffman & Taylor 1958). Unlike the saturated
patterns found by Ducloué et al. (2017a), the fingers in the radial cell continuously
evolve as the cell geometry (such as interfacial circumference, slope of the sheet and
depth of the cell) changes, ultimately resulting in the decay of the fingers. However,
the maximum length of fingers during their evolution does reach a saturation in the
control parameter Q. As in the study by Ducloué et al. (2017a), this saturated length
varies approximately linearly with the initial depth of the layer and scales with the
length of the liquid wedge ahead of the interface.

The present study serves to bridge the gap between the fingering instability in a
rigid-walled Hele-Shaw cell and the printer’s instability in coating flows. While the
similarity between the two has been noted before (Couder 2000), we are not aware
of any quantitative studies of pattern formation relevant to both classical instabilities,
apart from the recent work by Ducloué et al. (2017a). As the stiffness of the elastic
sheet increases, the stabilizing taper of the cell decreases and we expect the short
and stubby fingers to eventually transition into the highly branched fingers observed
in classical viscous fingering.
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Supplementary material
Supplementary material is available at https://doi.org/10.1017/jfm.2018.404.

Appendix A. Experimental protocol
Here we present more details of the experimental protocol described in § 2.1. The

set-up is shown schematically in figure 1(a,b). The bottom boundary of the cell was a
15 mm thick float-glass plate accurately levelled to within 0.1◦. The upper boundary
of the cell was a square elastic sheet made from latex (Supatex) or polypropylene
(Film Products Ltd), and the initial depth of the cell was set by a spacer with a
circular cutout, which was made from the same type of latex sheet. Their properties
are listed in table 1. The fluids were injected from below through a small nozzle with
an internal diameter of 2.28 mm embedded in a brass cylinder with a diameter of 19
mm, which was mounted flush with the bottom boundary and appears as the central
black circle in figures 1(b,c), 2(a), 3(c) and 11.

Prior to each experiment, the spacer was laid down on the glass plate and
covered with the elastic sheet. The cell was then filled with a viscous fluid. For
the experiments with latex sheets, silicone oil from Basildon Chemicals Ltd was used,
because it wets both glass and latex surfaces. However, we found that if silicone oil
was used in experiments with polypropylene sheets, significant electrostatic forces
developed resulting in an erratic distortion of the gas–liquid interface. To avoid this,
a mixture consisting of 90 % glycerol and 10 % purified water (by volume) was used
for these experiments. This mixture only partially wetted the polypropylene sheet,
but the expanding bubble deposited a continuous film of viscous fluid on the cell
boundaries, and dewetting was only observed on time scales longer than that of a
typical experiment.

During the filling procedure, a heavy glass plate was placed on top of the elastic
sheet to keep it from deforming, thus ensuring that the fluid layer had a uniform
initial depth, h0, set by the thickness of the spacer separating the top and bottom
boundaries of the cell. The fluid occupied a circular region of radius Rfluid < Rcell, in
order to leave an air gap into which the fluid could propagate, with the displaced
air escaping through the unsealed sides of the cell between the latex separator and
the elastic sheet resting on top. (In practice the experiments were terminated long
before any significant motion had occurred near the edge of the fluid domain, and
we found that changing Rfluid from 150 to 170 mm had no effect on the experimental
results.) At the end of each experiment, the cell was taken apart and cleaned carefully
before the whole procedure was repeated again. All experiments were performed in a
temperature-controlled laboratory at 21 ◦C.

It was necessary to inject fluids through the bottom boundary to avoid interfering
with the elastic wall, so some viscous fluid inevitably leaked during the filling
procedure and clogged the injection nozzle. Therefore, in order to reduce the initial
perturbations to the system, a small circular gas bubble of radius Rinit ≈ 5 mm was
injected into the viscous fluid layer through the inlet and allowed to relax before
each experiment was initiated.

The displacement flow was driven by injecting nitrogen from a compressed gas
cylinder via a mass airflow meter (Rd-Y Smart Meter PCU1000, Icenta Controls Ltd),
a fine needle valve and a three-way pneumatic solenoid valve. Before each experiment,
the three-way valve was set to discharge the nitrogen into the atmosphere while the
fine-needle valve was adjusted manually to set the flow rate Q to a desired value
indicated in table 1. Then, the three-way valve was switched to divert the flow into the
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cell to start the experiment. Careful initial adjustment allowed us to achieve a value
of Q within 3 % of the target value, and the flow rate remained constant to within
0.5 % during the experiment.

The evolution of the interface shape was recorded by a CCD camera (JVC
KY-F1030, 1360 pixels × 1024 pixels, 7.5 frames per second, for the experiments
with latex sheets; Dalsa Genie HM1400, 1400 pixels × 1024 pixels, 12.5 frames
per second, for the experiments with polypropylene sheets) looking down on the
experiment. The polypropylene sheets were transparent and allowed a clear view of
the position of the interface, while backlighting was used to obtain a clear image
through the translucent latex sheets. While the time intervals between frames were
known, the exact start time of each experiment was not recorded. Instead, it was
extrapolated from the images before and after the start of the experiments. Therefore,
the maximum error on the start time was 0.13 s in the experiments with latex, and
0.08 s in the experiments with polypropylene. Each time series of top-down images
showing the gas–liquid interface was then processed to extract the evolution of various
quantities with t and R̄ as discussed in § 2.2.

