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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression

at the level of individual cells. However, preparing raw sequence data for further analysis is not a

straightforward process. Biases, artifacts and other sources of unwanted variation are present in

the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC)

and normalization.

Results: We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing,

quality control, normalization and visualization of scRNA-seq data. The package provides a conveni-

ent, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready

for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flex-

ible data structure that is compatible with existing tools and can be used as infrastructure for future

software development.

Availability and Implementation: The open-source code, along with installation instructions, vi-

gnettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/

scater.

Contact: davis@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) describes a broad class of

techniques which profile the transcriptomes of individual cells. This

provides insights into cellular processes at a resolution that cannot

be matched by bulk RNA-seq experiments (Hebenstreit and

Teichmann, 2011; Shalek et al., 2013). With scRNA-seq data, the

contributions of different cell types to the expression profile of a

heterogeneous population can be explicitly determined. Rare cell

types can be interrogated and new cell subpopulations can be dis-

covered. Graduated processes such as development and differenti-

ation can also be studied in greater detail. However, this

improvement in resolution comes at the cost of increased technical

noise and biases. This means that pre-processing, quality control

and normalization are critical to a rigorous analysis of scRNA-seq
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data. The increased complexity of the data across hundreds or thou-

sands of cells also requires sophisticated visualization tools to assist

interpretation of the results.

Numerous statistical methods and software tools have been pub-

lished for scRNA-seq data (Angerer et al., 2015; Finak et al., 2015;

Guo et al., 2015; Juli�a et al., 2015; Kharchenko et al., 2014;

Trapnell et al., 2014). However, all of these assume that quality con-

trol and normalization have already been applied. Fewer methods

are available in the literature to perform these basic steps in scRNA-

seq data processing (Ilicic et al., 2016). This issue is exacerbated by

the diversity of scRNA-seq datasets with respect to the experimental

protocol and the biological context of the study, meaning that a sin-

gle processing pipeline with fixed parameters is unlikely to be uni-

versally applicable. Rather, software tools are required that support

an interactive approach to analysis. This allows parameters to be

fine-tuned for the study at hand in response to any issues diagnosed

during data exploration. The provided functionality should also pro-

cess the data in a statistically rigorous manner and encourage repro-

ducible bioinformatics analyses.

One of the most widely used frameworks for interactive analysis

is the R programming language, extended for biological data ana-

lysis through the Bioconductor project (Huber et al., 2015). While

Bioconductor packages have been widely used for bulk RNA-seq

data, the existing data structures (like the ExpressionSet class) are

not sufficient for scRNA-seq data. This is because they do not sup-

port data types that are specific to single-cell studies, e.g. cell–cell

distance matrices for clustering. For larger studies, this also includes

data beyond expression profiles such as intensity values from

fluorescence-activated cell sorting, cell imaging data and informa-

tion from epigenetic and targeted genotyping assays. Existing meth-

ods for processing and applying quality control to scRNA-seq data

are similarly inadequate. In particular, current visualization methods

designed for exploratory data analysis of bulk transcriptomic experi-

ments are unsuited to datasets containing hundreds or thousands of

cells. The large size of each dataset also favours methods such as kal-

listo (Bray et al., 2016) and Salmon (Patro et al., 2016) for rapidly

quantifying gene expression, but support for the output of these

methods is currently limited. Extensions to the current computa-

tional infrastructure are required to provide appropriate data struc-

tures and methods that can accommodate these rich scRNA-seq

datasets for integrative analyses of expression and other assay data

along with the accompanying metadata.

Here we present scater, an open-source R/Bioconductor software

package that implements a convenient data structure for representing

scRNA-seq data and contains functions for pre-processing, quality

control, normalization and visualization. The package provides wrap-

per functions for running kallisto and Salmon on raw read data and

converting their output into gene-level expression values, methods for

computing and visualizing quality-control metrics for cells and genes,

and methods for normalization and correction of uninteresting cova-

riates. This is done in a single software environment which enables

seamless integration with a large number of existing tools for scRNA-

seq data analysis in R. The scater package provides basic infrastruc-

ture upon which customized scRNA-seq analyses can be constructed,

and we anticipate the package to be useful across the whole spectrum

of users, from experimentalists to computational scientists.

