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Philosophia Mathematica  

 

Introduction to Special Issue on Aesthetics in Mathematics 

Angela Breitenbach and Davide Rizza 

 

1. Aesthetics in mathematics 

Mathematicians often appreciate the beauty and elegance of particular theorems, proofs, and 

definitions, attaching importance not only to the truth but also to the aesthetic merit of their 

work. As Henri Poincaré (1930: 59) put it, mathematical beauty is a ‘real aesthetic feeling that 

all true mathematicians recognise’. Others went further, regarding mathematical beauty as a 

key motivation driving the formulation of mathematical proofs and even as a criterion for 

choosing one proof over another. As Hermann Weyl famously and provocatively declared, 

‘My work always tried to unite the true with the beautiful, but when I had to choose one or 

the other, I usually chose the beautiful’ (cited in Chandrasekhar 1987: 52).  

Talk of the beauty of mathematical theorems, proofs, and definitions may thus be 

commonplace. And yet the tendency among mathematicians to judge mathematical work 

according to aesthetic standards raises a number of difficult questions: 

 

(1) What is mathematical beauty? What, if anything, distinguishes it from other kinds 

of beauty? Is it a feature of abstract objects or grounded in sensible properties? Is it 

a genuine aesthetic category or can it be reduced to non-aesthetic, possibly 

epistemic, criteria?  

(2) What is the status of aesthetic judgments in mathematics? Are they objective 

judgments grounded, for instance, in the mathematician’s cognition of such 

properties as symmetry or simplicity? Do they rely on subjective responses 
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particular to individual mathematicians? Or are they, perhaps, grounded in other 

kinds of mental processes? 

(3) Can aesthetic considerations play any legitimate role in mathematical or scientific 

theorising? Does the beauty of a proof stand in any non-contingent relation to its 

truth? And can any connection be drawn between the elegance of a mathematical 

formalism – the differential forms employed to express Maxwell’s equations or the 

group theory used in quantum mechanics – and the truth of the scientific theory 

that contains the formalism? 

(4) Does the phenomenon of aesthetics in mathematics reveal any important 

analogies between mathematical and artistic practice? In particular, what is the 

role of imagination in mathematics, and how does it compare to the role of 

imagination in the arts?  

 

In the recent philosophical literature one finds only a handful of attempts to develop 

sustained answers to these questions. Thus, a number of authors in aesthetics and the 

philosophy of mathematics have tried to shed light on mathematical beauty by highlighting its 

relation to such factors as order, harmony, unity, symmetry and simplicity (see Osborne 1984, 

Engler 1990 and, more recently, Inglis and Aberdein 2014 whose careful analysis sheds doubt 

on the connection between beauty and simplicity). Others have argued that judgments about 

the beauty of mathematics are related to the understanding or enlightenment that the 

mathematics affords (see Rota 1997 and Cellucci 2015; cf. also Hardy’s 1940 classic 

‘mathematician’s apology’). Yet others have argued along Kantian lines that aesthetic 

judgments in mathematics are grounded in the spontaneous reasoning processes that lead to 

mathematical cognition (Breitenbach 2015; cf. Wenzel’s 2001 more sceptical Kantian 

account). But there have also been critical voices, questioning whether explicit judgments 
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about the beauty or elegance of mathematics have genuine aesthetic status and suggesting 

instead that they are only ‘quasi-aesthetic’ claims (see, in particular, Harré 1958, Zangwill 

2001, and Todd 2008).1 

Some philosophers of mathematics and theoreticians in the field of mathematics 

education have furthermore stressed the need to take seriously the aesthetic dimension of 

mathematical practices. Some have argued that, by analogy with art, aesthetic judgments 

play a major role in the development of mathematics research, for example, by determining 

which results to include in ongoing research programmes or research monographs 

(Tymoczko 1993). Others have moreover spoken of a ‘generative aesthetic’, which ‘operates 

in the actual process of inquiry, in the discovery and invention of solutions’ (Sinclair 2004: 

270; see also McAllister 2005, Sinclair 2011, and Montano 2014 who, building on 

McAllister’s work, provides the most extensive study to date of the role of aesthetics in 

shaping mathematical knowledge). Finally, related work, more specifically focussed on set 

theory, suggests that aesthetic value bears on, and may even serve as evidence for, the truth of 

mathematical statements (see Kennedy and Väänänen 2015).  

