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The paternal transmission of environmentally induced phenotypes across

generations has been reported to occur following a number of qualitatively

different exposures and appear to be driven, at least in part, by epigenetic

factors that are inherited via the sperm. However, previous studies of

paternal germline transmission have not addressed the role of mothers in

the propagation of paternal effects to offspring. We hypothesized that

paternal exposure to nutritional restriction would impact male mate quality

and subsequent maternal reproductive investment with consequences for

the transmission of paternal germline effects. In the current report, using

embryo transfer in mice, we demonstrate that sperm factors in adult food

restricted males can influence growth rate, hypothalamic gene expression

and behaviour in female offspring. However, under natural mating con-

ditions females mated with food restricted males show increased pre- and

postnatal care, and phenotypic outcomes observed during embryo transfer

conditions are absent or reversed. We demonstrate that these compensatory

changes in maternal investment are associated with a reduced mate prefer-

ence for food restricted males and elevated gene expression within the

maternal hypothalamus. Therefore, paternal experience can influence off-

spring development via germline inheritance, but mothers can serve as a

modulating factor in determining the impact of paternal influences on

offspring development.

provided
1. Background
The paternal transmission of environmentally induced phenotypes across gener-

ations has been reported to occur following in utero endocrine disruptor exposure

[1], postnatal stress [2] and dietary changes [3–5]. The biological mechanisms of

these effects have been of particular interest as these effects have been demon-

strated to occur in non-monogamous species where there is limited contact

between male sires and offspring. It has been proposed that inherited epigenetic

changes, transmitted through germ cells, may account for this phenomenon. Vari-

ation in paternal experiences (i.e. toxin exposure, nutrition, stress) are associated

with changes in DNA methylation, histone modifications and small RNAs in

paternal sperm [2–4,6,7], epigenetic marks that can be transmitted to the

embryo and presumably withstand epigenetic reprogramming in the zygote [8,9].

However, evidence suggestive of a germline epigenetic pathway in mediat-

ing paternal effects has been predominantly correlational and does not establish

epigenetic variation in the sperm as the exclusive mechanism responsible for

altering offspring development. The germline inheritance hypothesis also

fails to account for the interplay between maternal and paternal effects,

which occur in varying degrees in non-monogamous mammalian species in

response to prevailing mating conditions. Within the study of behavioural
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ecology, it has been established that females regulate the level

of parental care (pre- and postnatal) provided to offspring in

response to mate quality [10–12]. This regulation can take the

form of ‘differential allocation’, resulting in increased invest-

ment toward offspring sired by attractive/high-quality males

or ‘reproductive compensation’, resulting in increased invest-

ment in the offspring of unattractive/low-quality males

[12,13]. We have previously demonstrated differential allo-

cation in female mice toward the offspring of socially

enriched versus socially deprived males [14]. Moreover,

paternally induced changes in maternal investment have

been demonstrated to impact the fitness of offspring (i.e.

body size) [10]. Thus, the observed ‘inheritance’ of paternal

effects may actually be phenotypes that are recapitulated

through indirect post-fertilization maternal effects.

In the current study, we sought to elucidate the indepen-

dent contribution of maternal effects versus germline

inheritance for the transmission of paternal experience towards

offspring phenotype. Using natural matings and embryo trans-

fer to generate offspring sired by a food restricted or control fed

males, we hypothesized that paternal exposure to nutritional

restriction would impact male mate quality and subsequent

maternal reproductive investment with consequences for the

transmission of paternal germline effects.
2. Material and methods
(a) Adult food restriction
Adult male C57BL/6 mice (6–8 weeks of age from Jackson Lab-

oratories, USA) housed four per cage in Plexiglas cages were

food restricted (FR) for 3 weeks. During this period, mice were

fed to maintain 80%–85% of their initial body weight. Feeding

occurred daily at unpredictable times (between 12 and 22 h of

last feeding) with varying feeding durations and quantities to

increase the potency of the stress and limit potential for adap-

tation. Control (CF) mice were weighed daily but given ad

libitum access to food. All procedures were performed with the

approval of the Institutional Animal Care and Use Committee

(IACUC) at Columbia University. Subsets of food restricted

(FR) mice underwent behavioural testing for anxiety- and

depression-like behaviour (novel open-field and forced-swim

test; N ¼ 10 per group per test). Males (CF and FR) that were

not behaviourally tested were used in subsequent mating

experiments (sample sizes described further below).

