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Abstract: Membrane channel proteins control the diffusion of ions across biological membranes.
They are closely related to the processes of various organizational mechanisms, such as: cardiac
impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit
solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane
proteins. The use of lateral periodic boundary conditions can properly simulate the discrete
distribution of membrane proteins on the membrane plane and avoid boundary effects, which are
caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite
element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane
channel proteins, with different numerical treatments of the singular charges distributions in the
channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh
construction method to automatically identify the membrane channel/pore region even with a tilt
angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation
of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid
space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element
calculation of the PB solvation energy. Computational studies are performed on a few exemplary
molecules. The results indicate that all factors, the membrane thickness, the length of periodic box,
membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually
considerable influence on the solvation energy of a channel protein. This demonstrates the necessity
to treat all of those effects in the PB model for membrane protein simulations.

Keywords: laterally periodic Poisson-Boltzmann model; finite element method; membrane channel
proteins; pore region; solvation

1. Introduction

The Poisson–Boltzmann (PB) equation is one of the most popular implicit models to describe the
solvent effect through the Boltzmann distribution [1–12]. This non-linear elliptical partial differential
equation solves the potential in the whole domain, which consists of both the solvent and solute.
The solvent is represented by a continuum with a higher dielectric constant, while the solute is
described with a lower dielectric constant and buried atomic fixed charges. The solution of the

Int. J. Mol. Sci. 2018, 19, 695; doi:10.3390/ijms19030695 www.mdpi.com/journal/ijms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-8050-5874
https://orcid.org/0000-0002-9664-8391
https://orcid.org/0000-0003-4159-1532
http://dx.doi.org/10.3390/ijms19030695
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 695 2 of 17

PB equation-based solvation model can provide the basis to obtain other interesting quantities, for
example pKa values [13]; solvation free energies; and binding free energies [14,15]. These energy terms
are meaningful to theoretical research including protein folding and design [16].

The analytic solutions of the PB equation are only available for cases where the computational
domain of the biomolecule can be approximated by a simple shape, such as spheres and cylinders.
However, in reality the shape of a biomolecule is complex and irregular. Under such circumstances,
the PB equation needs to be solved numerically. Essentially, there are three main numerical techniques
based on the discretization of the domain of interest into small regions: the finite difference method
(FDM), the boundary element method (BEM), and the finite element method (FEM). In this paper,
we employ FEM, which is based on a weak variational formulation. The unknown is approximated by
a superposition of a set of basis functions [17–20]. At present, there is a lack of work on using FEM to
solve the PBE for membrane proteins, especially for membrane channel proteins. This is the main task
of our work.

To study membrane proteins, the membrane needs to be implemented in the PB equation
framework to account for the sensitivity of the structure and how it functions in its surrounding
environment. Consideration of the membrane increases the model complexity. Firstly, the position of
the membrane makes the discrete grid/mesh construction more challenging, especially for membrane
channel proteins. Secondly, the discrete distribution of membrane proteins on the membrane plane
require more specific requirements with the boundary conditions. Effort has been made to include
a membrane region in both Generalized Born methodologies [21–24] and the PB equation-based
solvation models using FDM [25,26]. FDM has been used in periodic PB equation calculation for
membrane proteins [27]. The work regarding finite difference grid construction explicitly identifying
the pore region in the implicit membrane channel model has been explored in [28].

The simple slab-like membrane setup is commonly used in implicit membrane solvation models.
Membrane channel proteins control the diffusion of ions across biological membranes. Therefore,
channels are usually end-to-end through and filled with water. Figure 1 shows a cross-section of the
membrane channel system. The system consists of a membrane channel protein, a membrane region,
and a solvent region. The upper and lower surfaces of the membrane are defined in the direction of z
with the values of z1 and z2. The difficulty in the process of membrane construction in our FEM is to
identify tetrahedrons within the channel and between z2 and z1. A primitive way to deal with the issue
is to manually define the pore region as a combination of multiple spheres or cylinders. This method
is neither efficient nor practical because any change on the radius of each membrane channel protein
needs to be made by hand. In our previous work, we applied a “walk-and-detect” algorithm to directly
identify the channel and, therefore, to avoid limitation above [29]. In this paper, we further expanded
the algorithm to handle the membrane channel protein with a tilt angle with respect to the z-axis.

Introducing the membrane region into the implicit solvation model extends the capacity of the
PB equation to handle membrane proteins. Usually, there are multiple proteins scattered on the
membrane, therefore, a lateral periodic boundary condition can used as a good approximation to
simulating the real membrane environment. The use of this type of boundary conditions can avoid
boundary effects caused by the finite box size in the traditional PB calculations by using a fixed
boundary potential value. In FDM, the lateral periodic boundary condition is accomplished by treating
the nodes on one face of the computation grid as if they were adjacent to corresponding nodes from
the opposing grid face [27]. In FEM, we mark the boundary points on one box side with the same
mesh labels of the corresponding points on the opposite box side in the lateral periodic direction to
achieve lateral adjacent effect (see the Method section).

