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Abstract. This paper introduces a way to learn cross-modal convolu-
tional neural network (X-CNN) architectures from a base convolutional
network (CNN) and the training data to reduce the design cost and
enable applying cross-modal networks in sparse data environments. Two
approaches for building X-CNNs are presented. The base approach learns
the topology in a data-driven manner, by using measurements performed
on the base CNN and supplied data. The iterative approach performs
further optimisation of the topology through a combined learning pro-
cedure, simultaneously learning the topology and training the network.
The approaches were evaluated agains examples of hand-designed X-
CNNs and their base variants, showing superior performance and, in
some cases, gaining an additional 9% of accuracy. From further consid-
erations, we conclude that the presented methodology takes less time
than any manual approach would, whilst also significantly reducing the
design complexity. The application of the methods is fully automated
and implemented in Xsertion library.1

Keywords: deep learning, model selection and structure learning, op-
timisation algorithms, evolutionary neural networks.

1 Introduction

In recent years, deep learning has become a popular approach, revolution-
ising various fields, including computer vision [1], agent control [2] and natural
language processing [3]. However, training such deep neural nets requires vast
amounts of labeled data, a limiting factor in many fields. An example of this
is biomedical research, where few data examples can be obtained because the
number of patients taking part in clinical studies is limited.

A proposal by Veličković et al. [4] has introduced cross-modal convolutional
networks (X-CNNs) that use several constituent CNNs to process parts of wide
data. This architecture has shown performance improvements in sparse data
environments [5], offering a new way to handle different types of data present
(different modalities). In X-CNNs, separate CNN super-layers are utilised to
process each modality individually, producing specialised feature detectors. The

1 Code is publicly available at https://github.com/karazijal/xsertion.
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classifier part of the network is shared between super-layers. Additionally, cross-
modal connections are established between super-layers to share information
between modalities. However, this architecture carries a significant overhead –
the number of design decisions concerning the network composition grows at
least quadratically with the number of different types of data available. This
means that such a technique is not well suited for widespread application.

This paper proposes a solution to this problem by introducing two meth-
ods to construct cross-modal architectures automatically, learning the required
architecture from a base untrained convolutional network and a portion of the
training data. This serves to both reduce the design effort and facilitate easy
application by non-expert practitioners. Furthermore, the evaluation of the ap-
proaches showed that not only are the automatically constructed models better
than hand-constructed ones, but also the additional time and design effort re-
quirements are superior to those of the manual approaches. The next section
discusses related work, followed by explanation of the methods, evaluation and
conclusions.

2 Related Work

The idea to learn neural network architectures is not new and there has been
substantial previous work on this. Initially, this was primarily achieved through
the use of evolutionary algorithms and meta-heuristic optimisation approaches
such as particle swarm optimisation [6], evolutionary programming net by Yao
et al. [7], neuroevolution of augmenting topologies by Stanley et al. [8] as well
as variants of neural trees by Zhang et al. [9] and Chen et al. [10] to name
a few. However, all these approaches were aimed at a single MLP problem,
and involved constructing ensembles of models through time-consuming runs of
cross-validation whilst still operating in low-dimensional problem spaces.

Initial attempts at adjusting deep neural nets algorithmically were primarily
focused on reducing the computational complexity. Molchanov et al. [11] used
train-prune iterations to remove connections from CNN models. Similarly, Hu
et al. [12] utilised a more data-driven approach to remove whole neurons. Wen
et al. [13] proposed structured sparsity learning as a way to regularise CNNs to
produce a more compact form. However, all these approaches relied on having
a trained CNN and aimed to simplify its structure by removing elements for
computational- and energy- efficiency with a minimal reduction in performance.
This project, instead, aims to adjust and add topological elements to the CNNs
algorithmically to increase performance.

Work by Zoph et al. [14], Real et al. [15] and Baker et al. [16] revisited ideas
of evolutionary algorithms, applying them to deep learning by training an agent
to design NNs using reinforcement learning. The approaches showed competitive
results but search space could not include cutting-edge topological modifications,
and came with extensive computational, data and time costs. Work presented
here concentrates on introducing one such novel topology automatically and



could be used in conjunction with their work to achieve state-of-the-art results
in low-data availability environments.