(b) Maternal investment
Immediately following the 3-week food restriction period a

single male was placed in a mating group with two adult

C57BL/6 female mice for approximately 2 weeks (30 mating

pairs per condition). After the mating period, males were

removed and once females reached late pregnancy they were sep-

arated and singly housed for the remainder of the experiment

(resulting in N ¼ 54–59 successful pregnancies per group).

(i) Prenatal maternal investment
As a proxy measure for prenatal investment (e.g. food consump-

tion during gestation), pregnant female mice were weighed daily

across gestation. Percentage weight gain for each gestational day

was calculated by subtracting current weight from initial weight

and dividing by initial weight and multiplied by 100.

(ii) Postnatal maternal investment
Following parturition, dams were observed to determine vari-

ation in postnatal maternal behaviours. The procedure for
assessing maternal behaviour in mice has been described pre-

viously [15]. Each dam was observed for four 1 h periods per

day (20 focal observations per hour) by an observer blind to

paternal condition from postnatal (PN) days 1–6 (with PN0

being the day of birth). The frequency of the following beha-

viours was recorded: mother in contact with pups, mother in

nursing posture over pups and mother licking and grooming

any pups (N ¼ 21–30 per group). Frequency (%) of maternal be-

haviour was calculated as the number of observations in which a

behaviour was observed divided by the total number of

observations (460) and multiplied by 100.

(iii) Maternal gene expression analysis
A subset of pregnant females was sacrificed either during late

gestation (2–3 days before birth) or on PN1 (N ¼ 5–6 per

group) for gene expression analysis using quantitative real-time

PCR. Gene targets analysed consisted of oestrogen receptor

alpha (Esr1), paternally expressed gene 3 (Peg3) and meso-

derm-specific transcript (Mest). Previous studies have reported

that deletion of Mest or Peg3 reduces prenatal food intake and

gestational weight gain and that Esr1, Mest or Peg3 deletion

results in disruption to postnatal maternal behaviour during

the postnatal period [16–18].

(c) Female olfactory discrimination of CF versus FR
males

We tested females’ ability to distinguish between male odours

using a habituation–dishabituation task [19–20] and a male

urine preference test [19,21]. See electronic supplementary

material for a description of behavioural methods.

(d) Embryo transfer and natural mating
We used embryo transfer as a strategy for dissociating paternal

nutritional effects acting via sperm/germline-associated factors

and those effects that may also involve mating-associated changes

in the mothers. Embryo transfer, as opposed to in vitro fertiliza-

tion, has been shown to induce fewer disruptions to gene

expression and development [22,23]. Donor females (28–30 day

old C57BL/6; N ¼ 46 per group) were superovulated with an

intraperitoneal (IP) injection of five IU pregnant mare serum

(PMSG; EMD Chemicals), followed 47 h later with a 5 IU IP injec-

tion of human chorionic gonadotropin (hCG; Sigma). We used

half the recommended dose of hormone for superovulation to

minimize any effects that superovulation itself could have on off-

spring [22]. Superovulated donor females were mated with either

FR or CF males; N ¼ 25 per group). Following fertilization, 20–25

early-stage embryos (12–16 h post coitum, one cell embryo) were

collected, pooled and implanted in the oviduct of pseudopregnant

surrogate females (B6CBAF1 strain, all mated with vasectomized

CF males; Jackson Labs). Surrogate females of this strain were

used because of the limited success of C57BL/6 females as

surrogate mothers. We, therefore, chose a strain that was

genetically close to C57BL/6 mice (F1 hybrids derived from

C57BL/6 mothers). To avoid the effects of long-term culture

on embryos [23], embryos were implanted within 1.5 h of

being collected. Following surgery, with the exception of daily

weighing, mice were left undisturbed throughout gestation.