2 Methods, data and implementation

2.1 Case study with scRNA-seq data
The results presented in the main paper and supplementary case

study use an unpublished single-cell RNA-seq dataset consisting of

73 cells from two lymphoblast cell lines of two unrelated individ-

uals. Cells were captured, lysed and cDNA generated using the

popular C1 platform from Fluidigm, Inc. (https://www.fluidigm.

com/products/c1-system). The processing of the two cell lines was

replicated across two machines, with the nuclei of the two cell lines

stained with different dyes before mixing on each machine. Cells

were imaged before lysis, with an example image provided together

with these data (see Case Study in Supplementary Material).

Samples were sequenced with paired-end sequencing using the

HiSeq 2500 Sequencing system (Illumina). RNA-seq reads were

mapped to a custom genome reference, consisting of Homo sapiens

GRCh37 (primary assembly from ftp://ftp.ensembl.org/pub/release-

75/fasta/homo_sapiens/dna/, last accessed 14.08.2015), Epstein-

Barr Virus type 1 (B95-8 strain, Accession NC_007605.1) and

ERCC RNA spike-ins (ThermoFisher). Reads in fastq format were

aligned with TopHat2 v2.0.12 (Kim et al., 2013), using Bowtie2 v2.

2.3.0 (Langmead and Salzberg, 2012) as the core mapping engine (–

mate-inner-dist 190 –mate-std-dev 40 –report-secondary-align-

ments) and other default parameters. Potential PCR duplicates were

marked with Picard MarkDuplicates v1.92(1464). Reads mapping

uniquely to annotated exon features were counted using htseq-count

implemented in HTSeq, version 0.6.1p1 (Anders et al., 2015).

Further case studies using scater on published data, for example

from 3000 mouse cortex cells (Zeisel et al., 2015) and 1200 cells

from early-development mouse embryos (Scialdone et al., 2016) are

available at http://dx.doi.org/10.5281/zenodo.59897. All materials

required to reproduce the results presented in this paper are avail-

able at http://dx.doi.org/10.5281/zenodo.60139.

2.2 Implementation
The scater package is an open-source R package available through

Bioconductor. Key aspects of the code are written in Cþþ to mini-

mize computational time and memory use, and the package scales

well to large datasets. For example, consider the Macosko et al.

(2015) dataset, which contains more than 44 000 cells. The core sca-

ter functions to create an SCESet object and calculate QC metrics

took approximately two minutes to complete on an early 2015

MacBook Pro laptop with 2.9 GHz Intel Core i5 processor and

16 Gb of RAM. Subsetting the SCESet object takes only a few se-

conds, and producing a PCA plot with the plotPCA function takes

less than a minute.

The package builds on many other R packages, including

Biobase and BiocGenerics for core Bioconductor functionality

(Huber et al., 2015); destiny (Angerer et al., 2015) and Rtsne for

dimensionality reduction; and edgeR (Robinson et al., 2010) and

limma (Ritchie et al., 2015) for model fitting and statistical analyses.

The plotting functionality in the package uses ggplot2. A full set of

dependencies is provided in the Supplementary Materials.

3 Results

3.1 The scater package
The scater package offers a workflow to convert raw read sequences

into a dataset ready for higher-level analysis within the R program-

ming environment (Fig. 1). In addition, scater provides basic compu-

tational infrastructure to standardize and streamline scRNA-seq

data analyses. Key features of scater include: (i) the ‘single-cell ex-

pression set’ (SCESet) class, a data structure specialized for scRNA-

seq data; (ii) wrapper methods to run kallisto and Salmon and pro-

cess their output into gene-level expression values; (iii) automated

calculation of quality control metrics, with QC visualization and
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filtering methods to retain high-quality cells and informative fea-

tures; (iv) extensive visualization capabilities for inspection of

scRNA-seq data and (v) methods to identify and remove uninterest-

ing covariates affecting expression across cells. The package inte-

grates many commonly used tools for scRNA-seq data analysis and

provides a foundation on which future methods can be built. The

methods in scater are agnostic to the form of the input data and are

compatible with counts, transcripts-per-million, counts-per-million,

FPKM or any other appropriate transformation of the expression

values.

