1	The utility of height for the Ediacaran organisms of Mistaken Point
2	
3	Authors: Emily. G. Mitchell ^{*1} , Charlotte. G. Kenchington ^{1,2} .
4	Affiliations:
5	¹ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2
6	3EQ, UK.
7	² Department of Earth Sciences, Memorial University of Newfoundland, 230 Elizabeth Ave, St.
8	John's, NL A1B 3X9, Canada.
9	*Correspondence to: <u>ek338@cam.ac.uk</u> . Phone: +44 1223 333 416
10	

Ediacaran fossil communities consist of the oldest macroscopic eukaryotic organisms. Increased size (height) is hypothesized to be driven by competition for water-column resources, leading to vertical/epifaunal tiering and morphological innovations such as stems. Using spatial analyses, we find no correlation between tiering and resource competition, and that stemmed organisms are not tiered. Instead, we find height *is* correlated to greater offspring dispersal, demonstrating the importance of colonization potential over resource competition.

Bedding-plane assemblages of Ediacaran fossils at Mistaken Point, Newfoundland (~566 18 Ma)¹, are among the oldest known eukaryotic macrofossil communities². In extant marine 19 20 ecosystems, body size is key to structuring communities, due to size-structured predation dynamics^{3,4}. However, the Mistaken Point communities pre-date macro-predation and 21 (extensive) mobility⁵, and so body size must have played a different role. Instead, the driver of 22 23 large size has been suggested to be competition for vertically distributed water-column resources, resulting in different taxa occupying different parts of the water column – a process 24 known as tiering⁶. Consequently, tiering to avoid resource competition has been interpreted as 25 the major driver in the diversification of Ediacaran body plans, most notably in the evolution of a 26 non-branched (i.e. "naked") stem⁷⁻⁹. Since Mistaken Point bedding planes consist of sessile 27 organisms preserved *in-situ*, it is reasonable to assume that approximately all of the macroscopic 28 organisms were preserved, so the bedding planes represent a near-census of the community at the 29 30 time of burial². Therefore, detailed statistical analyses of these populations and their spatial 31 distributions can be used to determine the relationship between height and resource competition^{10,11}. 32

33	We analysed the communities of three large bedding-plane assemblages in the Mistaken
34	Point Ecological Reserve: the 'D', 'E', and Lower Mistaken Point (LMP) surfaces ¹² , using the
35	data from [11] (Supplementary Figure 1). These communities are dominated by rangeomorphs,
36	a clade of "fractally-branching" organisms ^{13,14,15} with some taxa also possessing a naked stem ⁷ .
37	These communities also include non-fractally branching frondose arboreomorphs ¹⁶ ; the putative
38	sponge <i>Thectardis</i> ; fronds awaiting formal description (e.g. "Ostrich Feathers") ² ; and irregular
39	bedding-plane features referred to as ivesheadiomorphs and "Lobate Discs" ^{2,10,17} (see Methods
40	for details). Community composition differs between the three communities, with the 'D' surface
41	notably different due to exclusive population by rangeomorphs with no abundant stemmed taxa
42	(Supplementary Table 2). All three assemblages occur within deep-marine turbidite sequences ² ,
43	with fossils preserved as external moulds in siltstone hemipelagites, cast from above by
44	volcaniclastic deposits ¹⁸ (Supplementary Figure 1). A volcanic tuff directly above the 'E' surface
45	has been dated to 566.25 ± 0.35 Ma, which provides an upper age constraint on the underlying 'D'
46	and LMP surfaces ¹⁹ .
47	To quantify the extent of tiering, we calculated the percentage by which each taxon's
48	population exhibits distinct vertical stratification (DVS) with respect to the rest of the community
49	(Supplementary Figure 2). The extent of community tiering is defined as the mean taxa DVS.
50	Two different <i>DVS</i> metrics were calculated: height-based <i>DVS</i> ^{height} and uptake-zone <i>DVS</i> ^{uptake} .
51	The taxon-specific DVS ^{height} is defined as the percentage of specimens within the taxon
52	population that are not matched in height by any specimen from a different taxonomic group
53	(Supplementary Figure 2). Taxon-specific DVS ^{uptake} is defined as the percentage of specimens
54	within a taxon population whose "uptake-zone" (i.e. the branching organism part) is not in the
55	same part of the water column as the uptake-zone of specimens from a different taxonomic group

(Supplementary Figure 2 and Methods). Consequently, DVS=0% corresponds to no tiering while DVS=100% corresponds to a completed tiered community.

58	Competition was detected and quantified using spatial point process analyses, whereby
59	pair correlation functions (PCFs) were calculated to describe the spatial distributions between
60	pairs of taxa on each bedding plane ²⁰ , with a $PCF=1$ indicating a distribution that was
61	completely spatially random (CSR), <i>PCF>1</i> indicating aggregation, and <i>PCF<1</i> indicating
62	segregation ²⁰⁻²² . Monte Carlo simulations and Diggle's goodness-of-fit test ²² (p_d) were used to
63	indicate significantly non-CSR distributions when the observed PCF deviated outside the
64	simulation envelope coupled with a $p_d << 1$. Where bivariate spatial segregation was detected,
65	partial PCF between size-classes (defined in Methods; Supplementary Figure 3) were calculated,
66	and Diggle's segregation test ²³ used to assess segregation of each size class. Identifying the
67	processes behind spatial patterns is not straightforward ²²⁻²⁷ ; however, inter-specific resource
68	competition typically generates a segregated pattern, with segregated largest specimens and CSR
69	or aggregated small specimens ²¹ . To further investigate the relationship of height with dispersal
70	dynamics, the mean cluster radius was calculated by fitting univariate Thomas cluster models to
71	the univariate PCFs ²⁷ (Supplementary Table 4). Linear regressions of these radii were then fitted
72	to mean height, maximum height and mean uptake-zone height for each frondose taxon
73	(Supplementary Table 5).