FR or CF males (same as those used to generate embryos for

the embryo transfer experiments) were mated naturally with

6–8-week-old adult C57BL/6 females (two females per male)

for 2 weeks to generate adult offspring for the natural mating

(NM) condition.

These experiments produced four groups of females (and off-

spring; N ¼ 13–15 successful litters per condition): (i) naturally

mated with a CF male (NM-CF), (ii) naturally mated with a FR

male (NM-FR), (iii) embryo-transferred CF embryo (ET-CF) and
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(iv) embryo-transferred FR embryo (ET-FR). See figure 2a and

electronic supplementary material, figure S1 for a schematic

outlining how each group was derived.

(e) Offspring measures
At birth, pups were weighed and counted but otherwise left

undisturbed during the postnatal period. All litters were

observed from PN1–6 to determine postnatal frequency of

maternal care (licking/grooming, nursing, total contact). Follow-

ing the final maternal observation on PN6, litters were weighed

and counted but otherwise left undisturbed until weaning

(PN28). At weaning, individual pups were weighed and placed

into same-sex groups of four. From each litter, a maximum of

two male and two female offspring were selected for behavioural

testing to measure cognitive and anxiety/depression-like beha-

viours. Male and female offspring from the four conditions

(N ¼ 15 per group per sex) underwent a behavioural test battery

starting on approximately PN55 over a 4-week period. Testing

occurred in the following order: (1) open-field [26], (2) novel-

object recognition [27], (3) forced-swim test [28] and (4) sucrose

preference test [29] (see electronic supplementary material for

full description of behavioural methods). Adult weights were

also measured to examine growth trajectories across develop-

ment. Approximately 2 weeks after the last behavioural test

(sucrose preference) mice were sacrificed by rapid decapitation

and brains were extracted, flash-frozen in chilled isopentane

and stored at 2808C until homogenization. The hypothalamus

was dissected on dry ice from partially thawed tissue and used

for subsequent gene expression analyses. Genes were chosen

on the basis of their involvement in HPA function (cortico-

tropin-releasing factor, Crf ) and brain function/plasticity

(brain-derived neurotrophic factor, total Bdnf [24,25]. See

electronic supplementary material, figure S1 for a detailed

experimental outline.

( f ) Quantitative real-time PCR analysis
RNA was isolated from the hypothalamus (dams and offspring)

using the AllPrep DNA/RNA Mini Kit (Qiagen) and reverse

transcribed to cDNA using the SuperScript III First-Strand

Synthesis System for RT-PCR applications (Invitrogen). RNA

quality was determined to be within accepted parameters

using a NanoDrop spectrophotometer. Quantitative RT-PCR

was performed with 1 ml of cDNA using an ABI 7500 Fast Ther-

mal Cycler and the Fast SYBR Green Master Mix reagent

(Applied Biosystems). All primer probes (Sigma-Aldrich; see

electronic supplementary material, table S1) were designed to

span exon boundaries ensuring amplification of only mRNA.

For each gene, CT values were normalized to cyclophillin A

(endogenous control, [30]. Relative expression values were

obtained by the DDCT method [31].

(g) Statistical analyses
See electronic supplementary material for full description of the

statistical approaches used in the analyses.
3. Results
We confirmed that exposure to chronic FR results in behav-

ioural indices of increased anxiety and depression in FR

compared with CF males. The effects of FR on anxiety- and

depression-like behaviour were tested immediately after the

3-week FR period. FR mice spent less time in the centre

area of a novel open-field (t18 ¼ 2.70, p ¼ 0.02; electronic sup-

plementary material, figure S2A). These differences were not

due to general changes in locomotor activity resulting from
FR as CF and FR mice showed no differences in total distance

travelled during the 10-min test (t18 ¼ 0.12, p ¼ 0.90). Further,

FR and CF showed no significant differences in the amount of

fecal boli deposited during the test (t18 ¼ 0.14, p ¼ 0.89). In

the forced-swim test, FR males spent more time swimming

during the last 4 min of the 6 min test (t18 ¼ 2.67, p ¼ 0.02;

electronic supplementary material, figure S2B) and an

increased latency to passive behaviours (t18 ¼ 2.09, p ¼ 0.05;

electronic supplementary material, figure S2C). This was

true even after accounting for body weight differences

between FR and CF males.