3.2 SCESet: a data structure for single-cell expression

data
The scater package is built around the SCESet class (Supplementary

Fig. S1) which provides a sophisticated container for scRNA-seq

data. This class inherits from the ExpressionSet class in

Bioconductor’s Biobase package (Huber et al., 2015), which allows

assay data (and multiple transformations thereof), gene or transcript

metadata and sample metadata to be combined in a single object to

empower robust analyses. While the ExpressionSet class is the basis

of many microarray and bulk RNA-seq analysis methods in

Bioconductor, extensions to the class design are necessary to support

scRNA-seq data analyses. Specifically, the SCESet class adds slots to

store a reduced-dimension representation of the expression profiles,

to easily visualize the relationships between cells; cell–cell and gene–

gene pairwise distance matrices, for clustering or regulatory network

reconstruction; bootstrapped expression results (such as from kal-

listo), to gauge the accuracy of expression quantification; consensus

clustering results, where cluster assignments for each cell are com-

bined from different methods to improve reliability; information

about feature controls (such as ERCC spike-ins), which is required

in downstream steps such as normalization, QC and detection of

highly variable genes; and several more (Supplementary Fig. S1).

With these extra slots, SCESet objects can support analyses of

scRNA-seq data that ExpressionSet cannot. In addition, extra data

types such as FACS marker expression or epigenetic information can

be easily stored in each SCESet object for integration with the

single-cell expression profiles.

An SCESet data object can be easily subsetted by row or column

to remove unwanted genes or cells, respectively, from all data and

metadata fields stored in the object. Furthermore, data and meta-

data in multiple SCESet objects can be easily combined e.g. to in-

corporate cells from different experimental batches. SCESet objects

can also be converted to other R data structures, or saved to disk in

structured, shareable formats. Further details on the class, including

its motivation and execution, are available in the Supplementary

Case Study and the package documentation. All methods available

in scater are applicable to instances of the SCESet class and exploit

the availability and richness of (meta)data stored in each SCESet

object.

3.3 Data pre-processing
An important initial step in scRNA-seq data processing is to quan-

tify the expression level of genomic features such as transcripts or

genes from the raw sequencing data. Approaches to expression

quantification from raw reads are, in principle, the same for scRNA-

seq as they are for bulk RNA-seq (Kanitz et al., 2015; Teng et al.,

2016). Read counts obtained from conventional quantification

methods such as HTSeq (Anders et al., 2015) and featureCounts

(Liao et al., 2014) can be readily stored in an SCESet object and

used in a scater workflow (Fig. 1). Another option is to use

computationally efficient pseudoalignment methods such as kallisto

and Salmon. This is especially appealing for large scRNA-seq data-

sets containing hundreds to tens of thousands of cells. To this end,

scater also provides wrapper functions for kallisto and Salmon so

that fast quantification of transcript-level expression can be man-

aged completely within an R programming environment. A common

subsequent step for these methods is to collapse transcript-level ex-

pression to gene-level expression. Exploiting the biomaRt R/

Bioconductor package, scater provides a convenient function for

using Ensembl annotations (Yates et al., 2016) to obtain gene-level

expression values and gene or transcript annotations.

