
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbps20

Journal of Building Performance Simulation

ISSN: 1940-1493 (Print) 1940-1507 (Online) Journal homepage: http://www.tandfonline.com/loi/tbps20

Influence of error terms in Bayesian calibration of
energy system models

Kathrin Menberg, Yeonsook Heo & Ruchi Choudhary

To cite this article: Kathrin Menberg, Yeonsook Heo & Ruchi Choudhary (2018): Influence of
error terms in Bayesian calibration of energy system models, Journal of Building Performance
Simulation, DOI: 10.1080/19401493.2018.1475506

To link to this article:  https://doi.org/10.1080/19401493.2018.1475506

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 21 May 2018.

Submit your article to this journal 

Article views: 204

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tbps20
http://www.tandfonline.com/loi/tbps20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19401493.2018.1475506
https://doi.org/10.1080/19401493.2018.1475506
http://www.tandfonline.com/action/authorSubmission?journalCode=tbps20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbps20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/19401493.2018.1475506&domain=pdf&date_stamp=2018-05-21
http://crossmark.crossref.org/dialog/?doi=10.1080/19401493.2018.1475506&domain=pdf&date_stamp=2018-05-21


Journal of Building Performance Simulation, 2018
https://doi.org/10.1080/19401493.2018.1475506

Influence of error terms in Bayesian calibration of energy system models

Kathrin Menberg a,b∗,, Yeonsook Heoc,d and Ruchi Choudharya

aDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK; bInstitute of Applied
Geosciences, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany; cDepartment of Architecture, University

of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK; dSchool of Civil, Environmental, and Architectural Engineering,
College of Engineering, Korea University, Anam-dong, Seonguk-gu, Seoul, Korea

(Received 14 February 2018; accepted 8 May 2018 )

Calibration represents a crucial step in the modelling process to obtain accurate simulation results and quantify uncertainties.
We scrutinize the statistical Kennedy & O’Hagan framework, which quantifies different sources of uncertainty in the cali-
bration process, including both model inputs and errors in the model. In specific, we evaluate the influence of error terms on
the posterior predictions of calibrated model inputs. We do so by using a simulation model of a heat pump in cooling mode.
While posterior values of many parameters concur with the expectations, some parameters appear not to be inferable. This is
particularly true for parameters associated with model discrepancy, for which prior knowledge is typically scarce. We reveal
the importance of assessing the identifiability of parameters by exploring the dependency of posteriors on the assigned prior
knowledge. Analyses with random datasets show that results are overall consistent, which confirms the applicability and
reliability of the framework.

Keywords: Bayesian inference; model calibration; building energy model; energy system model; uncertainty quantifica-
tion; inverse problems

Introduction
Recent developments and trends in the simulation of
energy performance of buildings and energy supply sys-
tems have led to increasingly complex, dynamic and highly
detailed numerical models, which contain several hun-
dred parameters that are uncertain to a certain degree.
To ensure accuracy and precision of modelling results,
model calibration has become a crucial, yet challenging
step in the modelling process with a wide variety of meth-
ods available (Reddy et al. 2006; Coakley, Raftery, and
Keane 2014). While the importance of accounting for
uncertainty in this process has been recognized, most cal-
ibration methodologies applied in the context of building
and energy system models only take into account uncer-
tainty in model input parameters, measured data and the
calibrated model predictions (Neto and Fiorelli 2008; Man-
fren, Aste, and Moshksar 2013; Gestwick and Love 2014;
Mustafaraj et al. 2014; Yang and Becerik-Gerber 2015;
Mihai and Zmeureanu 2016; Sun et al. 2016). At the same
time, literature shows that the model itself is a potential
source of uncertainty and error (also known as model dis-
crepancy, inadequacy or bias), as every model represents
a simplification of the real physical process. This simpli-
fication causes a difference between measured values and
model outcomes, even if measurements are exact and all
model parameters are perfectly known. This discrepancy
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is neglected in many traditional calibration approaches
and often causes over-fitting of calibration parameters (Li,
Augenbroe, and Brown 2016). Also, additional uncertainty
arises from the applied numerical codes and algorithms,
e.g. due to discretization with respect to time and/or space
(Roy and Oberkampf 2011).

Numerous methods are available to deal with and prop-
agate these uncertainties in building energy models by
means of uncertainty analysis (Hopfe and Hensen 2011;
Silva and Ghisi 2014; Faggianelli, Mora, and Merheb
2017) and to investigate the effect of uncertain parame-
ters on model outcomes by sensitivity analysis (Tian 2013;
Menberg, Heo, and Choudhary 2016). While most studies
use classic statistical methods, Bayesian methods offer a
different perspective on uncertainty by interpreting prob-
ability as a reasonable expectation representing a state of
knowledge and allow to update this knowledge by combin-
ing prior beliefs with measured data (Gelman et al. 2014).
Kennedy and O’Hagan (2001) developed a Bayesian cal-
ibration framework (KOH framework) that is unique in
its composition of the following features and the related
advantages:

(1) Consideration of all sources of uncertainty, such
as uncertain parameters, model bias, random error
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and numerical error, allows holistic uncertainty
assessment.