(a) Female maternal investment and hypothalamic
gene expression is predicted by male nutritional
experience

Females mated with FR males exhibited increased weight

gain across gestation (particularly in the last four gestational

days; t49 ¼ 6.34, p , 0.001) and increased pup nursing on

postnatal day 1 (PN1; t49 ¼ 22.46, p ¼ 0.02; figure 1a–b; see

electronic supplementary material for extended analyses).

These effects persisted after controlling for all paternally

induced changes in litter size or litter weight. Thus, gesta-

tional weight gain was independent of the effects of

paternal FR on offspring growth. Moreover, these increases

in maternal investment were associated with elevated levels

of gene expression of Peg3 (t10 ¼ 22.45, p ¼ 0.03; figure 1d )

and Esr1 (t9 ¼ 22.43, p ¼ 0.04; figure 1e) in the hypothalamus

of lactating females. There was a marginally significant

increase in Mest in the maternal hypothalamus during

gestation associated with paternal FR (t12 ¼ 21.68, p ¼ 0.08;

figure 1c). Our data suggest that FR matings induce increased

maternal investment.

(b) Female olfactory discrimination and mate
preference for CF versus FR males

Females were observed to show both habitation and dis-

habituation to CF and FR odours indicating the capacity

to discriminate between males of a CF compared with FR

phenotype (effect of repeated presentation: t116 ¼ 26.58, p ,

0.001; figure 1f ). Within this sensory discrimination task, we

also observed an overall reduction in investigation time for

FR male urine odours compared with CF odours

(t2 ¼ 22.55, p ¼ 0.01). Means (+s.e.m.; in seconds) for investi-

gation time for FR versus CF odours were 24.75 (+1.97) and

18.68 (+1.95), respectively. This effect was also observed in

the three-chamber choice task, where virgin females in oestrus

showed a preference for CF urine odours over FR urine odours

(x2(2, n ¼ 20) ¼ 8.50, p , 0.001; figure 1g), confirming that the

FR phenotype is perceived as low quality/less attractive.

(c) Variation in maternal reproductive investment is
absent in the embryo transfer condition

FR-induced changes in prenatal weight gain and postnatal

maternal behaviours were only present in NM females. Sig-

nificant increases in weight gain across gestation were

observed in females carrying FR pups that were conceived

through NM (t1050 ¼ 4.23, p , 0.001; figure 2b) but not

embryo transfer conditions (t671 ¼ 0.95, p ¼ 0.33). There

were marginally significant effects of paternal FR on



rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180118

4
frequency of postnatal maternal licking behaviour (t60 ¼ 1.68,

p ¼ 0.09), which was primarily driven by differences between

NM-FR and NM-CF groups (figure 2c).

(d) Dissociating maternal and paternal influences in
FR-associated outcomes in offspring

(i) Effect of FR on offspring growth
We compared growth, behaviour, and hypothalamic gene

expression in CF and FR offspring generated using ET (ET-CF

and ET-FR) and offspring sired through natural matings

(NM-CF and NM-FR; figure 2a). Using the NM versus ET

breeding design, we first measured the impact of paternal FR

on offspring growth rates (see electronic supplementary

material for detailed analyses). At weaning (PN28), ET-FR

male offspring were smaller in body weight than ET-CF male

offspring (t111 ¼ 22.52, p ¼ 0.01). In adulthood (PN80), body

weights were reduced in male (t48¼ 22.30, p ¼ 0.03) and

marginally in female (t51¼ 21.67, p ¼ 0.10) offspring in

response to FR within the ET condition. No effects of FR on

body weight were observed within the NM condition

(electronic supplementary material, table S3).