74	Only the 'D' surface was found to exhibit high DVS (80.1%, Figure 1, Supplementary
75	Table 1. $DVS^{height}_D = DVS^{uptake}_D$). In contrast, the DVS^{height} for the 'E' surface community is only
76	12.4%, and only 20.0% for the LMP community (Supplementary Table 1), DVS ^{uptake} was larger
77	than DVS^{height} ($DVS^{uptake}_E = 44.9\%$; $DVS^{uptake}_{LMP} = 40.9\%$), but still under 50%. Taxon DVS^{height}
78	and DVS^{uptake} are not significantly different between the LMP, 'D' or 'E' communities ($p=0.10$

79	and $p=0.37$) or <i>DVS</i> ^{height} between 'D' and 'E' communities ($p=0.03$; $\alpha=0.016$). There are no
80	instances of large spatial-scale bivariate segregation on the 'D' surface and two on the 'E'
81	surface (cf. [10]); Figure 2 and Supplementary Table 3). On the 'E' surface, spatial segregation
82	is found between <i>Fractofusus</i> and Feather Dusters (<i>PCF_{Min}=0.8852; p=0.01</i>), and between
83	Feather Dusters and <i>Charniodiscus</i> ($PCF_{Min}=0.8972$; $p=0.01$) with segregation detected between
84	large specimens (both $p=0.01$), but not between small specimens ($p_{feaD-Fract}=0.25$ and $p_{feaD-Fract}=0.25$
85	<i>_{Chard}</i> =0.14; Supplementary Table 3, Figure 2a,b). Therefore, habitat segregation is excluded as
86	the underlying cause of these spatial segregations, and so they most likely reflect resource
87	competition. For LMP, segregation occurs between Charniid I and Ostrich Feather ($PCF_{Min}=0$.
88	4932; $p=0.01$; Figure 2d), and between Charniid II and Ostrich Feather ($PCF_{Min}=0.5346$;
89	p=0.01; Figure 2c). The large specimens of Charniid II and Ostrich Feather were segregated
90	(p=0.01), while small specimens were aggregated $(p=0.92)$ thus resource competition is the mos
91	likely underlying process. However, the Charniid I – Ostrich Feather bivariate distribution was
92	segregated across all size classes ($p_{small}=0.02$ and $p_{large}=0.01$; Supplementary Table 3), thus
93	likely reflecting habitat segregation rather than competition.
94	If resource competition dominates community dynamics and leads to tiering, then the
95	extent of DVS ^{height} and/or DVS ^{uptake-zone} should predict whether two taxa exhibit inter-specific
96	competition, with high DVS taxon pairs not competing (as they occupy different parts of the
97	water column). This resource competition-dominated community dynamic is consistent with the
98	'D' surface community, which exhibited high DVS, and had no instances of inter-specific
99	resource competition (Figs. 2, 3; Supplementary Table 3). However, on the 'E' surface, the two
100	instances of resource competition correspond to high levels of pairwise DVS ^{uptake} with respect to
101	both Feather Dusters – Fractofusus and Feather Dusters – Charniodiscus (DVS ^{uptake} FeaD-

102	<i>Fract</i> =75.1%; <i>DVS</i> ^{uptake} <i>FeaD-Chard</i> =60.3%; Supplementary Table 3). On the 'E' surface, Charniids
103	and <i>Thectardis</i> both exhibit very low DVS^{uptake} levels ($DVS^{uptake}_{Charniid} = 10.4\%$ and DVS^{uptake}
104	$_{Thect}=12.0\%$), but do not correspond to any of the instances of inter-specific competition
105	identified; neither do the comparatively high levels of uptake-zone tiering correspond to the
106	presence of resource competition (Figs. 2 and 3, Supplementary Table 1). The single LMP
107	instance of resource competition, between Charniid II and Ostrich Feather, corresponded to a
108	moderate level of pairwise DVS ^{uptake} (38.8%), coupled to a very strong segregation
109	(<i>PCF_{Min}</i> =0.4932). A linear regression of the DVS^{uptake} with PCF_{Min} showed no significant
110	relationship ($p=0.283$), so our results from the 'E' and LMP surface provide no evidence that
111	resource competition resulted in vertically tiered populations.

112	When the E' surface taxa were subset into rangeomorphs/non-rangeomorphs, and
113	stemmed/non-stemmed groups there were no significant differences in DVS ^{uptake} or DVS ^{height}
114	between rangeomorphs and non-rangeomorphs or stemmed and non-stemmed DVS ^{uptake}
115	(Supplementary Table 2 ; all $p >> 0.1$). There was a significant difference in DVS^{height} between
116	stemmed (DVS^{height}_{stem} =4.0%) and non-stemmed taxa ($DVS^{height}_{non-stem}$ =19.9%; p=0.001).

