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We use a microscopically motivated Generalized Langevin Equation (GLE) approach to link
the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs).
The dielectric function calculated based on the GLE is compared with experimental data for the
paradigmatic case of two OGs: Freon 112 and Freon 113, around and above Tg. The memory
function is related to the integral of the VDOS times a spectral coupling function γ(ωp), which tells
the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies.
The comparative analysis of the two Freons reveals that the appearance of a secondary β relaxation
in Freon 112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused
by stronger anharmonicity (absent in Freon 113), and is associated with comparatively lower boson
peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics
(VDOS with boson peak, dynamical heterogeneity, memory effects and dissipation, anharmonicity)
into a single model.

I. INTRODUCTION

Structural glass (SG) formers, which are usually ob-
tained from supercooled liquids in which translational
and orientational degrees of freedom are frozen below
the glass transition temperature Tg, exhibit a complex
response function on vibrational excitations [1–4]. When
they undergo a rapid cooling to avoid crystallization,
some anomalous physical properties emerge. For exam-
ple, as temperature decreases, the relaxation time gener-
ally shows a stronger increase, faster than what is given
by the Arrhenius law (super-Arrhenius behavior). For
such cases, the temperature (T ) dependence of relaxation
time (τ) is given through the empirical Vogel-Fulcher-
Tammann (VFT) law [5, 6], or by physically-motivated
double-exponential dependence of τ on T , which in-
cludes the dependence on the steepness of interatomic
repulsion and on thermal expansion via the more re-
cent Krausser-Samwer-Zaccone (KSZ) relation [7]. To
account for the deviation of the Arrhenius temperature
dependence, i.e., for the faster increase of the relaxation
time (or viscosity), the kinetic fragility index is defined as

m = ∂ log τ
∂(Tg/T )

∣∣
T=Tg

, ranging between≈ 16 (strong glasses)

and 200 (fragile glasses) [10, 11].

In addition to the structural glasses, orientational
glasses (OGs) can be obtained from orientationally disor-
dered (OD) phases or plastic phases [20–22]. OD phases
are high-symmetry crystal lattices in which weakly in-
teracting molecules are orientationally disordered. On
cooling, some OD phases exhibit the same features as
structural (canonical) glass formers [21, 23–25]. With
respect to the fragility index, OGs are ususally strong
[10] whereas for SGs a wide range of fragility values

are found, the most fragile being the cis- or trans-
decahydronaphthalene (m ≈ 147) [26]. The most fragile
OGs known to date contains Freon 112 (CCl2F-CCl2F,
hereinafter F112) with m = 68 [25]. On the other hand,
for Freon 113 (CCl2F-CClF2, hereinafter F113), the ki-
netic fragility index was calculated to be m = 127 , which
is the highest so far reported for an OG [27].

Although mode-coupling theory provides a good de-
scription of dielectric relaxation of liquids for tempera-
tures higher than the liquid crossover temperature Tc [9],
the main relaxation mechanism by which supercooled liq-
uids undergo a liquid-solid transition-like at or around Tg
has remained elusive [8]. The α-relaxation, typically as-
sociated with collective and strong cooperative motions
of a large number of entities rearranging in a long-range
correlated way, is related to the slowest decay of den-
sity correlations and is widely observed in dielectric and
mechanical responses.

For supercooled liquids, the empirical Kohlrausch
stretched-exponential function ∼ exp (−(t/τ)β) provides
a good fit for the dielectric loss of the α-relaxation, by
taking the Fourier transform from time into frequency do-
main. Further, starting from the first principle assump-
tion that the microscopic Hamiltonian can be modelled
using a classical particle-bath coupling of the Caldeira-
Leggett type, a simple and explicit relation between the
dielectric relaxation function and the VDOS of SGs has
been presented to provide a good interpretation of the
α-peak and stretched-exponential relaxation, through a
memory function of friction [12].