(ii) Effect of FR on offspring behaviour
There were no effects of paternal FR on general locomotor

activity or time spent exploring the centre of the open field

(see electronic supplementary material, table S4). Males

born to FR fathers in the embryo transfer condition exhibited

a marginally shorter latency to enter the centre area

(t112 ¼ 21.87, p ¼ 0.06). Depression-like behaviours were

also assessed in offspring of CF and FR males. In the

forced-swim test, paternal FR reduced the total duration of

active swimming in female offspring generated through ET

(t27 ¼ 23.97, p , 0.001; figure 3b). Assessment of sucrose

intake also revealed FR-induced increases in depression-like

behaviours. In female offspring (and to a lesser degree in

males) generated through both NM and ET, paternal FR

was associated with reduced sucrose consumption (after con-

trolling for overall intake; t54 ¼ 22.62, p ¼ 0.01; figure 3c).

Within the novel-object recognition task, the discrimination

index was found to be significantly higher in NM-FR com-

pared with NM-CF female offspring (t28 ¼ 2.08, p ¼ 0.04)

but reduced in ET-FR compared with ET-CF female offspring

(t28 ¼ 23.22, p , 0.01; figure 4c–d).

(iii) Effect of FR on offspring hypothalamic gene expression
Both male and female NM-FR offspring had elevated levels of

Bdnf expression compared with NM-CF offspring (t27 ¼ 2.87,

p , 0.001; figure 3d ). This effect on Bdnf expression was not

observed under ET conditions (t28 ¼ 20.92, p ¼ 0.32). By con-

trast, both male and female ET-FR offspring had elevated

levels of Crf expression compared with ET-CF offspring

(t30 ¼ 3.53, p , 0.001), an effect not observed under NM

conditions (t29 ¼ 0.01, p ¼ 0.99; figure 3e).
4. Discussion
Our findings indicate that the effects of paternal food restric-

tion vary depending on the sex of offspring and mating

conditions. Offspring born to food-restricted fathers and

derived through embryo transfer show growth deficits,

impairments in recognition memory and behaviours
indicative of learned-helplessness and anhedonia. These

changes were associated with increased Crf expression in

the hypothalamus of offspring indicative of heightened

stress reactivity [25,32]. Importantly, these effects were

found primarily in females suggestive of an increased sensi-

tivity of female offspring to paternal food restriction cues

transmitted through the germline. In contrast, when offspring

were conceived through NM, FR female offspring showed

improved recognition memory and no differences in

forced-swim behaviour compared with CF offspring. The

only similarity in offspring outcomes as a function of

mating condition was that, like embryo-transferred FR

female offspring, FR offspring conceived through NM also

displayed reduced sucrose intake. We propose that the

differences in transmission direction and magnitude of paternal

food restriction effects are due to increases in maternal

investment observed in females following NM with FR males.
(a) Germline effects of paternal food restriction
Chronic FR is a psychological and physiological stressor that

draws parallels to the type of stress experienced in response

to famine or poverty. The experience of chronic stress associ-

ated with dietary restriction, as shown in both humans and

animal models, has broad repercussions for metabolic, cogni-

tive, emotional and motivational domains of behaviour with

consequences for offspring development [33,34]. For

example, archival data from Sweden indicate that food avail-

ability (during famine) of grandfathers is associated with the

risk of diabetes and cardiovascular disease as well as mor-

tality in grandsons [5,35]. The growth, memory- and stress-

related deficits in female offspring born to FR fathers through

embryo transfer (ET-FR) is indicative of paternal transmission

of stress-related phenotypes. These findings are consistent

with the accumulating evidence that, in addition to maternal

depression, history of stress in fathers may contribute to simi-

lar outcomes in offspring [2,5,6,35–37]. Our data suggest that

FR-induced variation in the germline has the capacity to

influence stress-related behavioural outcomes.

The underlying mechanism of paternal effects that occur

in the absence of postnatal father–offspring contact is

assumed to involve epigenetic changes within the germline

(e.g. piRNA or other small RNAs, DNA methylation) [7,38].