3 Methodology

Two methods, the base and iterative approach, take as input an untrained
CNN to use as a blueprint for the sort of network that would be appropriate for
the dataset. Then, a portion of training data is used to infer and introduce two
topological aspects of X-CNNs: separation into super-layers and introduction of
cross-modal connections. The methods produce networks with similar number
of parameters to the input CNN, maintaining similar computational complexity.

It should be noted that the separation of data into different modalities falls
outside the scope of these approaches, and could be handled either through un-
supervised methods such as clustering or done manually through domain knowl-
edge. To carry out work here, we utilised known modalities for visual data of
luminance and chroma difference, drawing inspiration from the human visual
system.

3.1 Base Approach

We conducted a series of ablation experiments to investigate important as-
pects of X-CNN architecture. This allowed decomposing the problem of CNN→X-
CNN transform into several steps that can be carried out algorithmically. In
short, the base approach constructs the cross-modal architecture using measures
of generalisation accuracy of each modality, to calculate hyper-parameters for
each super-layer and connections between them, whilst a heuristically guided
search is used to find connection positions. This reduces the design complex-
ity from a quadratic of a number of modalities to two hyper-parameters α, β.
The following details the key steps (Fig. 1) in the base approach with relevant
findings from the experiments.

Modality Informativeness (Steps 1 and 2). To perform CNN → X-CNN
transformation some notion of how informative modality is was required. In deep
learning, near-raw data is used in the models, so existing methodologies, such
as feature selection and ranking, are not suited to examine the significance of
modalities. Here, we found accuracy measures performed on the base CNN using
only one modality to be suitable for the task, giving a modality informativeness
measure nli for modality i.

Fig. 1. The steps of the base automatic approach to creating X-CNN topology.



Super-layers (Steps 3 and 4). Super-layers are instantiated as copies of the
base CNN, which take as input only one modality and share the classifier part of
the network. However, experiments have shown that giving more feature maps
to a more informative data split allows appropriate feature representation to be
constructed whilst keeping the overall complexity of the network low. To support
a variety of architectures and not be bound by dimensional constraints required
by certain operations, a scaling multiplier, parametrised as follows, is used:

sl1 =
nαl1∑
i n

α
li

. (1)

where α is a hyper-parameter used to tune how much higher informativeness is
prioritised. This multiplier scales appropriate hyper-parameters of layers within
the super-layers, such as controlling number of kernels.

Cross-modal Connections. The experiments have shown that cross-modal
connections are key to capturing cross-modal interactions, without which model
performance is severely degraded. The algorithm approaches building connec-
tions in three steps: firstly, finding a position where the connections could be
placed, secondly, determining how super-layers should connect and, finally, de-
termining the composition of the connection.

Position (Step 5). The place where cross-modal connections should be estab-
lished in the network is more dependent on the CNN topology rather than data.
We introduced a heuristic that places cross-modal connections at the ends of
blocks or modules, such as commonly used downsampling operations following
convolution [1,17] or various merge points used in other architectures [18,19,20].
This approach was verified using linear probe2 methodology in [21]. Such points
were shown to have a large ratio of accuracy to feature volume suggesting that a
suitably dense representation exists that could be used as extra context by other
modalities.

Connectivity (Step 7). The problem of placing cross-modal connections is mod-
elled as a directed graph where nodes are points from super-layers and edges
are connections (Fig. 2). It is reasonable to assume that at the same depth fea-
ture extractors of similar complexities are formed.3 We therefore always connect
points at the same depth. This also allows circumventing the problems of pro-
jection such as those encountered by the authors of [19,20], which limited their
ability to optimise the computational efficiency of the network. Additionally,
since the connections are concatenated rather than summed, the network main-
tains the ability to utilise the information passed through the connections at

2 A linear classifier is trained using outputs of frozen intermediate layers as inputs,
measuring generalisation performance.

3 For example, it is known that nearly always the initial convolutional layers in CNNs
learn to be edge extractors [22].
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Fig. 2. Problem of placing cross-modal connections shown as a directed graph.

lower depths if that is optimal. Experiments have shown that a fully-connected
graph allows learning appropriate connections between each pair of modalities
and sharing information between all. This leads to better performance than a
more restricted variant used in XKerasNet and XFitNet [4].