An extra shoulder or wing in addition to α-relaxation
also decorates the imaginary part of the dielectric re-
sponse, which is referred to as the β-relaxation, or as
Johari-Goldstein or secondary relaxation. As discov-
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ered by Johari and Goldstein [13] in glasses of rigid
molecules and as described by the coupling model [14],
the secondary relaxation involves the motion of the en-
tire molecule. Knowing the underlying mechanism of
β-relaxation, is of great importance for understanding
many crucial unresolved issues in glassy physics and ma-
terials science and consequently for a wide potential ap-
plication in technologies, ranging from glass transitions,
deformation mechanisms, to diffusion and the breakdown
of the Stokes-Einstein relations, physical ageing, as well
as the conductivity of ionic liquids and the stability of
glassy pharmaceuticals and biomaterials. Yet, the na-
ture and mechanism of the β-relaxations are still not clear
[15–18].

Previous study on thermal conductivities of Freon 112
and Freon 113 reveals the existence of quasilocalized low-
energy vibrational modes (soft harmonic oscillators as de-
scribed through the soft potential model [19]) at energy
lower than the values of the maximum of the boson peak
compared with other OGs, which results in an increase
of VDOS [23]. It was thought that the high values of
kinetic (m = 127) fragility of F113 is produced by strong
orientational correlations, which is evidenced by low val-
ues of the stretching exponent in Kohlrausch stretched-
exponential function close to Tg, where only α-relaxation
is observed with no sign of the β-relaxation. On the con-
trary, in dielectric spectra of F112, β-relaxation emerges
as temperature decreases to Tg and becomes evident be-
low Tg.

The above experimental facts are the origin of our
interest in applying a microscopic theoretical model to
plastic crystals. In particular, freons F112 and F113 are
chemically and molecularly similar compounds displaying
glassy states (they both belong to the series C2X(6−n)Yn,
with X, Y=Cl, F, Br, and n = 0, ..., 6.), but with com-
pletely different dynamics and relaxation. This provides
a unique opportunity to explain, from a microscopic point
of view, the physical origin of secondary β relaxation.

We therefore develop a modified theoretical model in
the spirit of Ref. [12], to account for both α and β re-
laxation and we apply it to OG states of freons F112
and F113. From the analysis of experimental data, it
is evident that: i) the proposed generalized Langevin
equation theory successfully describes both α and β re-
laxation process in the dielectric response, by using the
experimentally measured VDOS as input; ii) the model
provides a new insight into the dynamical origin of the
secondary relaxation; iii) the model also clarifies, for the
first time, which eigenmodes dynamically couple with the
secondary relaxation process. This framework represents
a new microscopic modelling of the glassy relaxation in
orientationally disordered crystals for which no theoreti-
cal model was available so far.

II. THEORY

Focusing on a tagged particle (e.g. a molecular sub-
unit carrying a partial charge which reorients under the
electric field), it is possible to describe its motion un-
der the applied field using a particle-bath Hamiltonian
of the Caldeira-Leggett type, in the classical dynamics
regime [12]. The particle’s Hamiltonian is bi-linearly cou-
pled to a bath of harmonic oscillators which represent all
other molecular degrees of freedom in the system [28].
Any complex system of oscillators can be reduced to a
set of independent oscillators by performing a suitable
normal mode decomposition. This allows us to identify
the spectrum of eigenfrequencies of the system, i.e. the
experimental VDOS, with the spectrum of the set of har-
monic oscillators forming the bath.

A. Particle-bath Hamiltonian and GLE

The particle-bath Hamiltonian under a uniform AC
electric field, is given by [12]: H = HP + HB where
HP = P 2/2m + V (Q) − qeQE0 sin (ωt) is the Hamil-
tonian of the tagged particle with the external electric
field (qe is the charge carried by the particle), HB =

1
2

∑N
α=1

[
P 2
α

mα
+mαω

2
α

(
Xα − Fα(Q)