Data from our embryo-transfer condition support a direct

germline route for paternal influences and are consistent

with the partial transmission of paternal effects after artificial

reproduction observed in previous studies [2,6,36,38]. How-

ever, there are caveats in the use of artificial reproductive

techniques such as of IVF and embryo transfer in demonstrat-

ing the transmission of acquired epigenetic marks. Several

features of the methods used within artificial reproductive

techniques may themselves alter epigenetic reprogramming.

For example, stimulation of oocyte production using gonado-

trophins (superovulation) with high levels of hormone is

routinely used to improve efficiency in human-assisted repro-

duction and in the generation of genetically modified

laboratory rodents. Comparison of DNA methylation

patterns in embryos derived from superovulated versus

non-superovulated females indicates that this procedure

may induce abnormal DNA methylation patterns [22,39].

IVF has been similarly found to induce changes in embryonic

DNA methylation patterns depending on the type of culture

media used for the incubation of sperm and oocytes [40].
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Moreover, the duration of time that embryos spend in culture

prior to implantation also has effects on anxiety-like behav-

iour in adult embryo-transferred mice [23]. These

abnormalities in DNA methylation may account for reports

of an increased incidence of imprinting disorders (such as

Angelman and Prader–Willi syndrome) in individuals con-

ceived through these procedures [41]. However, we

mitigated these issues by using reduced levels of hormone

to stimulate ovulation, embryo transfer (as opposed to IVF)

to avoid external fertilization in a culture medium, and
minimized the time embryos spent outside the body by trans-

ferring embryos immediately. These methodological issues

will be critical to consider in the interpretation of previous

and future studies of paternal and maternal effects on

offspring development.
(b) Role of paternally induced maternal effects
Under NM conditions, female offspring of FR fathers exhib-

ited improved cognitive performance and were not
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observed to have altered growth trajectories or depression-

like behaviour in the forced-swim test compared with

offspring of CF fathers. The reduced sucrose preference

observed, though typically interpreted as an indication of

anhedonia, is probably an appetitive phenotype in the con-

text of increased levels of hypothalamic Bdnf expression in

FR offspring. Bdnf is heavily expressed in energy balance

centres within the hypothalamus and loss of Bdnf in these

regions has been shown to induce hyperphagia and obesity

in mice [42,43]. Moreover, FR offspring derived through

NM showed no indices of stress or anxiety. Therefore,

reductions in sucrose intake in FR offspring may be an

adaptive response to paternal metabolic phenotype.

The divergence in phenotypic outcomes resulting from

paternal FR under embryo transfer versus NM conditions

probably results from the differential allocation of maternal

resources received by these two groups. Females that mated

with FR males showed increased levels of gestational

weight gain and postnatal maternal behaviour. Moreover,

these behavioural changes were associated with increases in

hypothalamic Mest mRNA during late gestation and Peg3
during the first postnatal day of females mated with FR

males—genes that have been shown to regulate prenatal

food intake and maternal behaviour [16–18,44,45]. Elevated
Esr1 expression in the maternal hypothalamus observed

during lactation in FR-mated females probably has conse-

quences for multiple neural systems regulating maternal

behaviour including oxytocinergic and dopamine pathways

[46,47].

We suggest that these paternally induced maternal effects

serve as a compensatory response. The notion of paternally

induced maternal effects has remained largely unexplored

in laboratory animals but may explain why paternal pheno-

type can result in paradoxical effects on offspring [48,49].

Changes in postnatal maternal care can shape the neural sys-

tems underlying stress, anxiety, cognition and brain plasticity

through epigenetic mechanisms that result in stable levels of

gene expression throughout life [50]. The nutritional environ-

ment during fetal development has likewise been shown to

be critically important for growth, metabolism, brain devel-

opment and behaviour via epigenetic mechanisms [51].