Composition (Step 6). To abstract from specifics of operations performed on
the connection, we introduced a concept of a connection weight4, which controls
hyper-parameters of these operations. The experiments showed that connections
with equal weights did not perform as well as connections that were weighted
more heavily for originating in a more informative node. This is because the con-
nections implement a mapping accomplishing three things. Firstly, they compress
the information transferred along the connection through weighted combinations
of outputs from the origin super-layer, reducing the parameter cost of destina-
tion super-layer. Secondly, they implement an affine transformation of features.
Finally, they provide gating during training, which prevents gradients of a highly
informative super-layer from propagating too much into a less informative one.
Intermediate computations on the cross-connection soak up much of the trans-
ferred gradient to train the connection itself, enabling each super-layer to learn
to be an optimal feature extractor for its respective modality.

The connection weight controls this behaviour. Thus, a desired weight wl1,l2 ∈
[0, 1] of a connection between super-layers l1  l2 is such a number wl1,l2 > 0.5
for connecting a node from a more informative position to a less informative one.
A sensible parametrisation of this is

wl1,l2 =
nβl1

nβl1 + nβl2

, (2)

where β is a hyper-parameter controlling the discounting of lower informative-
ness. With β → 0 all nodes are treated equally. When β → ∞, most of the
weight is assigned to the features transferred from the informative super-layer.
If the weight is set to zero, the connection is dropped.

3.2 Iterative Approach

The iterative approach (Fig. 3) extends the previous methodology by adopt-
ing a learning procedure for the connection weights. It works by constructing

4 This should not be confused with parameters of the layers themselves, in other
literature sometimes referred to as weights as well.



successive generations of X-CNN models, where each generation contains mod-
els for each pair of modalities. The first generation uses equal-weighted connec-
tions, whilst second-generation uses the base approach calculations. Afterwards,
a gradient ascent procedure on connection weights is performed. We adapt ideas
behind Nasterov accelation for Adam optimiser [23,24] to construct an update
procedure based on the generalisation measures for the connection weights. We
also add weight-decay regularisation to ensure that resulting X-CNN does not
grow too complex.

Fig. 3. Iterative approach for producing a trained X-CNN

Parameter Inheritance. To make this approach viable in practice, additional
technique is needed to reduce the time requirements. An initial pre-training step
is conducted where X-CNN without connections is trained for several epochs to
lock parameter positions. Alternatively, the same random seed value can used
for initialisation across models. This enables inheriting layer parameters between
successive generations, making training of each generation require only a small
number of updates to adapt to new connections, greatly reducing time require-
ment.

Combined Learning. The parameter inheritance transforms the gradient ascent
procedure for connection-weights into a combined learning procedure for a full
X-CNN, where both the connection-weights and model parameters are learned
simultaneously. Effectively, the search is performed not in the parameter space
of the resulting X-CNN, but across a combined parameter space of all potential
X-CNNs with different connection weights. This is only possible because the
search performed is inherently greedy. It assumes that a better minima can be
found using better connections weights rather than by continuing to optimise
parameters. In other words, combined learning only takes steps on a subset of
axes at once. This could lead to a problem where parameters become too finely
tuned for a particular connection configuration, “poisoning” future generations.
To counteract this, we introduce a slight perturbation to the parameters between
generations, by averaging across a couple of generations, which acts an additional
regularisation against this type of overfitting.



Table 1. Comparison of accuracies of KerasNet based models

CIFAR-10

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

KerasNet 70.02± 0.14 76.57± 0.16 79.28± 0.17 81.40± 0.10 82.55± 0.11
XKerasNet 71.00± 0.23 76.92± 0.10 79.62± 0.16 81.32± 0.10 82.68± 0.15
Xsertion 72.02± 0.70 77.29± 0.16 79.92± 0.07 81.54± 0.10 82.93± 0.09

CIFAR-100

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

KerasNet 28.20± 0.13 36.28± 0.24 42.14± 0.56 45.40± 0.33 48.53± 0.35
XKerasNet 30.41± 0.32 39.32± 0.39 43.95± 0.40 47.08± 0.23 48.96± 0.22
Xsertion 31.31± 0.49 40.01± 0.11 44.74± 0.20 47.75± 0.27 50.29± 0.53

4 Evaluation

The approaches were evaluated against hand-optimised X-CNNs from [4]:
XKerasNet based on KerasNet [25] and XFitNet based on Fitnet4 [17]. The
datasets used were CIFAR-10/100 [26]. All models were trained using a learning
rate of 10−3 utilising Adam optimiser [23]. Training was done using batch size
of 32/128 for 200/230 epochs for Keras/Fitnet based models. Xsertion library
built X-CNN topologies using KerasNet and FitNet4 as blueprints, using 80%
of the training set for internal training for 80 epochs and 20% of the training
set as a validation set for internal metrics. Hyper-parameters α of 1 and 2 and
β of 2 and 4 were used, respectively. At each datapoint, p% of per-class samples
were retained in the training set.

