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Cryptic evolution occurs when evolutionary change is masked by concurrent

environmental change. In most cases, evolutionary changes in the phenotype

are masked by changing abiotic factors. However, evolutionary change in

one trait might also be masked by evolutionary change in another trait,

a phenomenon referred to as evolutionary environmental deterioration.

Nevertheless, detecting this second type of cryptic evolution is challenging

and there are few compelling examples. Here, we describe a likely case of

evolutionary environmental deterioration occurring in experimental burying

beetle (Nicrophorus vespilloides) populations that are adapting to a novel

social environment that lacks post-hatching parental care. We found that

populations rapidly adapted to the removal of post-hatching parental care.

This adaptation involved clear increases in breeding success and larval density

(number of dispersing larvae produced per gram of breeding carcass), which

in turn masked a concurrent increase in the mean larval mass across gener-

ations. This cryptic increase in larval mass was accomplished through a

change in the reaction norm that relates mean larval mass to larval density.

Our results suggest that cryptic evolution might be commonplace in animal

families, because evolving trophic and social interactions can potentially

mask evolutionary change in other traits, like body size.

provided
1. Introduction
Cryptic evolution occurs when evolutionary change in a trait is masked by a concur-

rent change in an environmental factor that also influences that trait [1–3]. Cryptic

evolution has attracted attention because it provides an explanation for phenotypic

stasis in the face of strong and persistent directional selection [3]. Cryptic evolution

may also explain phenotypic similarity among geographically distinct populations

that differ in their exposure to an environmental variable that influences the pheno-

type, a phenomenon known as counter-gradient variation [4]. In the best-studied

examples of cryptic evolution, a change in an environmental variable such as temp-

erature or population density results in environmental deterioration that obscures

evolutionary change in a phenotype [2,3,5,6]. For example, Merilä et al. [2] examined

whether cryptic evolution might explain why body condition in a population of col-

lared flycatchers (Ficedula albicollis) has declined over time despite strong and

persistent positive directional selection on this trait. They found that a genetic

increase in body condition occurred in this population, but it was probably

masked by a decline in the abundance of caterpillars (the main food of nestlings)

that was driven by an increase in spring temperatures.

In most cases of cryptic evolution, environmental deterioration is typically

attributed to an abiotic factor that changes directionally over time. In some
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cases, however, evolutionary change in one trait can result in

environmental deterioration that masks evolutionary change

in another trait [1,3,7]. This has been referred to as ‘evolutionary

environmental deterioration’ [3]. For example, an evolutionary

increase in a trait such as brood size may lead to environmental

deterioration by increasing competition between developing

young. This change in the social environment could in turn

mask evolutionary changes in an interacting trait such as

offspring size that may be under directional selection.

Evolutionary changes in the social environment may be

an especially important driver of cryptic evolution in animals

with parental care. In these species, offspring often develop

in a nursery where diverse social interactions are played

out among the family members [8]. Within these nurseries,

offspring can compete or cooperate for access to resources

and parents can modulate the effect of the offspring’s social

interactions through direct, or indirect, interventions [8–15].

These social interactions influence the phenotype that off-

spring attain during development, and can act as a source

of selection on these phenotypes [8,16]. In addition, the

social environment that arises during parental care is a func-

tion of the family members and their underlying genes,

meaning that the social environment itself can evolve [17].

Although the social interactions that arise during parental

care can generate cryptic evolution, few studies have tested

whether evolutionary change in one component of the

family environment masks an evolutionary change in an

interacting trait. Here, we describe results from populations

of burying beetles (Nicrophorus vespilloides) that were exposed

to experimental evolution. These experimental populations

were maintained and evolved for several generations either

with or without post-hatching parental care (Control and

No Care populations, respectively), but were not otherwise

exposed to any form of artificial selection. We tested whether

adaptation to a novel family environment involves cryptic

change in larval mass, a trait that determines adult size and

that is linked to parental performance [18]. We found that the

No Care populations rapidly adapted to the removal of post-

hatching parental care and that this adaptation involved

obvious phenotypic evolution as well as more cryptic pheno-

typic change. The most obvious signs of adaptation to the

removal of parental care were significant increases in breeding

success and in larval density (the number of larvae produced

per gram of breeding carcass) across the first 13 generations.