ω2
α

)2]
is the Hamilto-

nian of the bath of harmonic oscillators that are cou-
pled to the tagged particle [28]. Two parts in HB are of
physical interest: The first part is the ordinary harmonic
oscillator; the second is the coupling term between the
tagged particle position Q and the bath oscillator posi-
tion Xα. The coupling function is taken to be linear in
the displacement of the particle, Fα(Q) = cαQ, where cα
is known as the strength of coupling between the tagged
atom and the α-th bath oscillator. Hence, there is a
spectrum of coupling constants cα by which each parti-
cle interacts with all other molecular degrees of freedom
in the system. This spectrum of coupling strengths will
play a major role in the subsequent analysis. The equa-
tion of motion for the tagged particle can then be derived
straightforwardly, which leads to the following GLE

q̈ = −V ′(q)−
∫ t

−∞
ν(t′)

dq

dt′
dt′ + qeE0 sin (ωt). (1)

where the non-Markovian friction or memory kernel ν(t)
is given by:

ν(t) =
∑
α

c2αmα

ω2
αm

cos (ωαt). (2)

Note we have converted into rescaled coordinates for
standard normal-mode analysis: q = Q

√
m. This means

V (Q) and V (q) are basically different functions. We have
also redefined qe = e/

√
m as the (partial) reduced charge

in rescalled coordinates. Then we can let the spectrum
be continuous and cα be a function of ωp which leads to
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the following expression for the friction kernel:

ν(t) =

∫ ∞
0

dωpD(ωp)
γ(ωp)

2

ω2
p

cos (ωpt), (3)

where γ(ωp) is the continuous spectrum of coupling con-
stants, i.e. the continuous version of the discrete set {cα}
averaged over all tagged particles. For any given (well
behaved) VDOS function D(ωp), the existence of a well-
behaved function γ(ωp) that satisfies Eq. (3) is guar-
anteed by the fact that we can always decompose ν(t)
into a basis of {cos (ωpt)} functions, by taking a cosine
transform. The inverse cosine transform in turn gives the
spectrum of coupling constants γ(ωp) as a function of the
memory kernel:

γ2(ωp) =
2ω2

p

πD(ωp)

∫ ∞
0

ν(t) cos (ωpt)dt. (4)

This coupling function contains information on how
strongly the particle’s motion is coupled to the motion
of other particles in a mode with vibrational frequency
ωp. This is an important information, because it tells us
about the degree of long-range anharmonic couplings in
the motion of the molecules.

B. Memory function modelling

Looking at Eq. (3), it is evident that the particle-
bath Hamiltonian does not provide any prescription to
the form of the memory function ν(t), which can take any
form depending on the values of the coefficients cα [28].
Hence, a shortcoming of particle-bath models is that the
functional form of ν(t) cannot be derived a priori for a
given system, because, while the VDOS is certainly an
easily accessible quantity from simulations of a physical
system, the spectrum of coupling constants {cα} is basi-
cally a phenomenological parameter.

However, for a supercooled liquid, the time-dependent
friction, which is dominated by slow collective dynamics,
has been famously derived within kinetic theory (Boltz-
mann equation) using a mode-coupling type approxima-
tion by Sjoegren and Sjoelander [29], and is given by the
following elegant expression:

ν(t) =
ρkBT

6π2m

∫ ∞
0

dkk4Fs(k, t)[c(k)]2F (k, t) (5)

where k is the wavevector, c(k) is the direct correlation
function of liquid-state theory, Fs(k, t) is the self-part of
the intermediate scattering function (ISF) F (k, t) [29].
All of these quantities are functions of the wave-vector
k. Clearly, the integral over k leaves a time-dependence
of ν(t) which is controlled by the product Fs(k, t)F (k, t).
For a chemically homogeneous system, Fs(k, t)S(k, t) ∼
F (k, t)2, especially in the long-time regime.

From theory and simulations, we know that in super-
cooled liquids F (k, t) ∼ exp (−(t/τ)b) for some τ and b,

when only α-relaxation is present. When both α and β
relaxation are present, the ISF has a two-step decay (one
for α and one for β) [2]. It easy to check that a two-step
decay of the ISF within Eq. (5) is perfectly compati-
ble with a memory function ν(t) given by a sum of two
stretched-exponential terms.