4.1 Results

Base Approach. Tables 1 and 2 detail the results. The evaluation shows that
models constructed using the base approach outperform their baseline and hand-
constructed counterparts on all data availability points. A significant margin is
maintained between 95% confidence intervals. It is important to consider time
requirements as well. In theory, the time requirement for the base approach is
O(nk), where n is the number of modalities and k is a function showing the time
taken to train the base model. However, all models used to take measurements
are scaled down by 1/n, thus the time commitment in practice is closer to that
of training the base CNN. However, if the topology were to be constructed by
hand, either through a grid search or through trial and error, it would take more
than a single try to arrive at a peak performing topology. Similarly, the number
of hyper-parameters is reduced from O(n2) of all pair-wise connections to only
two.



Table 2. Comparison of accuracies of FitNet based models

CIFAR-10

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

FitNet 75.47± 0.32 82.02± 0.18 84.98± 0.20 86.22± 0.19 87.42± 0.05
XFitNet 76.56± 0.24 82.43± 0.07 85.11± 0.19 86.23± 0.18 87.42± 0.08
Xsertion 77.35± 0.15 82.66± 0.09 85.43± 0.12 86.78± 0.16 87.77± 0.22

CIFAR-100

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

FitNet 29.29± 1.69 40.91± 2.48 50.94± 0.51 55.47± 0.96 58.92± 0.60
XFitNet 36.17± 0.27 48.02± 0.72 54.18± 0.36 57.98± 0.33 60.32± 0.29
Xsertion 38.59± 0.37 50.11± 0.30 55.48± 0.41 59.06± 0.63 61.67± 0.31

Iterative Approach. The iterative approach was further applied to optimise
the automatically constructed networks. 15 iterations were used, training each
model for a maximum of 30 epochs. On CIFAR-100 with KerasNet base CNN,
the accuracy was observed to jump to 51.07% roughly 0.3% above the upper
95% confidence bar. Similarly, on CIFAR-10, the accuracy jumped to 83.36%,
again roughly 0.3% above the upper 95% confidence bar. In the base approach,
luminance modality Y was deemed significantly more important than V, which
in turn was slightly more important than U. The iterative approach strengthened
Y U connection and weakened U Y. However, the converse was true for Y V.
It seems that it is important to transfer information from Y to U and from V
to Y. Whilst connections between U and V did not disappear, they became
significantly weakened both ways. For FitNet on CIFAR-10/100, the iterative
approach did not yield any significant improvements. The learned connection
weights were very close to those of the base approach.

Application to Residual Learning. The base approach was further applied
to networks utilising residual learning [19], to see how it performs with state-of-
art architectures. A variant of residual in residual network [27] was used here,
which utilised pre-activations and contained 12 residual blocks. It was trained
for 200 epochs, with a batch size of 64, using Adam optimiser [23], with learning
rate schedule of 10−3, 10−4, 10−5 transitioning at 50 and 75 epochs. The layers
were initialised as in [28] with 10−4 L2 regularisation applied to all parameters.
The base network achieved 85.72% on CIFAR-10 and 55.43% on CIFAR-100
datasets. When the base approach was applied to architecture, with α = 2, β = 2,
80 epochs, the final networks achieved 88.81% and 61.33% on CIFAR-10/100,
respectively, showing value and validity of methodology even for the latest net-
works.



5 Conclusion

We presented an way to apply the ideas of cross-modality and a library that
helps to facilitate that. The results show that the automatically constructed
topologies perform better than the baseline networks and hand-optimised X-
CNNs, without adding additional parameters and reducing the time required
to produce such topologies. The base approach successfully introduces difficult
modification of CNN architecture using a data-driven procedure, which removes
vast amounts of hyper-parameters that need to be considered. In that respect,
the presented work reduces the complexity of applying a state-of-the-art advance
in CNN design to a library call. Ideas behind combined learning procedure can
be transferred to other work focused on building networks automatically from
scratch, speeding up traversal of the vast search space. Hopefully, this shows
that the bleeding-edge results in deep learning need not to exist in a vacuum.
The ideas behind the work here can be transferred and applied to other research,
resulting in a more automated field, which invites further adoption.
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