However, further analyses also revealed cryptic increases in

larval mass in the No Care populations. This cryptic increase

in larval mass was accomplished through a change in the reac-

tion norm that relates mean larval mass to larval density. Our

results provide a likely example of cryptic evolution driven by

‘evolutionary environmental deterioration’ [3].
2. Methods
(a) Study species
Breeding in N. vespilloides requires a dead vertebrate, which the

parents prepare for their young to feed upon [19,20]. Carcass prep-

aration involves removing the fur or feathers from the carcass,

rolling the carcass into a ball, smearing the carcass with antimicro-

bial exudates, and burying it in a shallow grave. After the larvae

hatch, they crawl to the carcass which provides all of the resources

the larvae will use to complete their development. Larvae are able

to self-feed, but also beg to be directly provisioned by their parents
who regurgitate predigested carrion into their mouths. Direct pro-

visioning constitutes the majority of post-hatching care, and is

most important within the first 24 h after hatching [21]. Although

post-hatching parental care increases larval fitness, N. vespilloides
larvae can survive without it [21–23].

(b) Experimental populations
We took advantage of the facultative nature of post-hatching care

in N. vespilloides and established experimental populations

that differed in the amount of post-hatching care larvae receive.

In one set of populations (Control), both parents remained

with the brood until larval dispersal, 8 days after pairing. This

allowed all possible interactions between parents and larvae to

be expressed. In the other set of populations (No Care), we

removed both parents after they finished preparing the carcass

but before their larvae had hatched. This effectively removed

all post-hatching parental care.

Wild beetles from four localities were interbred to produce a

large, genetically diverse stock population (for details, see the

electronic supplementary material). From this stock population,

we established two replicate Control populations and two repli-

cate No Care populations. In the Control populations, we

allowed both parents to remain with their larvae for the entire

larval period. In these populations, we bred an average of approxi-

mately 34 pairs of unrelated beetles each generation (electronic

supplementary material, table S1). Each pair was placed in a plas-

tic box (17 � 12 � 6 cm) half-filled with damp soil and containing

a thawed mouse carcass weighing between 8 and 16 g (see the elec-

tronic supplementary material, table S2, for the average carcass

mass used in each generation). At larval dispersal (8 days after

pairing), we counted the number of dispersing larvae and weighed

the entire brood. The dispersing larvae were placed in individual

2 � 2�2 cm cells within a plastic eclosion box (10 � 10 � 2 cm),

covered with damp peat, and left to pupate. Newly eclosed

adults were given a unique identifying number, housed individu-

ally in plastic boxes (12 � 8 � 2 cm), and fed ground beef twice a

week until they were bred, 17 days after eclosion.

In the No Care populations, we bred an average of approxi-

mately 68 pairs of unrelated beetles each generation (electronic

supplementary material, table S1). Note that we bred more No

Care pairs each generation to compensate for the higher rate of

breeding failures in the No Care populations, and that the aver-

age number of successful pairs in each generation was similar

between each Control population and its corresponding No

Care population (see the electronic supplementary material,

table S1). The No Care populations were maintained in exactly

the same way as the Control populations, except that we

removed both parents 53 h after pairing. This is enough time

for the parents to prepare the carcass and for females to complete

laying a clutch, but is before larvae hatch [22]. At each gener-

ation, breeding pairs were randomly formed within each

population, based upon their unique identifying number, with

the only condition that males and females assigned to a breeding

pair were not siblings (i.e. they were not from the same brood) or

first cousins (i.e. their parents were not from the same brood).

We followed the same protocol in every generation with

two exceptions. First, in generation four there was a shortage

of 8–16 g mice and we had to use mice that were, on average,

nearly twice as heavy as those used in the other generations

(see the electronic supplementary material, table S2). Second, in

generation six we bred all of the No Care pairs with full parental

care. This was done to reduce the vertical transmission of mites

that had appeared in the previous generation. The fourth gener-

ation of all populations and the sixth generation of each No Care

population were excluded from all of our analyses.

Over the first 13 generations, we bred 2771 pairs of beetles.

For each breeding pair, we recorded breeding success (whether

each pair produced at least one dispersing larva), larval density
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(the number of dispersing larvae divided by the initial mass of

the breeding carcass) and mean larval mass (total brood mass

at dispersal divided by brood size at dispersal). We focused on

each of these measures of performance because they have been

shown to be higher with parental care than without [21,22].

In addition, larval density provides information regarding the

level of competition between burying beetle larvae [11,24].

(c) Statistical analyses
We tested whether adaptation to the removal of parental care

involved directional changes in breeding success, larval density

and the mean larval mass. Each performance measure was calcu-

lated at the population level for each generation and the analyses

were conducted on these population-level measures of perform-

ance. Analysis of larval density only included successful broods

(i.e. failed broods were not included as 0s when calculating the

mean larval density). We tested for changes in each response

variable using a linear model with generation, environment

(Control versus No Care) and replicate population as explanatory

variables. We initially included the three-way interaction

between environment, generation and replicate in each of these

models and all two-way interactions involving the replicate.