The solvation energy describing the interaction between the solute and the environment can be
roughly decomposed into two parts: electrostatic and non-polar solvation energies. The electrostatic
contribution of the solvation free energy can be calculated with the PB equation-based implicit
membrane model. The non-polar contribution of the solvation free energy is often approximated with a
function that depends linearly on the solvent-accessible surface area of the molecule [30–32]. A similar
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but slightly more complex piece-wise linear model was developed [33] for non-polar energy of a
protein embedded in membrane, which is incorporated into this work to calculate the total solvation
energy. Non-polar solvation energy allows molecules to remain in a low-dielectric region. In contrast,
the electrostatic part tends to make molecules remain in a high-dielectric region like an aqueous solvent.
The final state of a molecule is a result of the balance between the non-polar solvation free energy
and the electrostatic solvation free energy. In this way, we can estimate the possible tilt angle of the
membrane channel protein by calculating the solvation energy in membrane environment.

Figure 1. A 2D schematic picture for the cross section of an ion channel system. The solvent region is
labeled 1, the membrane channel protein is labeled 2 and the membrane is labeled 3. The solvent part
between the white dotted lines is the channel region [29].

2. Results and Discussion

2.1. Validation for the Treatments of Fixed Singular Charge

To evaluate the effectiveness of various treatments for fixed singular charges and compare the
performance of different methods, we first solve the Poisson equation (corresponding to the zero
ionic strength case in PB model) for a single atom model without membrane, which can be solved
analytically. In this model, we use a sphere with a radius r = 1 Å, and a unit charge q = ec at the
center to represent the single atom solute region, which is enclosed by a bigger homocentric sphere
with a radius of 200 Å as outer boundary. We adopted different dielectric constants in the solute region
(εm = 2) and the solvent region (εs = 80).

The analytical form of the electrostatic solvation energy for a single atom in the bulk with an ionic
concentration cbi = 0 reads

∆Gele =
e2

c
8rπε0

(
1

εm
− 1

εs
) (1)

In this case, the electrostatic solvation energy is ∆Gele = −80.9398 (kcal/mol) for the parameters
given above. The relative error is given by

Ere = |
∆Gele − ∆Gele,h

∆Gele
| × 100%

where ∆Gele,h is the numerical solution of ∆Gele.
We explored three methods to solve the single atom model. The results are shown in Table 1.

Each method occupies two rows in the table with the second row being the result of a uniformly
refined mesh. For each method, we noticed an obvious improvement on the relative errors after a mesh
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refinement is employed. This means all three methods did well in space convergence. Among the three
methods, the weighted assignment method and the direct integral method demonstrated slightly better
performance than the average assignment method. In fact, the disparity may be large in membrane
channel protein calculations for the accumulated errors produced by the number of atoms. We further
compared the space convergence of the weighted assignment method and the direct integral method
in the following.

Table 1. Calculation results from different charge assignments: average assignment method,
weighted assignment method and direct integral method, for the single atom model. The two rows
corresponding to each method are the results for the original mesh and a refined mesh by one uniform
refinement (DOF means degree of freedom).

Singular Charges Treatments Elements DOFs Gele,h (kcal/mol) Ere

Average assignment method 22614 3745 −77.01 %4.9
92595 17037 −80.11 %1.03

Weighted assignment method 22614 3745 −77.79 %3.9
92595 17037 −80.21 %0.90

Direct integral method 22614 3745 −77.98 %3.6
92595 17037 −80.23 %0.87

A conventional method to improve the accuracy of numerical calculations is to continue to refine
the mesh. However, this strategy may not work well to the point charge distribution as in our case due
to existent singularities in the solution as showed Figure 2a. In the first several mesh refinement steps,
the relative error gradually reduces as the mesh gets finer and reaches the minimum after two rounds
of refinements. However, further refinement leads to a gradual increase in the relative errors, even to a
greater error than one-time refinement. As a comparison, we calculate the relative error of a single
atom model with a uniform charge distribution instead of a singular point charge inside the sphere in
Figure 2b. As shown, mesh refinement consistently improved the accuracy of the calculations, which is
in accordance with the traditional finite element analysis.

(a) (b)

Figure 2. Relationship between the relative error and the times of mesh refinement: (a) single atom
model represented by a singular point charge at the center; and (b) single atom model represented by a
uniform charge distribution in the unit sphere.

The counter-intuitive observation of finer meshes with higher errors are, in our opinion, due
to singular charges. In theory, the potential at the position of the singular charge is infinite.
The electrostatic solvation energy was calculated in the solvated state and reference state (vacuum state).
However, this potential becomes finite in numerical simulation. We have to approximate the real
solution by the refinement of the mesh. Given the relative error of two iteration potentials in the
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numerical calculation, the numerical magnitude of the solution is larger (which is reasonably closer
to the real singularly infinite value) as the mesh becomes finer, and the absolute error of the iteration
potentials become larger too. The electrostatic solvation energy may be more erroneous from calculating
the difference between two larger values (the difference can be magnified by the absolute error).
The final electrostatic solvation energy is the balance between the relative error and the absolute error
of the iteration potentials. Please see the broken line graph Figure 3a between the potential at the
position of the singular charge and times of mesh refinement.

(a) (b)

Figure 3. Relationship between the potential at the position of the singular charge in the single
atom model and the times of mesh refinement: (a) potentials in the solvated state and reference state
(vacuum state); and (b) the difference of two potentials in (a).