Appendix B. Governing equations for the base state and linear perturbations
Here we present the results from substituting the decomposition (3.10) into the

governing equations (3.1)–(3.9). The O(1) equations for the axisymmetric base state
are

∇
4φ̄ +

Ed
2
{h̄, h̄} = 0, p̄= B∇4h̄− {φ̄, h̄}, (B 1a)

ū=−
h̄2

12µ
p̄′, ˙̄h=−

1
r

(
rh̄ū
)′
=−

1
r

(
r

h̄3

12µ
p̄′
)′

in R̄< r< Rout. (B 1b)

p̄= p̄g(t) in r< R̄. (B 1c)

The interfacial conditions at r= R̄ simplify to

(1− f1(Ca)) ˙̄R= ū, [p̄]+
−
=−γ

(
π

4
1
R̄
+

2
h̄

f2
(
Ca
))
, Ca=

µ ˙̄R
γ
, (B 1d)

[h̄]+
−
= [h̄′]+

−
= [h̄′′]+

−
= [h̄′′′]+

−
= [φ̄]+

−
= [φ̄′]+

−
= [φ̄′′]+

−
= [φ̄′′′]+

−
= 0. (B 1e)

The initial and boundary conditions are

h̄= h0, R̄= Rinit at t= 0, (B 1f )
h̄= h0, h̄′ = p̄′ = φ̄ = φ̄′ = 0 at r= Rout, (B 1g)

(where we have used the fact that φ̄ is only determined up to an arbitrary additive
constant), and the injection condition is∫ Rout

0
2πr

(
h̄− h0

)
dr=Qt. (B 1h)

In addition, regularity at the origin yields

h̄′ = h̄′′′ = φ̄′ = φ̄′′′ = 0 at r= 0. (B 1i)
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The equations for the linear perturbations of wavenumber n are

∇
4
n φ̂ + Ed{̂h̄, ĥ} = 0, p̂= B∇4

n ĥ− {̂φ̄, ĥ} − {̂h̄, φ̂}, (B 2a)

where

∇
2
n =

1
r
∂

∂r

(
r
∂

∂r

)
−

n2

r2
and {̂f̄ , ĝ} =−

n2

r2
f̄ ′′ĝ+

1
r
(f̄ ′ĝ′)′. (B 2b)

In the liquid region R̄< r< Rout we obtain

û=−
h̄2

12µ
p̂′ −

2h̄
12µ

p̄′ ĥ, ˙̂h=
1
r

(
r

h̄3

12µ
p̂′ + r

3h̄2

12µ
p̄′ ĥ

)′
−

n2

r2

h̄3

12µ
p̂. (B 2c)

In the bubble region r< R̄, no azimuthal pressure gradient can be sustained, so

p̂= 0. (B 2d)

The interfacial conditions (3.5) then yield(
1− f1 −

µ ˙̄R
γ

f ′1

)
˙̂R= û+ ū′R̂, (B 2e)

p̂=−p̄′R̂− γ

(
π

4
n2
− 1

R̄2
R̂+

2f2

h̄2
(−h̄′R̂− ĥ)+

2f ′2
h̄
µ
˙̂R
γ

)
, (B 2f )

where f1, f2 and their derivatives are evaluated at Ca = µ ˙̄R/γ and all fields are
evaluated at r= R̄+. As for the continuity conditions, for each quantity f the condition
[ f ]+
−
= 0 at r = R expands to [f̂ + f̄ ′R̂]+

−
= 0 at r = R̄. Since φ̄ and its derivatives

are continuous but h̄ has a discontinuous fourth derivative due to the pressure jump
(B 1d), the conditions on the perturbations are:

[ĥ]+
−
= [ĥ′]+

−
= [ĥ′′]+

−
= [φ̂]+

−
= [φ̂′]+

−
= [φ̂′′]+

−
= [φ̂′′′]+

−
= 0 at r= R̄, (B 2g)

[ĥ′′′]+
−
=
γ

B

(
π

4
1
R̄
+

2
h̄

f2

)
R̂ at r= R̄. (B 2h)

The boundary conditions (3.7) linearize to

ĥ= ĥ′ = p̂′ = φ̂ = φ̂′ = 0 at r= Rout, (B 2i)

while the volume constraint (3.9) has no effect since the azimuthal integral of any
perturbation with wavenumber n> 0 vanishes. Regularity at the origin provides further
constraints

ĥ′ = ĥ′′′ = φ̂′ = φ̂′′′ = 0 at r= 0. (B 2j)

The choice of initial conditions (3.11) is discussed in the main text.
In order to solve the base-state equations (B 1) numerically, we first introduce a

rescaled spatial variable x = r/R̄(t), and rewrite the equations in terms of x and t,
so that the crucial interfacial conditions are imposed at the fixed position x= 1 rather
than at the moving point r= R̄(t). The spatial derivatives are discretized on a grid with
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variable spacing using a conservative finite-difference scheme, and the grid is adapted
regularly to ensure that the spacing at each point is at most 1 % of the length scale
on which the solutions are varying. Time stepping is performed using the implicit
backward-Euler method: Given the solution at the current time step, the solution at the
next time step is found using Newton iteration. (Each iterative step involves solving
a banded matrix equation, which is computationally inexpensive.) For each time step,
one full step is taken in parallel with two half-sized steps, and the step size is adjusted
to ensure that the discrepancy between the two results is at most 1 %. The solutions to
the perturbation equations (B 2) are calculated in parallel with the base-state solutions
for 1 6 n 6 50, and, due to linearity, the Newton iteration always converges after a
single step. This numerical method was verified by direct comparison to the (different)
finite-difference method presented in Pihler-Puzović et al. (2013).

For the frozen-time approximation, the solution to (B 1) is held fixed while, for each
n, (B 2) is continually evolved forward in time (while the solution is regularly rescaled
to keep it O(1)) until the structure of the solution no longer changes, indicating that
the dominant eigenmode has been found (and all eigenmodes with smaller growth
rates have become negligible).
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