The development of stems has been hypothesized to enable organism uptake-zone to 117 reach new water column heights, thus avoiding competition for resources^{7-9, 28} such as oxygen, or 118 the dissolved organic carbon which Mistaken Point organisms likely utilised^{28,29} (see Ref [2] for 119 further discussion). This hypothesis predicts that stemmed organisms should be more tiered (i.e. 120 higher DVS) than non-stemmed organisms, but our results disagree: non-stemmed taxa exhibit a 121 significantly higher degree of DVS^{height} than stemmed taxa (Supplementary Table 3). Thus, naked 122 stems likely had a different function, such as enabling greater offspring dispersal⁷. For dispersal-123 generated aggregations, cluster size (Supplementary Tables 4-5) was found to strongly correlate 124

125	with maximum height of 'E' surface organisms ($R^2=0.997$, $p=0.034$), but not with mean height
126	or mean uptake-zone height (all $p >> 0.1$). This result demonstrates that maximum height
127	directly resulted in greater offspring dispersal. Therefore, while stemmed organisms did not
128	significantly benefit from the additional height for nutrient acquisition, they did gain increased
129	offspring dispersal. While at least some Ediacaran species exhibited close-to-parent offspring
130	dispersal due to non-waterborne, stolon dominated reproduction ¹¹ , evidence of wide-spread
131	dispersal ³⁰⁻³⁴ demonstrates the prevalence of Ediacaran waterborne propagation, and so the
132	importance of colonization potential for Ediacaran macrofossils.
133	The lack of correlation between DVS and resource competition throughout Mistaken
134	Point communities contradicts previous suggestions that competition for resources drove
135	Ediacaran community ecology ^{2-4,6, 28} . While increased height would have placed organisms in
136	faster water flow ⁸ , increasing resource refresh rates, the lack of tiering within these communities
137	demonstrates that these advantages were not significant. Additionally, we have shown that the
138	advantage of height in these communities was a larger radius of offspring clusters - representing
139	increased dispersal distances. Therefore, our results point to reproduction, not limited resources,
140	as the principal driver of the dynamics of these oldest complex macro-communities.
141	Methods

Data. We used the data compiled by Clapham et al. (2003)^{11,35} from the Lower Mistaken Point
 (LMP), 'D' surface and 'E' surface which recorded the spatial position, size measurements and
 orientation of each fossil. Specimens were recorded as one of fourteen taxonomic groups of
 macrofossils, including two 'bin' groups³⁶: 1) *Bradgatia*, 2) *Pectinifrons*, 3) *Thectardis*, 4)
 Fractofusus andersoni + *F. misrai*, 5) *Charniodiscus spinosus* + *C. procerus*, 6) "Feather

147 Dusters" which includes *Plumeropriscum* and *Primocandlebrum*, 7) *Hiemalora*, 8)

148	Ivesheadiomorphs ³⁷ , 9) Lobate Discs, which are interpreted either as taphomorphs
149	(dead/decaying remains) or as microbial colonies ^{2,10,17} , 10) Charnia 'A' which consists of
150	Beothukis mistakensis ^{38,39} (which dominates the 'E' surface) and Charnia masoni. 11) Charnia
151	'B' now reassigned as <i>Trepassia wardae</i> ³⁹ . Charniid populations on Mistaken Point are
152	dominated by Beothukis (only four individuals on the 'E' surface are true Charnia species),
153	therefore direct comparison of data from this grouping with those from other taxonomic groups
154	should be undertaken with caution. 12) "Ostrich Feathers" 13) "Holdfast Discs", being all
155	discoidal specimens of uncertain affinity, with or without associated stems, which lack sufficient
156	detail to identify the taxon, 14) "Other Species" being rare forms that do not fall into any of the
157	other groups; e.g., Hapsidophyllas.
158	Methods. Differential erosion has the potential to distort spatial analyses ⁴⁰ so this data has been
159	tested for impact of differential erosion using heterogeneous Poisson models to model possible
160	sources of erosion ¹¹ , with no significant effects found on 'D' and 'E' surfaces. In this study we
161	fit three heterogeneous Poisson models to the LMP data, with the models dependent on x is
162	North to South (parallel to strike), y is East to West (parallel to dip), xy is the distance from the
163	South - East corner finding no significant erosional effect (all $p < 0.01$, where $p=1$ corresponds to
164	a perfect model fit – the spatial distributions depend exactly on the covariant). The tectonically
165	distorted data was retrodeformed by returning elongated holdfast discs to a circular outline ^{6,18} .
166	Tiering metric. We defined two different metrics for quantifying tiering: height Distinct
167	Vertical Stratification (DVS^{height}) and uptake-zone DVS^{uptake} . DVS^{height} is calculated by 1)
168	creating a frequency table in 1cm bins of the height of each specimen within that taxon
169	population. 2) A similar frequency table is created using the rest of the community. 3) The two
170	frequency tables are subtracted from each other and then 4) DVS ^{height} for each taxon is calculated

171	as the percentage of specimens remaining divided by the total number of specimens of that
172	taxon. Community DVS ^{height} is the mean of all the taxa DVS ^{height} . DVS ^{uptake} is calculated
173	similarly, but the frequency tables are created by filling in every 1cm that the specimen uptake-
174	zone occupies. For example, a 4cm <i>Bradgatia</i> would be represented by a count in the 0cm –
175	4cm bin, whereas a 4cm Charniodiscus with a 1cm stem would be represented by a count in the
176	1 cm - 4 cm bin. For example, $DVS = 0%$ corresponds to no taxa occupying a unique part of the
177	water column, i.e. the height distribution of that population is totally overlapped by the
178	populations of other taxa. DVS=100% corresponds to each taxon occupying a distinct stratum of
179	the water column, i.e. there is no overlap between specimens of any taxa.
180	Alternative metrics, such as overlap of a range (such as the interquartile range, or 95%
181	standard deviations) were ruled out because such range comparisons 1) assume a distribution e.g.
182	normal or log-normal, which isn't necessarily accurate; 2) outliers (such the giant Frondophyllas
183	found on Lower Mistaken Point) severely bias the data and 3) such range metrics do not take
184	into account relatively frequency - many populations had relatively few specimens at the end of
185	their height range biasing the analyses.
186	Specimen heights were defined as the specimen length for Bradgatia, Charniid I,
187	Thectardis; specimen width for Pectinifrons; stem length plus frond length for Charniid II,
188	Feather Dusters, Charniodiscus and Ostrich Feathers. Fractofusus height was calculated a
189	quarter of its width, thus assuming the Fractofusus has two vanes. It has been suggested that
190	Fractofusus had three vanes ⁴¹ which would increase its vertical height. Repeating our analyses
191	with height assuming three vanes reduces overall DVS^{height}_D by 9.3% to 70.8%, by 1.9% to
192	DVS^{height}_{E} =10.9% and by 4.9% to DVS^{uptake}_{E} =40.0%, so did not significantly change our results.
193	Comparisons between DVS on the 'D', 'E' and LMP surfaces, and between the 'E' surface