As shown in Figure 3a, both potentials in the solvated and vacuum state gradually increase as the
size of the mesh decreases. In Figure 3b, the red line represents the potential difference, corresponding
to the analytic solution. It is easy to see that the potential difference gets closer to the red line in
the previous refinement (especially after two times of refinements) but moves away with the further
refinement. This explains the behavior in Figure 2a.

As shown in Figure 2a, the minimal relative error is obtained is obtained after two times of
refinements. We thus can analyze this mesh resolution and recommend it as a reference for accurate
FEM PB simulations. We calculate the average volume of the tetrahedrons elements within the concentric
sphere with a radius of 5 Å, and the corresponding length of edge for an equivalent averaged regular
tetrahedron is about 0.37 Å. Interestingly, this mesh resolution in FEM is found to be equivalent to a
cubic grid space of 0.25 Å in FDM, which coincides well with previous observations in finite difference
PB calculations.

2.2. Application of Lateral Periodic Boundary Condition

In Section 2.2.1, We use a DNA molecule to examine the effects of lateral periodic boundary
conditions and compare different numerical methods for solution of the PB equation; In Section 2.2.2,
We study the effects of the ion strength and membrane thickness on the electrostatic solvation energy
of the ion channel gA, and further discuss the importance of element recognition for the channel region.
In Section 2.2.3, We add the non-polar solvation energy part of the channel protein in membrane
environment to estimate the proper tilt angle of the channel protein.

2.2.1. Validation of Lateral Periodic Boundary Conditions

We consider a DNA molecule model possessing 778 atoms and −22 ec fixed charges. To apply the
lateral periodic boundary conditions, we need to ensure that the box faces are symmetric in the x and
y directions (the membrane plane). The parameters in this model are εm = 2 , εs = 80 and cbi = 0.05.

The presence of the singular charge distribution in Equation (4) indicates that its solution is not
continuous and is actually singular. The solution obtained with the methods developed in this work as
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described above is in fact a continuous approximation of the real solution. Another class of methods
as described in [12] is called decomposition approach. It aims to remove the singular component of
the potential and to solve a left regular equation using generic numerical methods. The decomposition
method can achieve accurate solution of the PB equation in the entire solute-solvent domain, but the
method so far only works for non-periodic problems (charge non-neutrality inside a molecule is an
issue in periodic situation, which will be addressed in the future work). Here, we will compare the
decomposition method for a non-period situation with the methods used in this work. The potential
decomposition method divides the potential into three parts [12]: a singular component G, a harmonic
component H and a regular component φr. The former two are restricted in the protein region to
capture the potential property due to the singular charge distribution. φr is the solution of a regular PB
equation without point charges. The corresponding electrostatic solvation energy in the decomposition
method is given by

∆Gele =
1
2

K

∑
i=1

qi(Hi + φr,i)

where K is the number of atoms in the molecule, and φr,i and Hi are the values of φr and H at the i-th
point charge, respectively.

The electrostatic energy of periodic and non-periodic systems should converge as the box size
is extended toward infinity as shown in Figure 4 (red line and green line). Inspection of the plot
shows that the non-periodic systems maintain a stable solvation energy in a large range of box sizes
but the periodic systems do not. When the box is relatively small in the periodic case the image
system has stronger effect, so electrostatic solvation energy is large (the absolute value) and as the
box gets bigger and bigger, electric interaction among image system becomes weak until it is close to
the result of non-periodic system. The results of the decomposition and non-decomposition methods
with non-periodic boundary conditions (green line and blue line) are very close. This further verifies
the feasibility and applicability of the non-decomposition method. We also compared with the result
obtained with the widely used software APBS [34]. The APBS solvation energy with a box size
of 50× 50× 50 Å3 and a grid space 0.25 Å is −3450.7 kcal/mol , which is in good agreement with
our calculated results (−3450.9 kcal/mol with box size of 50× 50× 50 Å3 using the decomposition
methods with a non-periodic boundary condition).

Figure 4. Calculation results of electrostatic solvation energies by different boundary conditions
and potential calculation methods vs. the size of box. The red line denotes periodic boundary
condition with non-decomposition method; the green line denotes using Dirichlet boundary condition
with non-decomposition method; the blue line denotes using Dirichlet boundary condition with
decomposition method.
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2.2.2. Application to the Channel Protein

Gramicidin A (PDB code: 1MAG) is one of the most widely studied ion channels. It forms aqueous
pores in lipid bilayers that selectively pass monovalent cations. Gramicidin A is a small 15-amino-acid
β helical peptide with a narrow pore.

The triangle surface of the gA is generated by TMSmesh and the tetrahedral mesh is generated
with Tetgen [35]. Figure 5 is a sectional drawing of gA channel surface mesh. The blue range represents
the location of membrane (in this article, it is from −15 Å to 15 Å in z-axis direction). The ion channel
(red) goes through the span of the membrane.

Figure 5. Sectional drawing of gA channel surface mesh. The molecular surface is shown in red, the
membrane region is shown in blue, the solvent region is shown in green and yellow. Dark green and
purple indicate the top and bottom of the box.

Figure 6 shows the relationship between electrostatic solvation energy and membrane dielectric
constant. We calculate four sets of data at the ionic strength of 0, 0.05, 0.25 and 0.5 M. The four groups
of data show basically a similar trend: higher εmem corresponds to lower solvation energy. The presence
of free ions has influence on the solvation energy of the channel protein, but an increase on the ion
strength does not seems to significantly affect the solvation energy.