While there is a small literature on the theme of this special issue, it has received much 

less attention than other topics in aesthetics or the philosophy of mathematics. We believe 

that this is due in part to the fact that the two philosophical sub-disciplines of aesthetics and 

the philosophy of mathematics are often perceived to lie at opposite ends of the philosophical 

spectrum and that interaction between philosophers specialising in these apparently distant 

fields has been sparse. Topics in aesthetics such as the nature of art, beauty and aesthetic 

experience simply seem to have little connection with such problems in philosophy of 

mathematics as the logical structure of formal arguments or the ontological status of abstract 

objects. And yet we believe that the phenomenon of aesthetics in mathematics and the 

																																																								
1 Although the focus in these critical accounts is primarily on the aesthetics of science, the 
arguments can easily be extended to the aesthetics of mathematics. 
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pervasive appeal of aesthetic criteria to mathematicians raise questions that are of importance 

to core concerns in both areas, for example, about the relation of aesthetic judgment to 

cognition and about the nature of mathematical reasoning. We believe, moreover, that these 

questions are best answered by taking into account the insights and concerns of aestheticians 

as well as philosophers of mathematics. A real dialogue between specialists in the two fields 

provides the right context for a rigorous analysis of aesthetics in mathematics. 

It was this conviction that motivated us to organise an international conference on the 

topic that brought together aestheticians, philosophers of mathematics and mathematicians at 

the University of East Anglia in December 2014. The papers included in this special issue are 

a selection from the many original and illuminating contributions that were presented at the 

conference and that, in a range of different ways, shed light on the different questions that 

arise for the aesthetics of mathematics.  

 

2. The papers 

Irina Starikova tackles question (1) in her paper ‘Aesthetic Preferences in Mathematics: A 

Case Study’. She asks whether abstract mathematical objects can be genuinely beautiful and, 

if so, what features make them beautiful. Is their beauty solely a matter of their diagrammatic 

visualisation? Or does it have to do with their abstract mathematical properties? Starikova 

develops her answer by considering an illustrative example, the Petersen graph, a highly 

symmetric object whose properties have been extensively studied. It is possible to represent 

the Petersen graph set-theoretically as a set of vertices plus a set of edges connecting some of 

the vertices. This set-theoretical representation can in turn be rendered diagrammatically in a 

number of different ways. One of these diagrammatic renderings is often singled out by 

graph-theorists as distinctively beautiful. However, Starikova also observes that 

mathematicians record emotions characteristic of the experience of beauty not only in 
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response to this specific visual representation of the Petersen graph but also in connection 

with the graph conceived independently of any diagrammatic representation. She explains 

this diversity in mathematicians’ aesthetic appreciation in the following way. First, she draws 

attention to the fact that this graph has more symmetries than any representation can make 

visible. Thus, she suggests that the beauty of the Petersen graph considered as an abstract 

object has its source in this rich family of symmetries that connects the simplicity and 

regularity of the graph with a wide variety of other properties that are of interest to 

mathematicians. Second, she argues that mathematicians single out a particular 

diagrammatic representation of the graph as especially beautiful because of the comparative 

ease with which it enables the mathematician to grasp the aesthetically relevant graph-

theoretical properties. On Starikova’s account, intellectual beauty is thus a simple 

coordination of significant properties and fruitful consequences, which can be inherited by 

perspicuous visualisations. The beauty we find in mathematics is thus not simply a matter of 

pleasing visualisations but also, importantly, ‘an aesthetics of the abstract’.  