194	community rangeomorphs/non-rangeomorphs and the stemmed/non-stemmed, were performed
195	using Mann-Whitney tests. To account for the non-independence of the shared-sites in the
196	pairwise comparisons of <i>DVS</i> on the 'D', 'E' and LMP surfaces, the significance level was set α
197	= 0.05/3 = 0.017, but note that such adjustment is likely to be too conservative.
198	Data availability. Access to the fossil localities is by scientific research permit only. Natural
199	Areas Program, Canada for further information. Data used is publicly available at
200	https://figshare.com/articles/Mistaken_Point_Ediacaran_count_data/1111665
201	Code availability. The code defining these tiering metrics has been uploaded as an R package
202	(tiering) to https://cran.r-project.org/.
203	Spatial analyses. Initial data exploration, inhomogeneous Poisson modelling, residual analysis
204	and segregation tests ²³ were performed in R^{42} using the package spatstat ⁴³⁻⁴⁵ . Programita ⁴⁶⁻⁵⁰ was
205	used to find distance measures and to perform aggregation model fitting (described in detail in
206	references ^{44,46-50} .
207	Bivariate PCFs were calculated from the population density using a grid of 10cm x 10cm
208	cells on the 'D' and 'E' surfaces, and 1cm x 1cm on LMP. To minimize noise a smoothing was
209	applied to the PCF dependent on specimen abundance: A three cell smoothing over this grid was
210	applied to the 'D' and 'E' surfaces, with five cells for LMP.
211	To test whether the PCF exhibited complete spatial randomness (CSR), 999 simulations
212	were run for each relationship on a homogeneous background to generate simulation envelopes
213	around the completely spatially random (CSR) which is where the PCF=. The fit of the fossil
214	data to CSR was tested using Diggle's goodness-of-fit test ²² p_d (where $p_d=1$ corresponds to CSR,
215	and $p_d=0$ corresponds to non-CSR) with PCF deviations outside the simulation envelope coupled
216	to a $p_d << 1$ taken to indicate significantly non-CSR distributions. Note that due to non-

217	independence of spatial data, Monte-Carlo generated simulation envelopes cannot be interpreted
218	as confidence intervals ⁴⁷ , and also run the risk of Type I errors if the observed PCF falls near the
219	edge of the simulation envelope ²¹ so that hypothesis testing needs to be further supplemented.
220	None-the-less, if the observed data fell below the Monte-Carlo simulations, the bivariate
221	distribution was described as segregated, and above the Monte-Carlo simulations the bivariate
222	distribution was described as aggregated. Non-CSR distributions were tested for statistical
223	significance using Diggle's goodness-of-fit test ²² , with segregations further tested using Diggle's
224	segregation test ²³ (Supplementary Table 3). Diggle's goodness-of-fit test, is a single test
225	statistic ²¹ (p_d) representing the total squared deviation between the observed pattern and the
226	theoretical result across the studied distances. This test statistic was used in conjunction with
227	visual inspection of Monte Carlo simulations for two reasons. First, p_d does not strictly test
228	whether a model should be accepted or rejected, but whether the PCFs for the observed data are
229	within the range of the stochastic realization of the model ²⁶ . Second, p_d depends on the range
230	over which it is calculated. Diggle's segregation test ²³ , detects where two types (taxa here) are
231	spatial segregated by calculating the sum of the square of the probability that each data point is a
232	given type (taxa) minus the average fraction of data points which are a given type (taxa).
233	If a taxon was not randomly distributed on a homogeneous background, and was aggregated
234	(Figure 2, Supplementary Table 4), the random model on a heterogeneous background was tested
235	by creating a heterogeneous background from the density map of the taxon under consideration,
236	being defined by a circle of radius R over which the density is averaged throughout the sample
237	area. Density maps were formed using estimators within the range of $0.1m < R < 1m$, and the R
238	corresponding to the best-fit model was used. If excursions outside the simulation envelopes for

both homogeneous and heterogeneous Poisson models remained, then Thomas cluster models were fitted to the data as follows:

242	1. The PCF and L function ⁵¹ of the observed data were found. Both measures were
243	calculated to ensure that the best-fit model is not optimized towards only one distance measure,
244	and thus encapsulates all spatial characteristics.
245	2. Best-fit Thomas cluster processes ⁵² were fitted to the two functions where PCF>1. The
246	best-fit lines were not fitted to fluctuations around the random line of PCF=1 in order to aid good
247	fit about the actual aggregations, and to limit fitting of the model about random fluctuations.
248	Programita used the minimal contrast method ²¹⁻²³ to find the best-fit model.
249	3. If the model did not describe the observed data well, the lines were refitted using just the
250	PCF. If that fit was also poor, then only the L-function was used.
251	4. 99 simulations of this model were generated to create simulation envelopes, and the fit
252	checked using the O-ring statistic ⁴⁶ .
253	5. p_d was calculated over the model range. Very small-scale segregations (under 2cm) were
254	not included in the model fitting, since they likely represent the finite size of the specimens, and
255	the lack of specimen overlap.
256	6. If there were no excursions outside the simulation envelope and the p_d -value was high,
257	then a univariate homogeneous Thomas cluster model was interpreted as the best model.
258	The most objective way to resolve the number and range of size classes in a population is
259	by fitting height-frequency distribution data to various models, followed by comparison of
260	(logarithmically scaled) Bayesian information criterion (BIC) values ⁵⁵ , which we performed in R
261	using the package MCLUST ⁵⁶ . The number of populations thus identified was then used to