Figure 6. The solvation energy changes with the dielectric coefficient at the membrane region in
different ionic strengths.
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Figure 7 shows the relationship between the thickness of the membrane and the electrostatic
solvation energy. Different colors are used to indicate different dielectric coefficient assigned in
the membrane region. In general, ∆Gele increases with the increase of the membrane thickness.
When εmem = 1, the difference in solvation energies from 30 to 10 Å of membrane thickness is the
largest among all data, which is more than 5.3 kcal/mol. In contrast, the difference for εmem = 8 is
slight (about 1.5 kcal/mol).

Figure 7. The relationship between the thickness of membrane and electrostatic solvation energy with
a box size of 50× 50× 50 Å3 with period boundary condition. The relative dielectric constant in
membrane is set to 1 (in blue), 2 (in red), 4 (in yellow), and 8 (in green), respectively.

To explore the important role of the channel/pore recognition, we compare models containing
different heights of the incorrectly added membrane in the pore region (HMP) with correctly recognized
pore region (assigned with high dielectric constant as in solvent). As shown in Figure 8, when the
height of the incorrectly added membrane decreases, the solvation energy is approaching that of the
original channel protein (HMP = 0). When the membrane dielectric coefficients is smaller (for example,
2 or 4), the incorrectly added membrane has stronger influence on the solvation energy (inferred by
the larger difference in calculated energies). This indicates that in PB modeling of membrane channel
proteins, correct recognition of the pore region is important and will make considerable influence on
the calculated results.

Figure 8. The effect of membrane in channel region on electrostatic solvation energy. The incorrectly
added membrane is put into the channel region on the base of original ion channel model (in green).
The thickness of the added membrane in the pore region (HMP) is 30, 20, and 10 Å, respectively.
The original ion channel is equivalent to the case HMP = 0.
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2.2.3. Non-Polar Contribution to Solvation Energy

The solution of Equation (4) yields the ∆Gele, which accounts for the electrostatic contribution to
the solvation free energy. Considering the non-polar contribution, the total solvation energy can be
roughly decomposed into two parts, as shown in Equation (2):

∆Gsol = ∆Gele + ∆Gnp (2)

The non-polar part ∆Gnp in the equation is usually associated with solvent accessibility (SA) and
surface tension parameter γ. To consider the the non-polar term in the presence of the membrane, we
adopted a modified SA-based non-polar solvation model [33]:

∆Gnp = γ
N

∑
i=1

S(zi)SAi (3)

where SAi is the solvent-accessible surface area of the i-th atom, γ is an empirical surface tension
parameter, and S(z) introduces the variation of the surface tension along the z direction in the
membrane environment.

Once ∆Gsol is obtained, we can in principle use it to estimate the tilt angles of ion channels via
searching for the lowest solvation energy with varied orientations of the channel protein. Figure 9
shows an energy curve for the dcd [36] ion channel. The calculation results show that the tilt angle
can be in the range between 10 and 20 degrees, which is roughly comparable with a reported tilt angle
between 20 and 30 [36]. The current PB-based solvation model for membrane protein still has a lot of
room for further improvement.

Figure 9. The solvation energy changes with the change of the tilt angle.

3. Materials and Methods

3.1. Finite Element Method of Poisson–Boltzmann Equation

The PB equation is widely used to consider continuum electrostatic interactions in implicit
solvation models. Its general form reads

−∇ · ε∇φ− λ
K

∑
i=1

cbie−ziec βφziec = ρ f (4)

where the characteristic function λ = 0 in the solute region , and λ = 1 in the solvent region.
β = 1

kBT is the reciprocal of Boltzmann energy composed of Boltzmann constant kB and the absolute
temperature T. cbi is the bulk concentration of the i-th ion specie with valence zi. ec is elementary
charge. ε is a spatial-dependent dielectric coefficient, φ is the electric potential. ρ f = ∑j qjδ(~r−~rj) is
the accumulation of point charges in the solute region, and qj is the fixed singular charge located at ~rj.
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The solution of the PB equation yields the electrostatic contribution (∆Gele) to the solvation free
energy (∆Gsol). ∆Gele is defined by

∆Gele = Gsys − Gre f

where Gsys is the electrostatic free energy of a molecule in the solvated state (ε = εs in the solvent region
and ε = εm in the solute region) and Gre f is the electrostatic free energy when a molecule is placed in a
space with uniform dielectric constant (ε = εm) in the absence of mobile ions. In the latter condition,
the second term on the left-hand side of in Equation (4) becomes zero and the Poisson–Boltzmann
equation turns into a Poisson equation.

The PB equation is solved twice with corresponding parameters for Gsys and Gre f using a finite
element method. Electrostatic solvation free energy can be calculated as

∆Gele =
1
2

N

∑
i=1

qi(φi,sys − φi,re f )

where φi,sys and φi,re f are the potentials at the position of the i-th atom in the solvated and reference
states, respectively.

This paper focuses on modeling membrane channel proteins. To this end, we introduce a
membrane region with a uniform dielectric coefficient into the PB model ε = εmem.