3.4 Data quality control
The scater package provides methods to compute relevant QC met-

rics for an SCESet object. Given a set of control genes and/or cells, a

variety of QC metrics will be computed and returned to the object in

a single call to the calculateQCMetrics function (see package docu-

mentation). Cell-specific QC metrics include the total count across

all genes, the total number of expressed genes, and the percentage of

counts allocated to control genes like spike-in transcripts or mito-

chondrial genes. These metrics are useful for identifying low-quality

cells—for example, a high percentage of counts mapping to spike-

ins typically indicates that a small amount of RNA was captured for

the cell, suggesting protocol failure or death of the cell in processing

that renders it unsuitable for downstream analyses. For each gene,

QC metrics such as the average expression level and the proportion

of cells in which the gene is expressed are computed. This can be

used to identify low-abundance genes or genes with high dropout

rates that should be filtered out prior to downstream analyses. All of

Fig. 1. An overview of the scater workflow, from raw sequenced reads to a

high quality dataset ready for higher-level downstream analysis. For step 5,

explanatory variables include experimental covariates like batch, cell source

and other recorded information, as well as QC metrics computed from the

data. Step 6 describes an optional round of normalization to remove effects

of particular explanatory variables from the data. Automated computation of

QC metrics and extensive plotting functionality support the workflow
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these metrics are used by scater to construct QC plots to diagnose

potential issues with data quality. This facilitates quality control

which—despite attempts at automation (Ilicic et al., 2016)—still re-

quires manual intervention to account for aspects of the data specific

to each study. The package documentation provides full details of

the QC metrics produced.

In scater, the default plot method for an SCESet object produces

a cumulative expression plot (Fig. 2a). This plot describes how reads

are distributed across genes, distinguishing between low-complexity

libraries (where very few genes contain most of the counts) and their

high-complexity counterparts (where counts are distributed more

evenly across genes). For example, there is substantial variability in

library complexity among cells in the case study dataset in

Figure 2a. Some cells have profiles similar to the blank wells, sug-

gesting that library preparation or sequencing failed for these cells

and that the corresponding libraries should be removed prior to fur-

ther analysis. Cell phenotype variables can be incorporated into

these plots to highlight differences in expression distributions for

different types of cells. For example, the curve for each cell is col-

oured by the type of well that produced the library (Fig. 2a), while

cells can also be split into separate facets by library type to show

more metadata variables simultaneously (see Supplementary Case

Study). Cumulative expression plots should be favoured over box-

plots as the default method for visualizing expression distributions

across cells in a dataset, as the latter performs poorly at handling the

long tail of low- and zero-expression observations in scRNA-seq

data.

The plotPCA function implements an approach to automatic

outlier detection using multivariate normal methods applied to the

cell-level QC metrics (Ilicic et al., 2016). It produces a PCA plot

computed from QC metrics, where cells corresponding to detected

outliers are marked (Fig. 2b). Briefly, semi-robust principal compo-

nents are computed from robustly sphered QC metrics data, using

the pcout function from the mvoutlier R package (Filzmoser et al.,

2008). These components are used to calculate distances for each

cell, which are then used to compute weights for outlier detection.

By default, the following QC metrics are used in this procedure: the

percentage of counts from the top 100 features, the total number of

features with detectable expression, the percentage of counts from

control features, the number of detected feature controls, the log-

scaled counts from endogenous features and log-transformed counts

from feature controls. The user can specify QC metrics or other cell

metadata variables to use for outlier detection with the

‘selected_variables’ argument to plotPCA. Detected outliers corres-

pond to low-quality cells with abnormal library characteristics (e.g.

low total counts and few expressed genes) that should be removed

prior to downstream analysis. This automated approach is powerful

but also somewhat opaque with respect to how outliers are defined,

and so complements simpler filtering approaches that apply thresh-

olds to particular QC metrics.

The plotQC function generates many types of plots useful for

quality control, such as a plot to visualize the frequency of expres-

sion of features against their average expression level (Fig. 2c). Such

plots are useful because scRNA-seq data are characterized by a high

frequency of ‘dropout’ events, i.e. no observed expression (such as

no read counts) in a particular cell for a gene that is actually ex-

pressed in that cell. Indeed, most genes will not have detectable ex-

pression in every cell. With plotQC, control features that should be

present in each cell can be highlighted easily in the plot, allowing

technical dropouts to be distinguished from biological heterogeneity

of expression. Typical scRNA-seq datasets will show a broadly sig-

moidal relationship between average expression level and frequency

(a) (b)

(d) (e)

(c)

Fig. 2. Different types of QC plots that can be generated with scater. (a) Cumulative expression plot showing the proportion of the library accounted for by the top