262	define the most appropriate size classes. A BIC value difference of > 10 corresponds to a
263	"decisive" rejection of the hypothesis that two models are the same, whereas values < 6 indicate
264	only weakly reject similarity of the models ⁵⁵⁻⁵⁷ .
265	Once defined, the PCFs for each size class were calculated, and segregated tests performed.
266	Although it was necessary to set firm boundaries for each size class, the populations are normally
267	distributed and therefore overlap. As a result, the largest individuals of the small population are
268	grouped within the middle size class, while some of the smallest of the medium population are
269	included within the small size class. As such, the medium population was excluded from
270	analyses.
271	For each bivariate distribution displaying segregation, the size-classes of each taxon were
272	calculated, the bivariate PCFs of the smallest size-classes and largest size-classes were plotted
273	with 99 Monte Carlo simulations of a complete spatially random distribution and segregation
274	tests performed.
275	Regression analyses. In order to investigate the relationship between height and dispersal linear
276	regressions were performed in R ⁴¹ . Programita ⁴⁶⁻⁵⁰ was used to find the taxa whose univariate
277	distributions were best modelled by Thomas Cluster models (thus most likely to be dispersal
278	induced) and the best-fit cluster radius was used to indicate dispersal range. Four different
279	height variables were found for each taxon's population 1) Mean height 2) Maximum height, 3)
280	Mean mid-point of uptake-zone and 4) Maximum mid-point of uptake zone. The uptake-zone
281	mid-point for each specimen was calculated as the half-way point between the top of the stem
282	and the top of the frond and was a proxy for dispersal release throughout the entire uptake-zone.

References

284	1.	Pu, J.P., Bowring, S.A., Ramezani, J., Myrow, P., Raub, T.D., Landing, E., Mills, A.,
285		Hodgin, E. and Macdonald, F.A Dodging snowballs: Geochronology of the Gaskiers
286		glaciation and the first appearance of the Ediacaran biota. Geology, 44, 955-958 (2016).
287	2.	Liu, A. G, Kenchington C. G. & Mitchell, E. G. Remarkable insights into the paleoecology
288		of the Avalonian Ediacaran biota. Gondwana Res. 27, 1355–1380 (2015).
289	3.	Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends in
290		Ecology & Evolution 26, 81-87 (2011).
291	4.	Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. and
292		Warren, P.H Body size in ecological networks. Trends in ecology & evolution, 20, 402-409
293		(2005).
294	5.	Liu, A. G., Mcllroy, D., & Brasier, M. D. First evidence for locomotion in the Ediacara biota
295		from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38, 123-126 (2010).
296	6.	Clapham, M. E., & Narbonne G. M., Gehling, J. G. Ediacaran epifaunal tiering.
297		<i>Geology</i> , 30 , 627-630 (2002).
298	7.	Laflamme, M., Flude, L. I., & Narbonne, G. M. Ecological tiering and the evolution of a
299		stem: the oldest stemmed frond from the Ediacaran of Newfoundland, Canada. Journal of
300		Palaeontology, 86, 193-200 (2012).
301	8.	Ghisalberti, M., et al Canopy flow analysis reveals the advantage of size in the oldest
302		communities of multicellular eukaryotes. Current Biology, 24 305-309 (2014).
303	9.	Laflamme, M., & Narbonne, G. M Ediacaran fronds. Palaeogeography,
304		Palaeoclimatology, Palaeoecology, 258, 162-179 (2008).

10.	Mitchell, E. G & Butterfield, N. J. Spatial analyses of Ediacaran communities at Mistaken
	Point. Paleobiology, 44, 40-57. (2018).
11.	Mitchell, E. G., Kenchington, C. G., Liu, A. G., Matthews, J. J., & Butterfield, N. J.
	Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature, 524, 343-
	346 (2015).
12.	Clapham, M. E., Narbonne, G.M. & Gehling, J. G. Paleoecology of the oldest known animal
	communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29,
	527–544 (2003).
13.	Landing, E., Narbonne, G.M.& Myrow, P. (eds) Trace fossils, small shelly fossils and the
	Precambrian–Cambrian boundary. Bull. NY State Mus. 463, 1–81 (1988).
14.	Narbonne, G. M. Modular construction of early Ediacaran complex life forms. Science 305,
	1141–1144 (2004).
15.	Hoyal Cuthill, J. F. & Conway Morris, S. Fractal branching organizations of Ediacaran
	rangeomorph fronds reveal a lost Proterozoic body plan. Proc. Natl Acad. Sci. USA 111,
	13122–13126 (2014).
16.	Brasier, M. D., Antcliffe, J. B. & Liu, A. G. The architecture of Ediacaran fronds.
	Palaeontology 55, 1105–1124 (2012).
17.	Liu, A. G., McIlroy, D., Antcliffe, J. B. & Brasier, M. D. Effaced preservation in the
	Ediacara biota and its implications for the early macrofossil record. <i>Palaeontology</i> 54, 607–
	630 (2011).
18.	Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G. & Clapham, M. E.
	Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey
	formations, southeastern Newfoundland. Can. J. Earth Sci. 40, 1375–1391 (2003).
	 10. 11. 12. 13. 14. 15. 16. 17. 18.