A dimensionless form of Equation (4) can be obtained by defining u = ecβφ. The weak form
of Equation (4) (in the dimensionless form) in the implicit membrane solvation model is to find
u ∈ H1

0(Ω), so that

∫
Ω
(ε∇u∇v)dr3 − e2

c β

ε0

∫
Ωs

K

∑
i=1

cbie−uzi vzidr3 =
ecβ

ε0

∫
Ωm

N

∑
j

qjδ(~r−~rj)vdr3, ∀v ∈ H1
0(Ω) (5)

where Ω consists of the solute region Ωm, the solvent region Ωs and the membrane region Ωmem, ε takes
the constant εm, εs and εmem in the corresponding region, and u is the dimensionless of potential φ by
taking u = ecβφ.

Equation (5) is nonlinear. We use a Newton method with an appropriate relaxation coefficient to
ensure the convergence. We take {Φj|j = 1, . . . , N} as the basis functions of the finite element space
and un as the n-th Newton iterative solution of u. In each iteration, we need to solve the equation:

F′(un)(un+1 − un) = −F(un) (6)

where

F(un)j =
∫

Ω
(εr∇un∇Φj)dr3 − e2

c β

ε0

∫
Ωs

K

∑
i=1

cbie−unzi ziΦjdr3

− ecβ

ε0

∫
Ωm

N

∑
j

qjδ(~r−~rj)Φjdr3

F′(un)l,j =
∫

Ω
(εr∇Φl∇Φj)dr3 +

e2
c β

ε0

∫
Ωs

K

∑
i=1

cbie−unzi z2
i ΦlΦjdr3

Equation (4) is usually solved in a finite domain Ω subject to Dirichlet boundary conditions

u(r) =
e2

c
kBT

K

∑
i=1

qi
ε|~r−~rj|

e−κ|~r−~rj |/
√

ε. (7)

where the square of the inverse Debye length κ2 = 2e2
c

kBT Is with the the ionic strength Is =
1
2 ∑N

i=1 cbiz2
i

and ε is a region-specific dielectric coefficient.
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The periodic boundary condition, in fact, mimics an infinitely periodic lattice, wherein the computation
grid represents the central cell [27]. In the implicit membrane solvent model, the membrane is infinitely
extended along the membrane plane (x-y plane) and limited in the direction of the channel (z axis). Therefore,
we take the Dirichlet boundary condition shown in Equation (7) on the top and bottom faces of the central
box and lateral periodic boundary condition (in both directions of x and y axes) on the side faces of the
central box.

The main idea in the FEM is to represent a domain with smaller subdomains called finite elements.
The distribution of the primary unknown quantity inside an element is interpolated based on the
values at the nodes or at the edges. The assembly of all elements results in a global matrix system
that represents the entire domain of the problem. The solution is obtained after solving the system.
When dealing with Dirichlet boundary condition on the box, this constraint is applied directly to the
linear system. However, for the lateral periodic boundary condition, the corresponding faces on the
boundaries in the periodic direction are marked with the same label. Thus, they are treated as the
same faces and shared by the two faces’ adjacent elements. In other words, the periodic boundary in
FEM can be handled through “stitching” the boundary adjacent elements and treating them as normal
interior elements (the boundary nodes share a same set of unknowns). The treatment mentioned above
is illustrated in Figure 10.

Figure 10. The treatment of the face gird in the direction of the periodic boundary conditions for the
finite element method (FEM).

3.2. Mesh Construction for Membrane Protein System

High quality surface and volume meshes form a necessary ground for numerical calculations,
especially for the finite element calculation. The structures of biomolecules are highly complex.
The addition of membranes increases the difficulty for the mesh construction. In this paper, we use a
previously published method to generate meshes for implicit membrane solvation models containing
membrane transport proteins [29]. The difficulty in the process of generating meshes for membrane
protein system is to identify the elements inside a channel (see Figure 1). In our previous work, we start
from an initial point inside the channel and use the “walk-and-detect” method to detect surrounding
elements along the six directions of the coordinate axes. After each step, a new detection point can
continue as a starting point until completing all the required elements. We can judge which element is
in the channel according to the correlation of the elements in the detection path.

The limitation of the previous walk-and-detect method is the fixed detection directions. Now we
improve it by walking in a random direction adaptively to adapt to the situation where the channel is
not perpendicular to the membrane (x-y plane) but with a tilt angle between the z-axis and the channel.
In addition, in order to ensure that the lateral periodic boundary conditions to be realized by FEM,
the mesh of the opposite box surfaces need to be consistent (one face can be considered as a copy of
the other by translation) in the periodic direction. Figure 10 shows the face grid is consistent in the
direction of the periodic boundary conditions.

Our FEM uses body-fitted mesh in which the mesh needs to conform to the molecular surface.
The molecular surface triangulation is a demanding task in FEM simulations. TMSmesh [37,38] and
NanoShaper [39,40] are two suggested programs for general molecular surface meshing. In this paper,
all the triangulated molecular surfaces are generated by either TMSmesh or NanoShaper. To ensure
the consistency of boxes in the periodic direction, we prepare the box surface meshes in accordance
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with the boundary conditions in advance. Once a molecular surface mesh is generated, the tetrahedral
volume mesh of the system-consisting of the molecule and the solvent box can be generated by the
program TetGen [35].