Manya Raman-Sundström and Lars-Daniel Öhman’s paper ‘Mathematical Fit: A Case 

Study’ further contributes to answering question (1) by exploring the phenomenon of 

mathematical fit – a property that, they suggest, relates to the cognitive aspects of a proof as 

well as to its beauty. The authors develop their account of mathematical fit through a series of 

examples. Distinguishing three different, though possibly interdependent, types of fit, they 

analyse the features a mathematical proof needs to possess in order to be fitting in one or 

more ways. First, a proof has direct fit, or fits the theorem it proves, if it is stated in the same 

terms as the theorem (coherence) and uses a tool with the right level of technical power 

(specificity). Second, a proof has presentational fit if the underlying ideas are presented with the 

appropriate amount of detail (level of detail) and the proof makes clear its argumentative 

structure (transparency). Third, a proof has familial fit, that is, fits within a family of proofs, if 
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the idea of the proof generalises to a larger class of theorems (generality) and connects to proof 

ideas of other theorems (connectedness). With this analysis in hand, Raman-Sundström and 

Öhman illustrate why some proofs are more fitting than others, for example, why Euclid’s 

geometrical proof fits the Pythagorean Theorem better than a contemporary trigonometric 

proof. They conclude by suggesting that mathematical fit has a cognitive as well as an 

aesthetic dimension because of its close connection with mathematical explanation and 

mathematical beauty. Mathematical fit is related to mathematical explanations, since both 

are grounded in either the coherence or the connectedness of a proof; and mathematical fit is 

furthermore related to mathematical beauty, since both are characteristics of proofs with the 

right level of detail, transparency, connectedness, and even specificity and generality.  

Cain Todd addresses questions (2) and (3) in his paper ‘Fitting Feelings and Elegant 

Proofs: On the Psychology of Aesthetic Evaluation in Mathematics’. He does so by shedding 

light on the relation between aesthetic and epistemic criteria in mathematical reasoning. To 

this end, he examines the nature of the psychological experience that underpins 

mathematicians’ aesthetic judgments about mathematical proofs and theorems. His core 

claim is that bona fide aesthetic judgments in mathematics are expressions of ‘aesthetic-

epistemic’ feelings – feelings that serve a genuine epistemic function while also having 

aesthetic attributes. To substantiate this claim, Todd surveys the results of psychological 

research on epistemic feelings such as the feelings of knowing and understanding and of 

rightness and certainty. As he notes, the psychological research suggests that epistemic 

feelings play a genuine cognitive role in reliably indicating the accuracy of one’s own mental 

performance. For example, experiencing fluency, that is, the felt ease with which a cognitive 

task is performed, plays a crucial role in endorsing mathematical reasoning that is simple to 

follow and rejecting mathematical proofs that are difficult to understand. Moreover, Todd 

argues that the same epistemic feelings also have an aesthetic character if they manifest what 
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he calls ‘cognitive consonance’. That is, epistemic feelings have aesthetic attributes if they 

represent the relation between our cognitive processes and the properties of the stimuli at 

which those processes are directed in a way that appears fitting, or in harmony. According to 

Todd, mathematicians’ aesthetic judgments about theorems or proofs thus express epistemic-

aesthetic feelings of fittingness. 

Finally, Adam Rieger in his contribution ‘The Beautiful Art of Mathematics’ addresses 

questions (2) and (4). He argues for two distinct claims: first, the aesthetic vocabulary 

employed by mathematicians should be taken literally and, second, in certain respects, 

mathematical practice can be regarded as an art. Thus, supported by a range of examples, 

Rieger first argues that the typical object of aesthetic evaluation is the propositional content of 

a theorem or proof, thought of as a finite sequence of propositions. It follows from this, he 

suggests, that sensory properties are not necessary for aesthetic properties and that aesthetic 

evaluation in mathematics should not just be seen as a disguised form of epistemic evaluation, 

concerning, e.g., the fruitfulness of a proof method. Aesthetic judgments can be genuine, he 

claims, even if they are about the propositional content of a mathematical theorem or proof. 