These interactions were never significant, so they were removed

from the models.

We performed a second set of analyses to test whether the

mean larval mass changed across generations after accounting

for the relationship between larval mass and larval density.

Because this relationship differs between the No Care and Con-

trol populations (see the electronic supplementary material),

we analysed each group separately. For the No Care populations,

a cubic polynomial best described the relationship between mean

larval mass and larval density (see electronic supplementary

material). We next tested whether the residuals from this

regression changed in a consistent way across generations. To

do this, we extracted the residuals from this model and used a

linear model to test for the effects of generation and replicate

population on residual larval mass, using the mean residual

mass for each generation as the independent variable. We included

the generation by replicate interaction in the initial model. This

interaction was not significant and was removed from the final

model. A consistent change in residual mass across generations

would indicate a violation of the assumption that residual mass

is independent of generation [25]. One biological interpretation

of such a violation is that, for a given larval density, larval mass

is increasing (or decreasing) across generations.

We performed the same analysis for the Control populations.

In the Control populations, a cubic polynomial best described

the relationship between mean larval mass and mean larval den-

sity (see the electronic supplementary material). We then

extracted the residuals from this regression and used a linear

model to test for the effects of generation and replicate population

on residual larval mass. We included the generation by replicate

interaction in the initial model. This interaction was not significant

and was removed from the final model.

In the analyses described above, we found that residual

larval mass increased across generations in the No Care popu-

lations but was independent of generation in the Control

populations (see results below). While these results suggest

that larval mass increased in the No Care populations, analysis

of residuals from linear models can produce biased parameter

estimates [25]. We thus examined whether a simple change in

the height of the reaction norm relating larval mass to larval den-

sity could explain the increase in residual mass that we observed

in the No Care populations. To test for such a change, we com-

pared the relationship between mean larval mass and larval

density in generation 2 (the first generation in which the parents

had developed without parental care) and generation 13 of each

No Care population. To limit the number of interaction terms in
these models, we analysed each replicate separately. For each

replicate, we examined the effect of larval density, larval den-

sity2, larval density3 and generation on the mean larval mass.

We initially included interactions between each density term

and generation to test whether the shape of the relationship

between mean larval mass and larval density differed between

generations. These interactions were not significant, indicating

that the shape of the relationship between mean larval mass

and larval density was similar in generation 2 and generation

13. Consequently, they were removed from the final model.

All analyses were performed in R v. 3.3.1 [26].
3. Results
Over 13 generations, we observed both obvious and cryptic

adaptation to the No Care environment. First, we found

that breeding success in the No Care populations increased sig-

nificantly, nearing the level of breeding success in the Control

populations, which remained unchanged (figure 1 and table 1).

This increase in breeding success was accompanied by a

change in the social environment experienced by larvae in

the No Care populations. Specifically, we found that larval

density increased significantly across 13 generations in both

No Care populations but did not change in a consistent

manner across generations in the Control populations

(figure 2 and table 1). A similar analysis of the mean brood

size (with carcass mass as a covariate) yielded the same

qualitative results (see the electronic supplementary material).

Previous studies have shown that larval competition in

N. vespilloides increases with brood size/larval density [11,24].

Thus, our results indicate that as the No Care populations

adapted to the removal of care, the social environment experi-

enced by larvae also changed, with larval interactions

becoming more competitive with the rise in larval density. As

a consequence of increased larval density, we expected to see

a decline in average larval mass due to increased competition

between larvae for food on the carcass [11,24]. However, we

found no significant change in the average larval mass across

generations in any of our experimental populations (electronic

supplementary material, figure S1; table 1).

Further analyses uncovered evidence of cryptic evolution-

ary change in larval mass that was concealed by the change

in larval density. In the No Care populations, the relationship

between mean larval mass (y) and larval density (x) was

described by a cubic polynomial, similar to that seen in pre-

vious studies of N. vespilloides [11,27] (y ¼ 0.10 þ 0.069x 2

0.043x2 þ 0.0061x3; F3,906 ¼ 175.2, p , 0.00001, r2 ¼ 0.37;

electronic supplementary material, figure S2a). To uncover

cryptic evolutionary change in larval mass, we controlled

statistically for larval density by analysing the residuals of

the regression of larval mass on larval density. This revealed

that the average residual mass increased across generations in

each of the No Care populations (generation: F1,19¼ 8.16, p ¼
0.010; replicate: F1,19 ¼ 0.016, p ¼ 0.90; electronic supplemen-