While the elegant relation by Sjoegren and Sjoelander
Eq. (5) relies on mode-coupling type assumptions which
may be questionable below Tg, we also point out that a
more physically meaningful justification comes from its
ability to generate an intermediate scattering function
(ISF) with a two-step decay for Freon 112 if ν(t) is a sum
of two stretched-exponentials, which is able to describe
dielectric data (see below). This qualitative behavior for
the ISF with a two-step decay has been demonstrated for
the Freon 112 system in simulations, e.g. Ref. [30], and
also in experiments [31]. Hence, despite the fact that the
Sjoegren and Sjoelander relation relies on assumptions of
mode-coupling type, the relationship between our mem-
ory function and the intermediate scattering function is
physically meaningful and supported by data in the lit-
erature.

Hence, in light of the above discussion, we will take the
following phenomenological expression for our memory
function

ν(t) = ν0
∑
i

e−(t/τi)
bi
, (6)

where τi is a characteristic time-scale, with i = 1 for
pure α relaxation and i = 1, 2 for co-existing α and β
relaxation. ν0 is a constant pre-factor.

C. Dielectric response and link with the VDOS

Following the same steps as those described in Ref.[12],
we obtain the complex dielectric function

ε∗(ω) = 1−A
∫ ωD

0

D(ωp)

ω2 − iων̃(ω)− ω2
p

dωp (7)

where A is an arbitrary positive rescaling constant, ωD
is the Debye cut-off frequency (i.e. the highest eigenfre-
quency in the VDOS spectrum), and tilde over ν denotes
Fourier transformation. As one can easily verify, if D(ωp)
were given by a Dirac delta, one would recover the stan-
dard simple-exponential (Debye) relaxation.

The VDOS is an important key input to the theoret-
ical framework. The essential experimental VDOS were
measured by means of inelastic neutron scattering using
the direct spectrometer MARI of the ISIS facility (UK)
and are shown in Fig. 1. The VDOS of F113 clearly
exhibits a much more significant excess of low-frequency
(boson-peak) modes, with respect to F112, in the range
2− 5meV.

For F113, we use only one stretched-exponential term
in the memory ν(t), hence i = 1 in Eq. (6). For F112,
instead, ν(t) is the sum of two terms (i = 1, 2 in Eq. (6)),
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FIG. 1: Experimental vibrational density of states
(VDOS) for Freon 112 (blue) and Freon 113 (yellow).
The data for Freon 112 were published in Ref. [24],
while the data for Freon 113 were taken from Ref. [27].

both of which are stretched-exponential. The first term
represents mainly the α process although it also affects
the β relaxation (hence the two are coupled, as one can
anticipate in the spirit of the Ngai coupling model [17]).
The the second term describes only β relaxation. Thus,
the time-scale of β relaxation is not identically equal to
the time-scale of the second stretched-exponential pa-
rameter, which is τ2. This amounts to the fact that β
relaxation is a process which is cooperative (hence cou-
pled to the α) and at the same time quasi-localized.

In terms of physical meaning, τ1 represents the time-
scale of α-relaxation, and the stretching exponent is re-
lated to the distribution of escape times from larger
metastable basins in the glassy energy landscape. This is
because stretched-exponential form arises from the inte-
gral average of simple exponential decays weighted by a
distribution of time-scales, the broader the distribution
the lower the resulting stretching-exponent [33]. Sim-
ilarly, the second stretched-exponential required to de-
scribe β-relaxation is possibly related to the distribution
of smaller wells within the same meta-basin.

III. COMPARISON WITH EXPERIMENTAL
DATA OF DIELECTRIC LOSS

Fitting parameters for F112 and F113 at different tem-
peratures are listed in Table I & II and resulting fittings
of dielectric loss are displayed in Fig. 2.

For the fitting procedure, we have assumed that D(ωp)
and the overall scaling for the height of curve, A, are T -
independent.