328	19.	Benus, A. P. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point
329		Formation, Avalon zone, eastern Newfoundland). Bull. NY State Mus. 463, 8–9 (1988).
330	20.	Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of
331		Spatial Point Patterns Vol. 70 (John Wiley, 2008).
332	21.	Diggle, P. Statistical Analysis of Spatial Point Patterns 2nd edn (Arnold, 2003).
333	22.	Diggle, P., Zheng, P. and Durr, P Nonparametric estimation of spatial segregation in a
334		multivariate point process: bovine tuberculosis in Cornwall, UK. Journal of the Royal
335		Statistical Society: Series C (Applied Statistics), 54, 645-658 (2005).
336	23.	Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. Analyzing the spatial structure of
337		a Sri Lankan tree species with multiple scales of clustering. <i>Ecology</i> 88 , 3088–3102 (2007).
338	24.	Levin, S. A. in <i>Ecological Time Series Vol.2</i> (eds Powell, T. M. & Steele, J. H.) 277-326
339		(Springer, 1995).
340	25.	McIntire, E. J.& Fajardo, A. Beyond description: the active and effective way to infer
341		processes from spatial patterns. Ecology 90, 46–56 (2009).
342	26.	Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology
343		(CRC, 2013).
344	27.	Murrell, D.J. and Law, R Heteromyopia and the spatial coexistence of similar
345		competitors. Ecology letters, 6,48-59 (2003).
346	28.	Hoyal Cuthill, J.F. and Conway Morris, S. Nutrient-dependent growth underpinned the
347		Ediacaran transition to large body size. <i>Nature ecology & evolution</i> , 1 ,1201 (2017).
348	29.	Laflamme, M., Xiao, S., & Kowalewski, M. Osmotrophy in modular Ediacara organisms.
349		Proc. Natl Acad. Sci. USA, 106, 14438-14443 (2009).

30. Darroch, S. A. F., Laflamme, M. & Clapham, M. E. Population structure of the oldest known
macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39, 591-608
(2013).
31. Droser, M. L. & Gehling, J. G. Synchronous aggregate growth in an abundant new Ediacaran
tubular organism. Science 319 , 1660–1662 (2008).
32. Penny, A. M. et al. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344,
1504–1506 (2014).
33. Yuan, X. et al. The Lantian biota: a new window onto the origin and early evolution of
multicellular organisms. Chin. Sci. Bull. 58, 701-707 (2013).
34. Hua, H., Chen, Z., Yuan, X., Zhang, L. & Xiao, S. Skeletogenesis and asexual reproduction
in the earliest biomineralizing animal Cloudina. Geology 33 , 277–280 (2005).
35. Clapham, M. E. Ordination methods and the evaluation of Ediacaran communities.
In: Quantifying the Evolution of Early Life (pp. 3–21). Ed. Laflamme, Marc, Schiffbauer,
James D., Dornbos, Stephen Q. Springer Netherlands (2011).
36. Shen, B., Dong, L., Xiao, S. & Kowalewski, M. The Avalon explosion: evolution of
Ediacara morphospace. Science 319, 81–84 (2008)
37. Liu, A. G., McIlroy, D., Antcliffe, J. B. & Brasier, M. D. Effaced preservation in the
Ediacara biota and its implications for the early macrofossil record. Palaeontology 54, 607–
630 (2011)
38. Narbonne, G. M., Laflamme, M., Greentree, C. & Trusler, P. Reconstructing a lost world:
Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. J. of Paleontology 83, 503-
523 (2009)

372	39.	Brasier, M. D. & Antcliffe, J. B. Evolutionary relationships within the Avalonian Ediacara
373		biota: new insights from laser analysis. Journal of the Geological Society 166, 363-384
374		(2009).
375	40.	Matthews, J.J., Liu, A.G. and McIlroy, D Post-fossilization processes and their
376		implications for understanding Ediacaran macrofossil assemblages. Geological Society,
377		London, Special Publications, 448, 251-269 (2017).
378	41.	Narbonne, G.M., Laflamme, M., Trusler, P.W., Dalrymple, R.W. and Greentree, C Deep-
379		water Ediacaran fossils from northwestern Canada: taphonomy, ecology, and
380		evolution. Journal of Paleontology, 88, 207-223 (2014).
381	42.	R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
382		Statistical Computing Vienna, Austria (2013)
383	43.	Baddeley, A. & Turner, R. Spatstat: an R package for analyzing spatial point patterns. J. of
384		<i>Statistical Software</i> 12 , 1–42 (2005)
385	44.	Berman, M. Testing for spatial association between a point process and another stochastic
386		process. Applied Statistics 35, 54–62 (1986)
387	45.	Baddeley, A., Rubak, E. & Møller, J. Score, pseudo-score and residual diagnostics for
388		spatial point process models. Statistical Science 26, 613-646 (2011)
389	46.	Wiegand, T. & Moloney, K. Rings, circles, and null-models for point pattern analysis in
390		ecology. Oikos 104, 209–229 (2004)
391	47.	Wiegand, T., Kissling, W., Cipriotti, P. & Aguiar, M. Extending point pattern analysis for
392		objects of finite size and irregular shape. J. of Ecology 94, 825–837 (2006)