1–500 most highly expressed features. (b) PCA plot produced using a subset of the QC metrics computed with scater’s calculateQCMetrics function. (c) Plot of fre-

quency of expression (percentage of cells in which the feature is deemed expressed) against mean expression level across cells. The vertical dotted line shows

the median of the gene mean expression levels, and the horizontal dotted line indicates 50% frequency of expression. (d) Plot of the 20 most highly expressed fea-

tures (computed according to the highest total read counts) across all cells in the dataset. For each feature, the circle represents the percentage of counts across

all cells that correspond to that feature. The features are ordered by this value. The bars for each feature show the percentage of counts corresponding to the fea-

ture in each individual cell, providing a visualization of the distribution across cells. (e) Density plot showing the percentage of variance explained by a set of ex-

planatory variables across all genes. Each individual plot is produced by a single call with either the function plot (a), plotPCA (b) or plotQC (c–e)
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of expression across cells. This is consistent with expected behaviour

where genes with greater average expression are more readily cap-

tured during library preparation and are detected at a greater fre-

quency (Brennecke et al., 2013; Kim et al., 2015; Vallejos et al.,

2015).

With plotQC, we can also produce a plot to visualize the most

highly expressed features in the dataset (Fig. 2d). This provides a

feature-centric overview of the dataset that visualizes the features

with highest total expression across all cells, while also displaying

the distribution of cell-level expression values for these features. It is

common to see ERCC spike-ins (if used), mitochondrial and riboso-

mal genes among the highest expressed genes, while datasets consist-

ing of healthy cells will also show high levels of constitutively

expressed genes like ACTB. This plot allows the analyst to quickly

check that the gene- or transcript-level quantification is behaving as

expected, and to flag datasets where it is not.

Another important step in quality control is to identify variables

(experimental factors or computed QC metrics) that drive variation

in expression data across cells. The plotQC function provides a

novel approach to identifying variables that have substantial ex-

planatory power for many genes. For each variable in the

phenoData slot of the SCESet object, we fit a linear model for each

feature with only that variable as the explanatory variable. We then

plot the distribution of the marginal R2 values across all features for

the variables with the most explanatory power for the dataset (Fig.

2e). The variables are ranked by median R2 across features in the

plot, allowing users to identify variables that may need to be con-

sidered during normalization or statistical modelling. The plotQC

function can also assess the influence of variables of interest by plot-

ting principal components of the expression matrix most strongly

correlated with a variable of interest against that variable. For ex-

ample, in the Case Study data, the first principal component is corre-

lated with the C1 machine used to process the cell (Supplementary

Fig. S2).

We also introduce the plotPhenoData function for convenient

plotting of cell phenotype information (including QC metrics), and

the plotFeatureData function for plotting feature information (see

examples in the Supplementary Case Study). These methods will

work not only on the SCESet class defined in scater, but also on any

ExpressionSet object, providing sophisticated plotting functionality

for many other Bioconductor packages and contexts.

The scater graphical user interface (GUI) provides convenient ac-

cess to scater’s QC and visualization methods (Supplementary Figs

S4–S6). This opens an interactive interface in a web browser that fa-

cilitates exploration of the data through QC plots and other intuitive

visualizations. The GUI allows users of any background to easily

examine the effects of changing multiple parameters, which can be

helpful for quickly conducting exploratory data analysis. Useful set-

tings can then be stored in R scripts to ensure that data analyses are

reproducible.

In summary, scater provides a variety of novel and convenient

methods to visualize an scRNA-seq dataset for QC. Low-quality

cells and uninteresting genes can then be easily removed by filtering

and subsetting the SCESet data structure prior to further analysis.