Temperature 91K 115K 131K
b1 0.45 0.625 0.7
τ1 (seconds) 0.558 3.12 · 10−7 6.99 · 10−9

b2 0.2 0.56
τ2 (seconds) 1.55 · 10−2 5.48 · 10−8

ν0 4 · 106 3.9 · 106 6.3 · 106

TABLE I: Parameters of the memory function for Freon
112.

Temperature 72K 74K 76K
b 0.26 0.3 0.35
τ (seconds) 7.133 0.326 2.38 · 10−2

ν0 8.28 · 106 7.28 · 106 6.28 · 106

TABLE II: Parameters of the memory function for
Freon 113.

IV. PHYSICAL MECHANISM OF SECONDARY
RELAXATION

To physically understand the difference between F112
and F113, their dynamical coupling parameters (Eq. (4))
have been analysed (see Fig. 3). In general, the cou-
pling spectrum decays from the highest Debye cut-off
frequency of short-range high-frequency in-cage motions,
down to the low eigenfrequency part where the coupling
goes up with decreasing ωp towards zero, due to phonons
or phonon-like excitations, which are collective and long-
wavelength and hence result in a larger value of γ.

There is a substantial difference between F112 and
F113, especially in the middle part of the coupling spec-
trum where F112 shows much stronger coupling, which
corresponds to medium-range correlated motions. This
means that motions are strongly coupled also in the
intermediate eigenfrequency domain, where modes are
typically quasi-localized, which corresponds to meso-
scopic string-like motions [32] typically associated with β-
relaxation [34]. In addition, the F113 spectrum is overall
comparatively much lower in that energy regime, which
clearly indicates that, for F113, the intermediate part of
the coupling spectrum, i.e. the one of mesoscopic and
string-like motions, is scarcely populated and one has a
steep decay from the short-range high-frequency in-cage
motions to the long-wavelength phonon-like excitations,
with not much in between in the mesoscopic range. Hence
in F113, the anharmonicity is much less prominent and
intermediate excitations are not important. This origin
of the secondary relaxation aligns with the simulation
results of Refs. [35, 36] which point at the cooperative,
though localized or quasi-localized, nature of secondary
relaxation.

This also gives insights into the difference in the form
of the memory function used for the fittings of the two
Freons. Upon focusing on the integration in Eq. (4):
the integral of ν(t) from 0 to ∞ increases from high ωp
(short-range and fast vibration) to low ωp (long-range
and slow vibration), since for slow collective vibration
there is clearly much more extended friction due to con-
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FIG. 2: Fitting of experimental data using the proposed
theoretical model for Freon 112 (a) at 91 K (red circles),
115 K (brown squares) and 131 K (blue diamonds) and
for Freon 113 (b) at 72 K (red circles), 74 K (brown
squares) and 76 K (blue diamonds). Solid lines are the
theoretical model presented here. A rescaling constant
was used to adjust the height of the curves since the
data are in arbitrary units. Experimental data for
Freon 112 were taken from Ref. [25], while data for
Freon 113 were taken from Ref. [27].

tact between many particles all moving at the same time.
Thus, the integral factor definitely contributes to the cou-
pling being overall stronger for F112 than for F113. How-
ever, also the boson peak contributes to the coupling of
F112 being larger than that of F113 (via the VDOS in
the denominator of Eq. (4)) in the specific frequency
range that corresponds to the boson peak). The boson
peak maximum (in D(ω)/ω2, not shown) for both mate-
rials is of the order of 2 − 3 meV, i.e., ≈ 0.5 − 0.7 THz,
which corresponds virtually to the lowest minimum in
the coupling function (see Fig. 4) where, in addition, the
minimum value is much lower for F113 (with larger bo-
son peak) than for F112. That means that in such region
not only we have larger dynamical coupling for F112 due
to stronger medium-range correlations/anahrmonicity, in
general, but also for the additional effect of boson peak
(soft weakly-coupled modes, see Fig. 1) being smaller for
F112 in that regime of vibrations.
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FIG. 3: Spectrum of coupling constants of Freon 112
(a) and Freon 113 (b) as a function of the vibrational
eigenfrequency computed according to Eq. (4) using the
phenomenological memory functions ν(t) used in the
fitting of dielectric response in Fig. 2, with same colour
setting for the different temperatures.