393	48.	Wiegand, T., Moloney, K., Naves, J. & Knauer, F. Finding the missing link between
394		landscape structure and population dynamics: a spatially explicit perspective. The American
395		Naturalist 154, 605–627 (1999)
396	49.	Loosmore, N. B. & Ford, E. D. Statistical inference using the G or K point pattern spatial
397		statistics. <i>Ecology</i> 87, 1925–1931 (2006)
398	50.	Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-pattern Analysis in Ecology. 538
399		pages. CRC Press (2013)
400	51.	Levin, S. A. The problem of pattern and scale in ecology (pp. 277–326). Springer U.S.
401		(1995)
402	52.	Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. of the Royal
403		Statistical Society. Series B (Methodological) 36, 192–236 (1974)
404	53.	Thomas, M. A generalization of Poisson's binomial limit for use in ecology. <i>Biometrika</i> 36,
405		18–25 (1949)
406	54.	Grabarnik, P., Myllymäki, M. & Stoyan, D. Correct testing of mark independence for
407		marked point patterns. Ecological Modelling 222, 3888–3894 (2011)
408	55.	Fraley, C. & Raftery, A. E. MCLUST version 3: an R package for normal mixture modeling
409		and model-based clustering. Washington University Seattle Dept of Statistics (2006)
410	56.	Fraley, C. & Raftery, A. E. Bayesian regularization for normal mixture estimation and
411		model-based clustering. J. of Classification 24, 155-188 (2007)
412	57.	Pélissier, R. & Goreaud, F. A practical approach to the study of spatial structure in simple
413		cases of heterogeneous vegetation. J. of Vegetation Science 12, 99–108 (2001)
414	58.	Stoyan, D., Kendall, W. S. & Mecke, J. Stochastic geometry and its applications. 2nd
415		edition. 458 pages. Springer Verlag (1995)

417	Acknowledgments: We thank N. Butterfield and A. Liu for discussions on this manuscript. The
418	Parks and Natural Areas Division, Department of Environment and Conservation, Government
419	of Newfoundland and Labrador provided permits to conduct research within the Mistaken Point
420	Ecological Reserve in 2010, 2016 and 2017. This work has been supported by the Natural
421	Environment Research Council [grant number NE/P002412/1], Gibbs Travelling Fellowship
422	from Newnham College, Cambridge and a Henslow Junior Research Fellowship from
423	Cambridge Philosophical Society to E. G. M.
424	Author contributions. E.G.M and C. G. K conceived the project, discussed the results and
425	prepared the manuscript. E. G. M. conceived and ran the analyses.
426	
427	The authors declare no competing interests.
428	
429	
430	
431	
432	
433	
434	

436	Figure 1. DVS for Mistaken Point communities. Height distributions of the a, 'D' surface
437	community b , 'E' surface community and the c , LMP surface community, and uptake-zone
438	distributions of the d , 'D' surface community e , 'E' surface community and the f , LMP
439	surface community. The taxonomic group is given on the x-axis, and the y-axis is the height
440	above the substrate in millimetres. The shade of the bin is given by the scale to the right of each
441	community plot, and represents the frequency of specimens at the given height (a-c) and the
442	occupation frequency of specimen uptake-zone (d-f). For example, in the height frequency plots
443	(a-c), a 56mm tall specimen with or without a stem would feature in the 50-60mm box only. For
444	the uptake-zone occupancy plots (d-f), a non-stemmed specimen 56mm tall would be shown in
445	the 10, 20, 30, 40, 50 and 60mm bins. A stemmed specimen 56mm tall with a 30mm stem would
446	be shown in the 40, 50 and 60mm bins.

449	Figure 2. PCF for resource competition interactions. The x-axis is the inter-point distance
450	between organisms in meters. On the y-axis, PCF=1 indicates CSR, <1 indicates segregation and
451	>1 indicates aggregation. The grey shaded area denotes the boundaries of 99 Monte Carlo
452	simulations of CSR. Since the PCF curves are not within these areas, the complete spatial
453	randomness (CSR) hypotheses is rejected and one can assume that the distributions on both
454	surfaces are aggregated at small spatial scales and segregated at large spatial scales. (p_d ^{Fract-FeaD}
455	$< 0.01, p_d$ ^{Chard-FeaD} $< 0.01, p_d$ ^{Charl-IOst} $< 0.01, p_d$ ^{CharlI-IOst} < 0.01). a, PCFs for 'E' surface
456	Fractofusus – Feather Dusters (1497 Fractofusus specimens of which 126 were small and 303
457	were large and Feather Dusters 362 specimens of which 296 were small and 66 large). b, PCFs
458	for 'E' surface Charniodiscus – Feather Dusters (Charniodiscus 825 specimens of which 489
459	were small and 336 were large and Feather Dusters 362 specimens of which 296 were small and
460	66 large). c, PCF for the segregated aggregation of the LMP surface (Charniid II 51 specimens of
461	which 26 were small and 25 were large and Ostrich Feather 54 specimens of which 38 were
462	small and 16 large). d, PCF for the segregated aggregation of the LMP surface (Charniid I 143
463	specimens of which 47 were small and 25 were large and Ostrich Feather 54 specimens of which
464	38 were small and 16 large).

Supplementary Figure 1.

471	Map and simplified stratigraphic column showing the position of studied bedding planes
472	with bedding plane maps. a, Newfoundland, eastern Canada. Dashed area indicates
473	region of interest in b. b, The Avalon Peninsula, eastern Newfoundland. Locations of the
474	bedding planes are indicated. c, Stratigraphic column (not to scale) of the Avalon Peninsulas.
475	The 'E' surface at Mistaken Point has been dated to 566 ± 0.3 Ma (ref. 1). d-e , Maps of the 'D',
476	'E' and LMP surfaces showing specimen position and height (circle diameter). d, 'D' surface,
477	showing Fractofusus (blue), Pectinifrons (yellow) and Bradgatia (Pink). e, 'E' surface with
478	Charniodiscus (red), Holdfast discs with stems (orange), Charniid I (green), Thectardis (purple),
479	Fractofusus (blue), Bradgatia (pink) and Feather Dusters (yellow) and f, Lower Mistaken Point
480	showing Charniid A (I), Charniids II (purple) and Ostrich Feathers (red). Data from [12]. Scale
481	bar 1m.
400	