Rieger then advances his second claim by highlighting salient traits that are shared by artistic 

and mathematical practice, notably their common attempts at telling us how things are in an 

aesthetically valuable way, their common concern with a selection of leading motifs and 

themes, as well as their organisation and composition. Rieger concludes on the basis of this 

analogy that some parts of mathematics can thus be regarded as an art. 

 

3. Further questions  

Each paper collected in this special issue offers a specific way of situating aesthetic 

considerations within mathematics. We also find each paper suggestive, explicitly or 

implicitly, of further goals and avenues for enquiry.  
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Thus, Starikova focusses on the notion of intellectual beauty in mathematics, which she 

likens to ‘a power, causing pleasure to mathematicians while they are intellectually engaged 

with the mathematical entity’. Her account suggests that, to understand what intellectual 

beauty is, we need to understand how the properties of abstract mathematical entities trigger 

an aesthetic response in the subject. Starikova’s paper prompts us to think further not only 

about the objective character of beautiful mathematical objects but also about the subject’s 

intellectual engagement with the mathematical entity that is required for the relevant 

pleasurable response to occur. Does such intellectual engagement consist in the process of 

understanding, for example, of what a particular graph entails and what consequences it has? 

Or is the subject’s intellectual engagement with the mathematical entity comparable to a 

form of perception, for instance, the perception of a graph’s visual representation, which is 

involved in experiencing the graph’s perceptual beauty? And how, more generally, does such 

intellectual engagement compare to the cognitive processes involved in the aesthetic 

appreciation of artworks? In raising these questions, Starikova’s discussion furthermore points 

to an interesting link of the aesthetics of mathematics with the visual aspects of mathematical 

thinking and the epistemic benefits thereof. We believe that this link may well be mobilised in 

future studies of the relationship between aesthetics and mathematics.2  

We furthermore find two interesting but very different approaches to the concept of fit, or 

fittingness, discussed in Raman-Sundström and Öhman’s paper and in Todd’s contribution. 

Raman-Sundström and Öhman focus on the properties that make mathematical proofs more 

or less fitting with the proven theorem. Todd, by contrast, is interested in the feeling of 

fittingness, where such fittingness is understood as a relation between our cognitive processes 

and the objects at which such processes are directed. One might wonder whether there is any 

																																																								
2 In this context, it will be worth paying specific attention to the different but related literature 
on the role of visualisation and diagrammatic reasoning in mathematics (see, e.g., Giaquinto 
2007 and De Toffoli and Giardino 2014). 
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significant relation between the feeling of fittingness Todd describes and the phenomenon of 

mathematical fit that concerns Raman-Sundström and Öhman. One might ask, in other 

words, whether there is any non-contingent connection between the objective relation of fit 

holding between different mathematical entities and the feeling of fittingness that expresses 

features of the subject’s psychology. Is it reasonable to expect that being aware of the 

phenomenon of mathematical fit will be correlated with the subjective feeling of fittingness? If 

it could be shown, for example, that our cognitive processes appear to be in harmony with the 

stimuli at which they are directed whenever they follow through a proof that fits with the 

proven theorem, might we be able to say more about why fitting proofs appear beautiful to 

us? These questions remain rather speculative. But answers to them might shed further light 

on the relation between the features of beautiful mathematical entities and the response of the 

subject that is involved in aesthetic appreciation. 

Finally, Adam Rieger begins to outline an account of the artistic dimension of 

mathematical practice, thus pointing to a type of investigation that is almost absent in the 

existing literature and deserves to be pursued further. His proposal calls for an exploration of 

the possible points of contact between the intellectual processes involved in artistic and 

mathematical construction, which might contribute to identifying similarities between the 

creative effort characteristic of each activity. One might ask, for example, how such 

intellectual processes relate to the cognitive processes of reasoning, understanding, knowing; 

and one might wonder in what way, if any, they represent creative or imaginative activities. 

We believe that a fuller elaboration on these questions would shed important light on the 

intellectual contributions to the creation of art as well as mathematics.  
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