tary material, figure S2b). Further analyses indicated that the

change in residual larval mass across generations was due to

a shift in the height of the relationship between the mean

larval mass and larval density. For each replicate population,

the mean larval mass was greater in generation 13 than gen-

eration 2 across the same range of larval densities (figure 3

and table 2). These results are consistent with an increase in

the height of the curve relating mean larval mass to larval

density in the No Care populations (figure 3).
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Figure 1. Breeding success (the proportion of pairs producing at least one dispersing larva) in the No Care (red) and Control (blue) populations across 13 gen-
erations. The different panels show results for the different replicate populations. Breeding success increased significantly across generations in the No Care
populations (a and c) and remained unchanged in the Control populations (b and d ). Lines are from linear regressions of breeding success on generation for
each population.

Table 1. Results of generalized linear models examining the effects of Environment (Control or No Care), Generation, the Environment � Generation and
replicate population on Breeding success, mean larval density and mean larval mass.

factor

breeding success mean larval density mean larval mass

F1,41 p F1,41 p F1,41 p

Environment (E) 93.52 ,0.00001 21.39 ,0.00001 100.41 ,0.00001

Generation (G) 24.71 ,0.00001 16.07 0.00025 0.16 0.69

E � G 13.62 0.00065 4.14 0.048 1.64 0.21

Replicate 0.15 0.70 1.053 0.31 2.52 0.12
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We found no equivalent evidence for cryptic evolutionary

change in the Control populations. Here, too, the relationship

between mean larval mass (y) and larval density (x) was

described by a cubic polynomial (y ¼ 0.20 – 0.014x –

0.018x2 þ 0.004x3; F1,738 ¼ 630, p , 0.00001, r2 ¼ 0.63; elec-

tronic supplementary material, figure S2c). However, unlike

in the No Care populations, we found no consistent change in

residual larval mass across generations in either of the replicate

Control populations (generation: F1,23¼ 0.032, p ¼ 0.86;

replicate: F1,23¼ 0.014, p ¼ 0.91; electronic supplementary

material, figure S2d). The absence of any directional change in

residual mass in the Control populations indicates that the pat-

tern we observed in the No Care populations is not simply a

consequence of adaptation to laboratory conditions.

4. Discussion
In animals with parental care, the social environment in

which offspring develop can be a source of phenotypic vari-

ation and an agent of selection [16]. Moreover, because these
environments contain genes, they can evolve in response to

natural selection [17]. Our results demonstrate that rapid adap-

tation to an experimental change in one aspect of the social

environment experienced during development (namely the

absence of post-hatching care) leads to change in another

aspect of the environment experienced by larvae (namely

larval density, electronic supplementary material, figures 2

and S3). Furthermore, as larval density increased, its influence

on offspring phenotype also changed—masking a concurrent

increase in the mean larval mass (figure 3). These results indi-

cate that the social environment and the phenotypes of the

individuals constituting that environment can each evolve

rapidly, consistent with models of interacting phenotypes

[17,28]. In addition, our results suggest that concurrent changes

in the social environment and the effect of this environment on

offspring phenotype can give the appearance of stasis despite

significant phenotypic change. This is probably an example

of cryptic evolution driven by ‘evolutionary environmental

deterioration’ where evolutionary changes in one trait mask

concurrent changes in another [3].
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Theory predicts that evolutionary environmental deterio-

ration can lead to cryptic evolution. However, detecting this

type of evolution is empirically challenging [1,3]. Most dem-

onstrations of cryptic evolution have involved field studies

of natural populations where environmental deterioration is

caused by changes in climate or population density [2,3,5].

In our study, we can more confidently rule out these potential

confounding factors. For example, our populations are main-

tained in the laboratory where temporal variation in

environmental conditions (e.g. temperature, adult food level,

carcass mass) is minimized. In addition, because all adult bee-

tles are housed and fed individually, except when they breed,

changes in population density are not likely to contribute to
phenotypic changes in our populations. Finally, because

each No Care population is maintained in tandem with a Con-

trol population that breeds on the same schedule, any change

in environmental conditions should affect the No Care and

Control populations similarly. In our study, however,

increases in larval performance were restricted to the No

Care populations, indicating that environmental changes

that were experienced by both the No Care and Control

populations cannot explain our results.

The cryptic increase in larval mass that we observed in

the No Care populations appears to be due to a change in

the reaction norm that relates larval mass to larval density.

Specifically, the reaction norm had a greater elevation in



Table 2. Results of analyses comparing the relationship between mean larval mass and larval density in generations 2 and 13 of the No Care populations.
Interactions between density terms and generation were not significant and were removed from the models. The two replicate populations were analysed
separately.