Figure 11 describes the volume mesh with emphasis on membrane-protein region of gramicidin
A (gA). Gramicidin A (PDB code: 1MAG) is one of the most widely studied ion channels. It forms
aqueous pores in lipid bilayers that selectively pass through monovalent cations. Gramicidin A is a
small 15-amino-acid β helical peptide with a narrow pore.

(a) (b)

(c)

Figure 11. Volume mesh of gramicidin A (gA): (a) Wire-frame of volume mesh conforming to the
boundary of a channel protein and membrane system; (b) the surface mesh of the membrane-protein
region; and (c) the upper boundary surface of the membrane-protein region, in which the membrane is
represented as a slab [29].

3.3. Treatments of Fixed Singular Charges

We employ two types of methods to treat the fixed singular charges: direct integral method and
charge assignment method. The latter contains three different strategies.

Direct integral method: The fixed charges are singular points which may cause numerical
difficulties. As in most finite difference treatments, the singular charges are assigned to neighboring
grids, which is equivalent to taking a continuous approximation of the original singular distribution.
Whereas in the FEM, the singular integral in the weak form Equation (5) actually can be directly
calculated as: ∫

Ωm

N

∑
j

qjδ(~r−~rj)vdr3 =
N

∑
j

qjv(~rj) (8)
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where the v(~rj) is the value of v at the position of ~rj. It is worth noting that the numerical solution of
the potential near the singular charge is sensitively determined by the mesh size due to the singularity
of the real potential. We will show in the next section the mesh size-dependent accuracy in solvation
energy calculations and discuss what mesh size is proper for FEM molecular simulations.

Charge assignment to distribute the singular charges: In addition, we can also test the charge
assignment methods in FEMs as in FDMs. Charge assignment is in fact to approximate the point
charge distribution ρ f (~r) by a continuous distribution ρ∗ with q∗j denoting the assigned charge at
the j-th node. The basic idea in the FEM is to partition a domain into a number of non-overlapping
elements (we use tetrahedrons in this paper), and to approximate the solution over each element by
means of a selected set of basis functions. The simplest basis functions are piecewise linear functions,
in which the four vertices of a tetrahedron are used as control points. In each element, we can express
the dimensionless potential u as

u(~r) =
4

∑
i=1

uiλi(~r)

where ui is the value of u at the i-th vertex of the element. The basis functions λi(~r) have the following
properties: they equal to 1 at the i-th vertex but 0 at the other three vertices. Once the coordinate of
unknown u is confirmed, we can calculate the corresponding barycentric coordinates {λ1, λ2, λ3, λ4}.
In geometry, λi(~r) denotes a volumetric ratio between the tetrahedron that encompasses~r and the
three vertices against the i-th vertex and the entire tetrahedron (see Figure 12).

Figure 12. Four vertices of the tetrahedron are used as control points. E represents a random point
inside the tetrahedron. λ2 for E denotes the volumetric ratio of the yellow tetrahedron (EA1 A3 A4) to
the entire tetrahedron (A1 A2 A3 A4). The same applies to λ1, λ3, λ4.

Charge assignment needs to ensure integral invariance for the fixed charges. In the following,
we derive three methods using piecewise linear functions as basis functions.

(1) Vertex-on-charge method: A direct thought is to constrain the mesh vertices on the fixed
charges (by adding extra constrained points when using Tetgen [35]). In this way, only one basis
function in an element is nonzero, so the integral value in the solute region is

∫
Ωm

ρ∗dr3 =
1
4

N

∑
j=1
|Tj|q∗j

where |Tj| is the sum of the volumes for all the elements containing the assigned charge q∗j . According

to total charge invariance, the assigned charge q∗j = 4
|Tj |

qj.
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(2) Average assignment method: A simple idea is to assign each charge equally to the neighboring
vertices within a truncating sphere radius. Suppose a charge pj is enclosed by a sphere with a radius rj.
The enclose vertices are treated equally and assigned with the same charges p∗. The integral of the
new distribution ρ∗ is equal to its L1-norm.∫

Ωm
ρ∗dΩ =‖ ρ∗ ‖1

Thus, the assigned charge q∗j =
qj
‖ρ∗‖1

.
(3) Weighted assignment method: It is unreasonable that all the nodes in the intercepting distance

play the same role in the average assignment method. A weighted assignment method can be
an improvement.

Inspired by the vertex-on-charge method, it is quite clear that we can assign the fixed charge qi to
the four vertices of the element and select barycentric coordinates as weights. The larger the component
of barycentric coordinates, the more charges are allocated to the corresponding vertices. Thus, the four
vertices are assigned with charges λ1qi, λ2qi, λ3qi, λ4qi, and the integral of this new distribution ρ∗ reads

∫
Ωm

ρ∗dΩ =
1
4

N

∑
i=1

(
4

∑
j=1
|Tj|λj)qi

where |Tj| is the sum of the volumes of the tetrahedrons containing the j-th vertex of the i-th assigned
charge. Therefore, all the assigned charges need to be scaled by a factor 4

∑4
j=1 |Tj |λj

.

The vertex-on-charge method needs a special treatment in the process of mesh generation.
Otherwise, it may cause poor mesh quality. The average assignment method does not need to
determine which elements the fixed charges are in but it ignores the different influences of different
related nodes. The weighted assignment method takes the difference of grid node into consideration
at a computational cost. In this paper, we compared the accuracy of the latter two methods with the
direct integral method in the Result section.