Thus, while the embryo-transfer condition in the current

study suggests that paternal FR impedes offspring growth

and impairs cognitive/behavioural functioning, increased

food-intake and maternal behaviour observed in FR-mated

females may serve to buffer offspring from these effects

by overriding paternal influences on gene expression via

maternally mediated epigenetic mechanisms.
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(c) Sources of paternally induced maternal effects
A critical question that emerges when considering the com-

pensatory influence of mothers on germline paternal effects

is the route through which fathers can trigger altered

maternal investment. Following implantation, embryonic

and maternal physiology become intricately coordinated

and the continued growth and development of the

embryo/fetus are dependent on the release of growth factors

and hormones from the fetoplacental unit [52]. Paternally

expressed genes, which are susceptible to epigenetic modifi-

cation, are highly expressed in the placenta, critical for fetal
growth (e.g. Mest), and can regulate postnatal mother–

infant interactions (e.g. Peg3 and Gnasxl). Further, in rodents,

it has been demonstrated that during the postnatal period,

offspring traits such as locomotor activity, suckling ability,

and ultrasound production enable pups to regulate the

levels of maternal care they receive from the dam, leading

to altered developmental trajectories [16,53]. Therefore,

paternal epigenetic variation present within imprinted

genes that is transmitted to offspring could lead to shifts in

the level of prenatal food intake and/or priming of maternal

behaviours through either effects on placental function or on
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pup behaviour. However, our data indicate that paternal

germline alterations that affect the placenta or pup directly

are unlikely to account for the increased maternal investment

observed. Increased maternal investment in FR offspring was

not observed following embryo transfer, a condition in which

female mates do not have mating experience with FR males.

Moreover, females can clearly distinguish between FR and CF

males and show a reduced preference for FR males. Overall,

these data suggest that reproductive compensation occurs as

a consequence of the perceived mate quality of food restricted

males. Studies of mate preference have typically focused on

genetic features of males that would potentially impact off-

spring viability (e.g. MHC complexes) [54,55]. However,

there is increasing evidence that females make preference dis-

tinctions based on males’ prior experience (e.g. in utero
undernutrition, vinclozalin and parasite exposure) [56–58].

In the case of FR-mated females, this lack of preference, com-

bined with the constraints on mating opportunities available,

may lead to increased maternal investment and altered

offspring developmental trajectories.
(d) Sex-Specific effects of paternal food restriction
Consistent with previous studies examining the impact of

fathers, we find that female offspring are most sensitive to

the effects of paternal food restriction. Studies of the impact

of advanced paternal age on autism risk indicate that older

fathers are more likely to have daughters with autism [59].

Daughters with a history of paternal alcoholism are more

sensitive to the effects of benzodiazepenes [60]. A similar

sex-specificity has been found in laboratory studies of

paternal effects. Paternal stress exposure, with stress occur-

ring either in early life or during juvenile development,
results in increased emotional reactivity and impaired social

behaviour in female offspring. Interestingly, though paternal

stress does not impact behavioural phenotypes in male off-

spring, males are capable of transmitting the phenotype to

their offspring suggesting that males act as ‘carriers’ of the

epigenetic mark [61,62]. Possible explanations for the

sex-specificity of paternal effects may include sex-chromosome-

linked paternal epigenetic variation, contribution of in utero
hormones or sex differences in the timing of epigenetic repro-

gramming events that render females more sensitive to altered

paternal germline epigenetic variation [7].
(e) Concluding remarks
Advances in our understanding of the transmission of epige-

netic variation across generations has generated increased

interest in the mechanisms of paternal germline effects.

Though our data provide evidence of paternal germline

effects, the occurrence of paternally induced compensatory

maternal responses that we have observed suggest a highly

dynamic interplay between mothers and fathers in shaping

offspring outcomes. The product of these interactions can

have implications for the direction/magnitude of offspring

outcomes as well as the degree of penetrance of paternal

experience (i.e. the degree and number of subsequent gener-

ations that can be affected). Therefore, determining the effect

of the male germline requires a thorough understanding

and/or control of maternal effects, and considers the

dynamics of mating, the physical and hormonal exposure

of oocyte and embryos, and the environmental conditions

in utero and postnatal that reflect the interactions between

offspring and mother. Our findings argue for a more inclus-

ive notion of inheritance, incorporating genetics, epigenetics
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and the social context, when predicting the transgenerational

impact of parental experiences.
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