3.5 Data visualization
Dimensionality reduction techniques are necessary to convert high-

dimensional expression data into low-dimensional representations

for intuitive visualization of the relationships, similarities and differ-

ences between cells. To this end, scater provides convenient func-

tions to apply a variety of dimensionality reduction procedures to

the cells in an SCESet object. Functions include plotPCA, to perform

a principal components analysis; plotTSNE, to perform t-distributed

stochastic neighbour embedding (Van der Maaten and Hinton,

2008), which has been widely used for scRNA-seq data (Amir et al.,

2013; Bendall et al., 2014; Macosko et al., 2015);

plotDiffusionMap, to generate a diffusion map (Haghverdi et al.,

2015) for visualizing differentiation processes; and plotMDS, to

generate multi-dimensional scaling plots (Fig. 3a–c). The

plotReducedDim function can also be used to plot any reduced-

dimension representation of cells (e.g. an independent component

analysis produced by monocle (Trapnell et al., 2013) or similar) that

is stored in an SCESet object.

By default, the PCA and t-SNE plots are produced using the fea-

tures with the most variable expression across all cells. We focus on

the most variable genes to highlight any heterogeneity in the data

that might be driving interesting differences between cells.

Alternatively, we can apply a priori knowledge to define a set of

genes that are associated with a biological process of interest, and

construct plots using only these features. For example, Scialdone

et al. (2015) found that using prior knowledge to define feature sets

is vital for exploring processes like the cell cycle, which can have

substantial effects on single-cell expression measurements (Buettner

et al., 2015). The subsetting and filtering methods for SCESet ob-

jects facilitate the generation of reduced-dimension plots for particu-

lar gene sets, in order to investigate certain effects in the data such

as those due to the cell cycle (Fig. 3d–f).

The various types of reduced-dimension plots can be used to

examine the structure of the cell population, including the formation

of distinct subpopulations or the presence of continuous trajectories.

Cell-level variables stored in the SCESet object can be used to define

the shape, colour and size of points plotted, allowing more informa-

tion to be conveniently incorporated into each plot (e.g. cells are col-

oured by CCND2 expression in Fig. 3d–f). The plotExpression

function is also provided for plotting expression levels of a particu-

lar gene against any of the cell phenotype variables or the expression

level of another feature (Fig. 3g). This allows the user to inspect the

expression levels of a feature or set of features in full detail, rather

than relying only on summary information and reduced-dimension

plots where information is necessarily lost.

3.6 Data normalization and batch correction
Scaling normalization is typically required in RNA-seq data analysis

to remove biases caused by differences in sequencing depth, capture

efficiency or composition effects between samples. Frequently used

methods for scaling normalization include the trimmed mean of M-

values (Robinson and Oshlack, 2010), relative log-expression

(Anders and Huber, 2010) and upper-quartile methods (Bullard

et al., 2010), all of which are available for use in scater. In addition,

scater is tightly integrated with the scran package, which imple-

ments a method utilizing cell pooling and deconvolution to compute

size factors better suited to scRNA-seq data (Lun et al., 2016b). Lun

et al. (2016a) also offers further discussion of the respective benefits

and drawbacks of spike-in normalization and non-DE

normalization.

After scaling normalization, further correction is typically

required to ameliorate or remove batch effects. For example, in the

case study dataset, cells from two patients were each processed on

two C1 machines. Although C1 machine is not one of the most im-

portant explanatory variables on a per-gene level (Fig. 2e), this fac-

tor is correlated with the first principal component of the log-

expression data (Fig. 2f). This effect cannot be removed by scaling
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normalization methods, which target cell-specific biases and are not

sufficient for removing large-scale batch effects that vary on a gene-

by-gene basis (Fig. 4a). Here we present two possibilities, both easily

implemented in a scater workflow.

The C1 machine effect is known from the design of the experi-

ment, so we can easily regress out this effect in scater. With the

normaliseExprs function the user can supply a design matrix of vari-

ables to regress out of the expression values, and residuals from the

linear model fit can be used as expression values for downstream

analyses. For the dataset here, we fit a linear model to the scran

normalized log-expression values with the C1 machine as an ex-

planatory factor. (We also use the log-total counts from endogenous

genes, percentage of counts from the top 100 most highly expressed

genes and percentage of counts from control genes as additional

covariates to control for these other unwanted technical effects.) We

then use the residuals from the fitted model for further analyses (see

Case Study in Supplementary Material). This approach successfully

removes the C1 machine effect as a major source of variation be-

tween cells; the first principal component now separates the cells

from the two patients, as expected (Fig. 4b). This approach needs to

be used carefully as single-cell data often deviate from normal distri-

butions, but in many cases, as here, it can successfully ameliorate

large-scale known batch effects.