4. Conclusions

In this paper, we present a finite element method for PB electrostatics calculations of the membrane
channel systems with periodical boundary condition (FEPB). To verify the correctness of the program
for FEPB, especially for the treatment of the fixed singular charges, we compare three strategies in the
single atom model with the analytic solution and arrive at the conclusion that proper mesh refinement
can improve the computational accuracy. In the process of exploring the appropriate mesh size for
the FE calculations using direct integral method to treat the fixed singular charges (without charge
assignment), a mesh resolution about 0.36 Å is recommended in FEM (equivalent to a cubic grid
resolution about 0.25 Å in FDM) for a nearly optimal accuracy in the mesh construction. Further
refinement may increase the relative error.

The effect of lateral periodic condition is shown to be significant when the box size is at the same
order of channel protein size. In the model of the DNA molecule without membrane, The results of
decomposition and non-decomposition methods with non-periodic boundary condition are very close.
This further verifies the feasibility and applicability of the non-decomposition method. At the same
time, the results of APBS calculation are consistent with our calculations.

In the application of lateral periodic boundary conditions in the channel protein, the ion
concentration in the bulk plays a relatively less important role in the solvation calculation of channel
proteins relative to the thickness of membrane. Solvation energy tends to increase as the membrane
gets thicker especially for low εmem. The recognition of channel region is important because the
existence of membrane in the channel significantly reduces the solvation effect.

The non-polar contribution to solvation energy in the membrane environment has also been
incorporated into the PB model to calculate the total solvation energy. The estimation of the the tilt
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angle of the channel protein is a bit rough. More factors and more accurate non-electrostatic solvation
models are needed for this type of studies.

The related meshing tools and the solver FEPB are going to be available and can be executed at
the online scientific computing platform: xyzgate.com.
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Abbreviations

PB Poisson–Boltzmann
FEM Finite element method
FDM Finite difference method
BEM Boundary element method

FEPB
FEM for PB electrostatics calculations of the membrane channel systems with periodical
boundary conditions

TPM The thickness of the filled membrane in the pore region

References

1. Sharp, K.A.; Honig, B. Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev.
Biophys. Biophys. Chem. 1990, 19, 301–332.

2. Honig, B.; Sharp, K.; Yang, A.S. Macroscopic models of aqueous solutions: Biological and chemical
applications. J. Phys. Chem. 1993, 97, 1101–1109.

3. Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149.
4. Beglov, D.; Roux, B. Solvation of complex molecules in a polar liquid: An integral equation theory.

J. Chem. Phys. 1996, 104, 8678–8689.
5. Cramer, C.J.; Truhlar, D.G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics.

Chem. Rev. 1999, 99, 2161–2200.
6. Bashford, D.; Case, D.A. Generalized born models of macromolecular solvation effects. Annu. Rev.

Phys. Chem. 2000, 51, 129–152.
7. Baker, N.A. Improving implicit solvent simulations: A Poisson-centric view. Curr. Opin. Struct. Biol. 2005,

15, 137–143.
8. Chen, J.; Im, W.; Brooks, C.L. Balancing solvation and intramolecular interactions: Toward a consistent

generalized Born force field. J. Am. Chem. Soc. 2006, 128, 3728–3736.
9. Feig, M.; Chocholoušová, J.; Tanizaki, S. Extending the horizon: Towards the efficient modeling of large

biomolecular complexes in atomic detail. Theor. Chem. Acc. 2006, 116, 194–205.
10. Koehl, P. Electrostatics calculations: Latest methodological advances. Curr. Opin. Struct. Biol. 2006,

16, 142–151.
11. Im, W.; Chen, J.; Rd, B.C. Peptide and Protein Folding and Conformational Equilibria: Theoretical

Treatment of Electrostatics and Hydrogen Bonding with Implicit Solvent Models. Adv. Protein Chem. 2005,
72, 173–198.

12. Lu, B.Z.; Zhou, Y.C.; Holst, M.J.; McCammon, J.A. Recent progress in numerical methods for the
Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys. 2008, 37060, 973–1009.

13. Georgescu, R.E.; Alexov, E.; Gunner, M.R. Combining conformational flexibility and continuum electrostatics
for calculating pKas in proteins. Biophys. J. 2002, 83, 1731–1748.

14. Greene, D.; Botellosmith, W.M.; Follmer, A.; Li, X.; Lambros, E.; Luo, R. Modeling Membrane Protein–Ligand
Binding Interactions: The Human Purinergic Platelet Receptor. J. Phys. Chem. B 2016, 120, 12293.



Int. J. Mol. Sci. 2018, 19, 695 16 of 17

15. Swanson, J.M.J.; Henchman, R.H.; McCammon, J.A. Revisiting Free Energy Calculations: A Theoretical
Connection to MM/PBSA and Direct Calculation of the Association Free Energy. Biophys. J. 2004, 86, 67–74.

16. Luo, R.; Head, M.S.; Given, J.A.; Gilson, M.K. Nucleic acid base-pairing and N-methylacetamide
self-association in chloroform: Affinity and conformation. Biophys. Chem. 1999, 78, 183–193.

17. Holst, M.; Baker, N.A.; Wang, F. Adaptive multilevel finite element solution of the Poisson-Boltzmann
equation I. Algorithms and examples. J. Comput. Chem. 2000, 21, 1319–1342.