482

484

Supplementary Figure 2. Diagram illustrating DVS and uptake-zone quantification. 485 Uptake-zone was defined as the part of the organism which exhibited multiple scales of 486 branching. In specimens i and ii, the uptake-zone consists of the entire height because they lack 487 a naked stem. For specimens iii and iv, the uptake-zone is only the top 50% of the specimen, as 488 the naked stem comprises the other 50%. To calculate DVS, the specimens within each taxon 489 population were tabulated into 1cm height bins firstly using their height, and secondly their 490 491 uptake-zone height ranges. For the above community (consisting of specimens i - iv), for the 492 Charniid specimens (specimens i and ii), specimen i occupies a distinct stratum to the Feather Dusters (specimens iii and iv), while specimen ii height overlaps specimen iii in, and thus does 493 not occupy a distinct stratum from Feather Dusters: consequently, the Charniids have a DVS^{height} 494 = 50%. For the Feather Dusters (specimens iii and iv), specimen iii overlaps with ii, so does not 495 occupy a distinct stratum, but specimen iv is not overlapped by any Charniid specimens: so, 496 Feather Duster $DVS^{height} = 50\%$. Community DVS^{height} is the mean of the values for all taxa in the 497

498 community: DVS^{height} _{Community} = 50%. The uptake-zone $DVS^{uptake}_{Community}$ = 50% as well, 499 because the uptake-zones of specimens i and iv occupy distinct strata, but ii and iii do not.

504 Supplementary Figure 3.

505 Size distribution analysis of taxa with segregated bivariate PCFs. Size distribution analysis of taxa with segregated bivariate PCFs. a, 'E' surface *Charniodiscus* height-frequency 506 distributions, and **b**, the results of Bayesian Information Criterion^{54,55} (BIC). Triangles and 507 squares correspond to models assuming equal and unequal variance respectively. High BIC 508 values correspond to a good model fit, so the best-fit model is a three component equal variance 509 model. c, 'E' surface Feather Dusters height-frequency distributions and d, BIC. e, 'E' 510 surface Fractofusus height-frequency distributions and f, BIC. g, LMP Charniid I height-511 frequency distributions, and **h**, BIC. **i** LMP Charniid II height-frequency distributions, and (J), 512 BIC, (K), LMP Ostrich Feathers height-frequency distributions, and j, BIC. 513

	Height D	VS		Uptake-zone DVS			
Surface	D	Ε	LMP	D	Ε	LMP	
Taxon							
Bradgatia	0.6184	0.0000		0.6184	0.4204		
Charniid		0.0000	0.5232		0.1071	0.6821	
Charniid II			0.0784			0.2549	
Charniodiscus		0.0776			0.5806		
Feather Dusters		0.0000			0.0359		
Fractofusus	0.9957	0.7963		0.9957	0.8831		
Ostrich Feather			0.0000			0.2778	
Pectinifrons	0.8057			0.8057			
Thectardis		0.0000			0.1200		

Supplementary Table 1. Table of DVS values for Mistaken Point communities. Table of height and uptake-zone DVS for each taxon population within each of D, E and LMP communities. DVS = 0% corresponds to no specimens occupying a unique part of the water column, i.e. the height distribution of that population is totally overlapped by other taxa populations. DVS = 100% corresponds to no overlap between any specimens, so each taxon occupies a distinct strata.

Surface	D	E	Lower Mistaken Point
Rangeomorph	96.96%	55.15%	71.82%
Stemmed	0.54%	30.18%	42.27%
Other	2.5%	14.67%	14.09%

523 Supplementary Table 2.

524 **Community compositions.** Percentage of taxa from each surface that are rangeomorphs and 525 have stemmed. The "Other category" refers to taxa which cannot be placed as either 526 Rangeomorphs or stemmed taxa due to lack of taxonomic certainty.

Surface	Taxon 1	Taxon 2	PCFmin	Small	Large	
Е	Fractofusus	Feather Dusters	0.8852	0.25	0.01	
Е	Feather Dusters	Charniodiscus	0.8972	0.14	0.01	
LMP	Charniid I	Ostrich Feather	0.4932	0.02	0.01	
LMP	Charniid II	Ostrich Feather	0. 5346	0.92	0.01	

Size class *p* value

528

529 **Supplementary Table 3.**

530 Segregation test for the different size-classes of segregated bivariate distributions. A value

of p < 0.05 is significantly segregated, while p > 0.05 is not significantly segregated.

Surface	Taxon	σ (m)	Mean Height (mm)	Maximum Height (mm)	Mean mid-point of Uptake-zone (mm)	Maximum mid-point of Uptake-zone (mm)
Е	Charnidiscus	0.07	54	291	30	58
Ε	Feather Duster	0.25	41	153	43	106
Ε	Thectardis	0.18	102	165	16	104
LMP	Charniid II	0.22	63	185	26	93
LMP	Ostrich Feather	0.18	39	118	14	34

533 Supplementary Table 4.

534 **Taxon height and cluster sizes.** The best-fit cluster size for the Thomas Cluster model of each 535 frondose taxon exhibiting Thomas Cluster aggregation^{4,5}. The mid-point of the active zone 536 height is given by calculating the mid-point between the stem and the top of the frond for each 537 specimen.

	Top of Stem Height		Uptake-zone height				Top of frond Height					
Surface	Mean		Max		Mean		Max		Mean		Max	
	р	\mathbb{R}^2	р	\mathbb{R}^2	р	\mathbb{R}^2	р	\mathbb{R}^2	р	\mathbb{R}^2	р	\mathbb{R}^2
Е	0.47	0.54	0.48	0.54	0.78	0.12	0.28	0.82	0.88	0.04	0.03	1.00

540 Supplementary Table 5.

Linear regression analyses. Linear regressions of the fitted cluster sizes of Table S3 for frondose organisms showing a Thomas Cluster i.e. dispersal process aggregations. The regressions which are significant are given in bold. These analyses could not be repeated for LMP surface due to insufficient sample size.

545

546