In addition to removing known batch effects, it can be important

for large datasets to identify (potentially unknown) sources of un-

wanted variation (Grün and van Oudenaarden, 2015; Hicks et al.,

2015; Leek et al., 2010). scater is compatible with existing methods

such as svaseq (Leek and Storey, 2007; Leek, 2014) and RUVSeq

(a) (b) (c)

(d)

(g)

(e) (f)

Fig. 3. Reduced dimension representations of cells and gene expression plots with scater. Plots are shown using all genes (a–c) and cell cycle genes only (d–f)

using PCA (a,d), t-SNE (b,e) and diffusion maps (c,f), where each point represents a cell. In the top row (a–c), points are coloured by patient of origin, sized by total

features (number of genes with detectable expression) and the shape indicates the C1 machine used to process the cells. In the second row (d–f), points are col-

oured by the expression of CCND2 (a gene associated with the G1/S phase transition of the cell cycle) in each cell. Furthermore, with the plotExpression function,

gene expression can be plotted against any cell metadata variables or the expression of another gene—here, expression for the CD86, IGH44 and IGHV4-34 genes

in each cell is plotted against the patient of origin (g). The function automatically detects whether the x-axis variable is categorical or continuous and plots the

data accordingly, with x-axis values ‘jittered’ to avoid excessive overplotting of points with the same x coordinate

(a) (c)(b)

Fig. 4. Normalization and batch correction with scater. Principal component analysis plots showing cell structure in the first two PCA dimensions using various

normalization methods that can be easily applied in scater, including endogenous size-factor normalization using methods from the scran package (a); expression

residuals after applying size-factor normalization and regressing out known, unwanted sources of variation (b); and removal of one hidden factor identified using

the RUVs method from the RUV package (c). In all plots, the colour of points is determined by the patient from which cells were obtained, shape is determined by

the C1 machine used to process the cells and size reflects the total number of genes with detectable expression in the cell
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(Risso et al., 2014) to identify and remove these unwanted sources

of variation. Here, just removing the first latent variable identified

by the RUVs method from RUVSeq is sufficient to remove the ma-

chine effect, as the PCA plot now separates cells by patient rather

than C1 machine (Fig. 4c). More targeted applications of these

methods can be used to remove specific effects, for example, by

identifying latent factors from cell cycle genes to remove the cell

cycle effect.

We emphasize that it is generally preferable to incorporate batch

effects or latent variables into statistical models used for inference.

Where this is not possible (e.g. for visualization), directly regressing

out these uninteresting factors is required to obtain ‘corrected’ ex-

pression values for further analysis. Furthermore, a general risk of

removing latent factors is that interesting biological variation may

be removed along with the presumed unwanted variation. Users

should therefore apply such methods with appropriate caution, par-

ticularly when an analysis aims to discover biological conditions,

such as new cell types.

3.7 Software and data integration
As part of the R/Bioconductor ecosystem, scater can be easily inte-

grated with other software for scRNA-seq data analysis

(Supplementary Fig. S3). As the SCESet class builds on existing

Bioconductor data structures, most Bioconductor packages for ex-

pression analyses are able to operate seamlessly with SCESet objects.