18. Baker, N.A.; Holst, M.; Wang, F. Adaptive multilevel finite element solution of the Poisson-Boltzmann
equation II. Refinement at solvent-accessible surfaces in biomolecular systems. J. Comput. Chem. 2015,
21, 1343–1352.

19. Chen, L.; Holst, M.J.; Xu, J. The Finite Element Approximation of the Nonlinear Poisson-Boltzmann
Equation. SIAM J. Numer. Anal. 2007, 45, 2298–2320.

20. Xie, D. New solution decomposition and minimization schemes for Poisson–Boltzmann equation in
calculation of biomolecular electrostatics. J. Comput. Phys. 2014, 275, 294–309.

21. Ulmschneider, M.B.; Ulmschneider, J.P.; Sansom, M.S.P.; Nola, A.D. A Generalized Born Implicit-Membrane
Representation Compared to Experimental Insertion Free Energies. Biophys. J. 2007, 92, 2338–2349.

22. Ulmschneider, J.P.; Ulmschneider, M.B. Folding Simulations of the Transmembrane Helix of Virus Protein
U in an Implicit Membrane Model. J. Chem. Theory Comput. 2007, 3, 2335–2346.

23. Spassov, V.Z.; Yan, L.; Szalma, S. Introducing an implicit membrane in generalized born/solvent
accessibility continuum solvent models. J. Phys. Chem. B 2002, 106, 8726–8738.

24. Im, W.; Feig, M.; Brooks, C.L. An Implicit Membrane Generalized Born Theory for the Study of Structure,
Stability, and Interactions of Membrane Proteins. Biophys. J. 2003, 85, 2900–2918.

25. Sakalli, I.; Schöberl, J.; Knapp, E.W. mFES: A Robust Molecular Finite Element Solver for Electrostatic
Energy Computations. J. Chem. Theory Comput. 2014, 10, 5095–51112.

26. Callenberg, K.M.; Choudhary, O.P.; de Forest, G.L.; Gohara, D.W.; Baker, N.A.; Grabe, M. APBSmem:
A Graphical Interface for Electrostatic Calculations at the Membrane. PLoS ONE 2010, 5, e12722.

27. Botellosmith, W.M.; Luo, R. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical
Solutions of Periodic Poisson-Boltzmann Equation. J. Chem. Inf. Model. 2015, 55, 2187–2199.

28. Xiao, L.; Diao, J.; Greene, D.; Wang, J.; Luo, R. A Continuum Poisson-Boltzmann Model for Membrane
Channel Proteins. J. Chem. Theory Comput. 2017, 13, 3398–3412.

29. Liu, T.; Bai, S.; Tu, B.; Chen, M.; Lu, B. Membrane-Channel Protein System Mesh Construction for Finite
Element Simulations. Mol. Based Math. Biol. 2015, 3, 128–139.

30. Sharp, K.A.; Nicholls, A.; Fine, R.; Honig, B. Reconciling the magnitude of the microscopic and macroscopic
hydrophobic effects. Science 1991, 252, 106–109.

31. Eisenberg, D.; Mclachlan, A.D. Solvation energy in protein folding and binding. Nature 1986, 319, 199–203.
32. Cramer, C.J.; Truhlar, D.G. An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies

of Aqueous Solvation. Science 1992, 256, 213–217.
33. Tanizaki, S.; Feig, M. A generalized Born formalism for heterogeneous dielectric environments: Application

to the implicit modeling of biological membranes. J. Chem. Phys. 2005, 122, 124706.
34. Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.; McCammon, J.A. Electrostatics of nanosystems: Application to

microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041.
35. Si, H. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. 2015, 41, 11.
36. Song, C.; Weichbrodt, C.; Salnikov, E.S.; Dynowski, M.; Forsberg, B.O.; Bechinger, B.; Steinem, C.; de Groot, B.L.;

Zachariae, U.; Zeth, K. Crystal structure and functional mechanism of a human antimicrobial membrane
channel. Proc. Natl. Acad. Sci. USA 2013, 110, 4586–4591.

37. Chen, M.; Lu, B. TMSmesh: A Robust Method for Molecular Surface Mesh Generation Using a Trace
Technique. J. Chem. Theory Comput. 2011, 7, 203–212.

38. Chen, M.; Tu, B.; Lu, B. Triangulated manifold meshing method preserving molecular surface topology.
J. Mol. Graph. Model. 2012, 38, 411–418.



Int. J. Mol. Sci. 2018, 19, 695 17 of 17

39. Decherchi, S.; Rocchia, W. A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces
at the Nanoscale. PLoS ONE 2013, 8, e59744.

40. Bajaj, C.L.; Xu, G.L.; Zhang, Q. Bio-molecule Surfaces Construction via a Higher-Order Level-Set Method.
J. Comput. Sci. Technol. 2008, 23, 1026–1036.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results and Discussion
	Validation for the Treatments of Fixed Singular Charge
	Application of Lateral Periodic Boundary Condition
	Validation of Lateral Periodic Boundary Conditions
	Application to the Channel Protein
	Non-Polar Contribution to Solvation Energy


	Materials and Methods
	Finite Element Method of Poisson–Boltzmann Equation
	Mesh Construction for Membrane Protein System 
	Treatments of Fixed Singular Charges

	Conclusions
	References