As far as temperature effects on the coupling strength,
we must point out first that, due to the fragility dif-
ference between the two freons, the temperature range
in which fittings were performed are noticeably differ-
ent. For F113 (Tg = 71 K) experimental dielectric func-
tions are available at the highest reduced temperature of
Tr = 76/71 = 1.07, whereas for F112 (Tg = 90 K) the
highest value is around Tr = 131/90 = 1.46. Bearing this
in mind, it can be noticed that upon increasing temper-
ature, the ”going up” tail at decreasing ωp towards zero
becomes smaller, which means less phonon-like modes.
In general, absolute coupling values shift down (lower
coupling) with the increase of temperature, as expected,
and the decay of correlated motions from high ωp to low
ωp becomes also somewhat steeper with increasing T .

V. DISCUSSION AND CONCLUSIONS

The stronger coupling between collective and individ-
ual motions for F112 could be a physical explanation
of why in the dielectric study of F112 [25] the authors
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described so many problems to disclose α- from β-
relaxation. For F112 collective vibrations, medium-
ranged and slow motions are much more important
than for F113, in such a way that individual molecular
motions (β-relaxation) should correlate, i.e. are much
more coupled, with motions of surrounding molecules
(collective motions associated with the α-relaxation).
And, even more, if slow vibrations are more important
and more heterogeneous in F112, this should mean
stronger coupling between collective and individual
motions, so then, much more phonon scattering for F112
and, as a consequence, lower thermal conductivity for
F112 than for F113, as it has been experimentally shown
(see Fig. 5 in [23]). In addition, it should be emphasized
that the higher thermal conductivity for F113, analysed
in terms of the soft-potential model, was also attributed
to the low coupling strength between sound waves and
the soft quasi-localized modes. Moreover, the dynamical
coupling function γ extends over a frequency range much
broader than that of the boson peak, and thus the role of
the boson peak is confined to a specific frequency range
which is around the minimum in the coupling spectrum.
The fact that boson peak is stronger for F113 leads to
a lower coupling in that region and contributes to the
already lower coupling of F113 compared to F112 in that
region. Because the boson peak is associated with soft
modes, which ”break” the coherence of phonons (hence
more phonon scattering), it leads to even lower coupling
in the boson peak frequency range for F113.

In conclusion, we have presented a new approach which
makes it possible to directly link the vibrational density
of states of orientational glasses measured experimentally
with the macroscopic dielectric response and the under-
lying heterogeneous dynamics. Furthermore, the model

effectively accounts also for the medium and long-range
anharmonic coupling among molecular degrees of free-
dom and allows one to disentangle α and β relaxation on
the basis of the extent of dynamical coupling in different
eigenfrequency sectors of the vibrational spectrum. The
appearance of secondary β relaxation is associated with
higher values of the dynamical coupling strength of corre-
lated particle motions in the regime of mesoscopic quasi-
localized motions (e.g. string-like motions, vortices, etc.
[34]) and is also promoted by a lower excess of soft modes
in the boson peak frequency range.

In our model, we require two forms of stretched ex-
ponentials in the memory function, hence two relaxation
times, to fit both alpha and beta relaxations. The beta-
relaxation process cannot be recovered with only one
stretched exponential (i.e. with only one term in the
memory function). One of the stretched exponentials
dominates the alpha peak while the co-existing effect of
two stretched exponential terms in the memory function
gives rise to the secondary relaxation. In other words, the
two terms of memory function both affect the secondary
relaxation, whereas only one of them controls the alpha
relaxation. This implies that there is indeed a deep mi-
croscopic dynamical coupling between the two relaxation
processes, which has not been unveiled so far. In future
work this framework will be used to provide more micro-
scopic insights into the dynamical nature of this coupling
and in the context of the Ngai coupling model [18].
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