Tools that can integrate easily with scater include many options for

data normalization (Ding et al., 2015; Lun et al., 2016b; Vallejos

et al., 2015), differential expression analysis (Finak et al., 2015;

Kharchenko et al., 2014; Trapnell et al., 2014; Vallejos et al., 2016),

heterogeneous gene expression analyses (Vallejos et al., 2015), clus-

tering (Fan et al., 2016; Grün et al., 2015; Guo et al., 2015; Kiselev

et al., 2016), latent or hidden variable analysis (Chikina et al., 2015;

Leek, 2014; Risso et al., 2014; Stegle et al., 2012), cell cycle phase

identification (Scialdone et al., 2015) and pseudotime computation

(Angerer et al., 2015; Campbell and Yau, 2016; Juli�a et al., 2015;

Trapnell et al., 2014). The scater package bridges the gap between

raw reads and these downstream analysis tools by providing the pre-

processing, QC, visualization and normalization methods and a

data structure combining multiple data modalities and metadata ne-

cessary for convenient, robust and reproducible analyses of scRNA-

seq data (see Supplementary Material for discussion of entry points

to several third party tools from scater).

4 Discussion

Single-cell RNA sequencing is widely used for high-resolution gene

expression studies investigating the behaviour of individual cells.

While scRNA-seq data can provide substantial biological insights,

the complexity and noise of the data is also much greater than that

of conventional bulk RNA-seq. Thus, rigorous analysis of scRNA-

seq data requires careful quality control to remove low-quality cells

and genes, as well as normalization to adjust for biases and batch ef-

fects in the expression data. Failure to carry out these procedures

correctly is likely to compromise the validity of all downstream ana-

lyses (Grün and van Oudenaarden, 2015; Hicks et al., 2015; Leek

et al., 2010).

Here, we present an R/Bioconductor package, scater, that pro-

vides crucial infrastructure and methods for low-level scRNA-seq

data analysis. The package introduces a data structure tailored to

scRNA-seq data that is compatible with a vast number of existing

tools in the Bioconductor project. The scater data structure

combines multiple transformations of the expression data with cell

and feature (gene or transcript) metadata and allows datasets to be

easily standardized and shared. Wrapper functions for the popular

RNA-seq quantification methods kallisto and Salmon facilitate the

processing of raw read sequences to a SCESet object in R with ex-

pression data and accompanying metadata.

Quality control is a vital preliminary step for scRNA-seq and

can be a time-consuming manual task. We present a tool for auto-

mated computation of QC metrics, novel plotting methods for QC

and convenient subsetting and filtering methods to substantially sim-

plify the process of filtering out unwanted or problematic cells and

genes. The package provides a large array of sophisticated plotting

functions so that cells can be visualized with a variety of popular

dimensionality-reduction techniques in plots that incorporate cell

metadata and expression values as plotting variables.

Normalization is a critical aspect of scRNA-seq data processing

that is supported by scater. Scaling normalization methods, includ-

ing the single-cell specific methods in the scran package, are seam-

lessly integrated into a scater workflow. Methods for identifying

and removing batch effects and other types of unwanted variation

are supported both with internal methods and through integration

with a multitude of tools available in the R/Bioconductor environ-

ment. Once identified, important covariates and latent variables can

be flagged for inclusion in downstream statistical models or their ef-

fects regressed out of normalized expression values. The package is

thoroughly documented and a recent step-by-step workflow article

demonstrates detailed use of scater in combination with other ana-

lysis packages in a range of scenarios (Lun et al., 2016a).

Future development will include further extensions to data struc-

tures that will enable tight integration of single-cell transcriptomic,

genetic and epigenetic data, as well as further refinement of the

methods available as the single-cell field matures. Although scater

has been produced for scRNA-seq data, its capabilities are well

suited for single-cell qPCR data and bulk RNA-seq data, and may

prove useful for supporting analyses of these data types.

5 Conclusion

The scater package eases the burden for a user tasked with produc-

ing a high-quality single-cell expression dataset for downstream ana-

lysis. The intuitive GUI implemented in scater provides an easy entry

point into rigorous analysis of scRNA-seq data for users without a

computational background, enabling them to process raw reads into

high-quality expression data within a single computing environ-

ment. Experienced users can take advantage of scater’s data struc-

tures, wide array of methods, suitability for scripted analyses and

seamless integration with many other R/Bioconductor analysis tools.

The data structures and methods in scater provide basic infrastruc-

ture upon which new scRNA-seq analysis tools can be developed.

We anticipate that scater will be a useful resource for both analysts

and software developers in the single-cell RNA sequencing field.
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