Factor

No Care A No Care B

Estimate (s.e.) F1,77 p Estimate (s.e.) F1,91 p

Density 0.093 (0.015) 35.28 ,0.0001 0.10 (0.018) 13.90 0.004

Density2 20.061 (0.011) 43.32 ,0.0001 20.059 (0.012) 44.48 ,0.0001

Density3 0.0096 (0.0021) 14.38 ,0.0001 0.0.0086 (0.0022) 14.78 0.0002

Generation 0.019 (0.0036) 28.31 ,0.0001 0.011 (0.0041) 7.69 0.007

R2 0.61 0.47
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generation 13 than it had in generation 2 (figure 3). This

suggests that larvae in the No Care populations have evolved

to become more effective at converting the carcass resource

into larval mass. How, exactly, has this occurred? We have

three suggestions, which are not mutually exclusive. The

first possibility is that individual larvae became better at

acquiring resources from the carcass without parental help,

and more efficient at diverting those resources into growth.

This might have involved behavioural, physiological or mor-

phological changes in larvae to increase their ability to extract

energy without their parents. Adaptations like this have been

observed in Drosophila melanogaster populations maintained

under crowded, nutritionally stressed conditions [29].

Second, it is possible that there has been a change in some

component of pre-hatching parental care that helps larvae

to access the resources in the carcass without their parents.

For example, No Care parents may create feeding depressions

in the carcass earlier than is normal. This might increase the

likelihood that larvae can feed on the carcass even when the

parents are not there. A final possibility is that increases in

larval density enhance the collective ability of larvae to

access resources on the carcass, which leads to increased aver-

age larval mass. We have previously shown that the ability of

N. vespilloides larvae to colonize the breeding carcass increases

with larval density, presumably because larvae in larger

broods work together to chew their way into the carcass [11].

Thus, whereas Hadfield et al. [3] suggest that evolutionary

stasis in body size could result from ever-increasing competi-

tive ability among siblings for limited resources, our results

suggest the same effect could result from increasingly coopera-

tive interactions among siblings in larger broods for resources

that have not yet become limiting. Further work is needed to

distinguish between the three possibilities outlined above.

However, the fact that larval mass was greater across all den-

sities in generation 13 compared with generation 2 suggests

that the first or second explanations (involving adaptations in

individual larvae or parents) are most likely.

While our results are consistent with cryptic evolution in

response to evolutionary environmental deterioration, there

are two remaining challenges that we hope to address in

future work. First, an unambiguous demonstration of cryptic

evolution driven by evolutionary environmental deterioration

requires evidence that a genetically based change in one trait

has masked a genetically based change in another [3]. For our

study, that means genetically based changes in breeding success

and larval density would need to mask a genetically based
change in the mean larval mass. The experiment we describe

here does not allow us to test whether the increases in breeding

success, larval density and larval mass have a genetic basis.

However, results from a previous study involving separate

populations evolving under the same conditions suggest

that adaptation to the No Care environment involves gene-

tic changes in breeding success and possibly brood size at

dispersal, which is the major determinant of larval density [22].

A second remaining challenge is to identify the specific traits

underlying larval performance in the No Care environment and

how they have evolved. On the one hand, it is possible that a

change in a single larval trait, such as self-feeding behaviour,

underlies increases in all measures of breeding performance.

On the other hand, separate traits may influence breeding suc-

cess and larval mass. For example, self-feeding behaviour may

influence larval survival, while some other behavioural trait

may mediate between-larva interactions, thereby influencing

larval mass. It will be especially interesting to examine whether

increases in larval mass in the No Care populations have been

caused by changes in the behavioural interactions among sibling

larvae. Such a change would suggest that indirect genetic effects

may play a role in generating cryptic evolution.

Cooke et al.’s [1] original model of cryptic evolution focused

on clutch size, though they argued that their model could also

be applied to traits such as male attractiveness that mediate

social interactions between individuals. Animal families are

another arena in which social interactions can be a source

of selection [8,9,28], and our results indicate that these inter-

actions can generate cryptic evolution. Indeed, cryptic

evolution might be especially common in species with parental

care because the social environment that arises during care can

evolve, and evolutionary change in this social environment can

influence the phenotypes that are attained by offspring and can

also exert selection on these phenotypes [16]. It is thus surpris-

ing that cryptic evolution has been largely ignored in the study

of parental care. Understanding why body size (and other

traits) evolve so slowly remains a puzzle for evolutionary

biology [30]. Perhaps future studies of other species should

consider whether trait evolution could be masked by ongoing

evolution in the family social environment.
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