(2) Use of Bayesian inference to obtain updated poste-
rior distributions based on measured data and prior
expert knowledge, which enables learning about
the true parameter values.

(3) Aiming at reducing uncertainty in all input parame-
ters, instead of simply minimizing the discrepancy
between field measurements and simulation out-
puts, which counteracts the effect of over-fitting
(Muehleisen and Bergerson 2016).

(4) Inference based on a small amount of measured
field data (Omlin and Reichert 1999), which can
be an advantage as sub-metered energy system or
building data is often not abundant.

To our best knowledge, no other framework exists, which
allows Bayesian inference of uncertain parameters under
consideration of the mentioned error terms. Bayesian cal-
ibration approaches have been widely applied for model
calibration in other fields, such as engineering, medicine
and hydrology (Kavetski, Kuczera, and Franks 2006a;
Kavetski, Kuczera, and Franks 2006b; Arendt, Apley, and
Chen 2012; Bayarri et al. 2012; Wang, Chen, and Tsui
2012; Collis et al. 2017), many of which are based on
the KOH framework. However, applications to building
or energy system models are still nascent (Fabrizio and
Monetti 2015; Lim and Zhai 2017).

Previous studies showed that the KOH framework can
be used for successful calibration of building energy mod-
els under various levels of uncertainties in model inputs,
which met the validation requirements specified in the
ASHRAE Guideline 14 (ASHRAE 2002; Heo, Choudhary,
and Augenbroe 2012; Heo et al. 2014; Li, Augenbroe,
and Brown 2016). Booth, Choudhary, and Spiegelhalter
(2013) used the Bayesian framework to calibrate micro-
level reduced order energy models with macro-level data
to infer uncertain parameters in the housing stock models.
In a recent study, Chong et al. (2017) used information the-
ory to develop a strategy for selecting optimized sets of
subsampled temperature data for Bayesian calibration of
complex, transient energy system models in TRNSYS and
EnergyPlus. A key feature of these studies is that they used
Gaussian Process (GP) models to emulate building energy
models, and thereby speed up the calibration process.
Recently, Li et al. (“Calibration of Dynamic,”’2015) pro-
posed the use of multiple linear regression models as more
computationally efficient emulators of building energy
models in the Bayesian calibration framework. Further-
more, recent studies have also highlighted the importance
of two issues pertaining to the reliability of the calibration
process: (a) model discrepancy, in the form of a model bias
function, is important in order to prevent over-fitting of cal-
ibration parameters (Li, Augenbroe, and Brown 2016) and
(b) the model calibration process is highly susceptible to

the type of measurement data used for calibration (Li et al.,
“A Generic Approach,” 2015).

While the capability of the KOH framework to infer
robust results for the uncertain input parameters has
already been assessed (Heo et al. 2014), the hyper-
parameters relating to the model bias function and the
random error terms associated with measurement data and
numerical modelling have so far not been examined, even
though they are of significant importance for model predic-
tion when an emulator is used (Williams and Rasmussen
2006). Most studies regard these uncertain terms in the
KOH framework as a mean to avoid over-fitting of the
model input parameters, but rarely investigate them regard-
ing their influence on the calibration process. Yet, the
model bias and error terms contain information that is
potentially valuable for learning about the structure of the
simulation model and the overall quality of the calibration
process.

Previous studies applying similar Bayesian calibration
frameworks to computer models have also shown that the
model bias can suffer from a lack of identifiability (Arendt,
Apley, and Chen 2012; Brynjarsdóttir and O’Hagan 2014).
The problem of identifiability in the modelling process
deals with the question of whether or not there is a unique
solution for the unknown model parameters (Cobelli and
DiStefano 1980). In the context of the KOH calibration
process, the lack of identifiability in the model bias func-
tion often occurs in the form of posterior distributions
that simply mirror the corresponding prior information,
and/or do not reflect the characteristics of the true phys-
ical discrepancy in the computer model (Arendt, Apley,
and Chen 2012; Brynjarsdóttir and O’Hagan 2014). In
addition, the application of the KOH framework in the
context of building simulation has so far been mostly lim-
ited to monthly aggregated energy data (Heo, Choudhary,
and Augenbroe 2012; Li et al., “Calibration of Dynamic,”
2015; Tian et al. 2016), while BEM outputs often repre-
sent point data, such as temperature values. The use of a
set of point measurements for calibration, instead of aggre-
gated data, requires additional examination of the potential
effect of outliers and larger random noise on the robustness
of the obtained calibration results. In Bayesian analysis,
results are commonly viewed as robust when the posterior
distributions or predictions are not sensitive to the prior
assumptions or data inputs (Berger et al. 1994; Lopes and
Tobias 2011). Thus, the issues that have not been assessed
in relation to Bayesian calibration include the following
points:

• Robustness of hyper-parameters of the GP emulator;
• Potential of the hyper-parameters associated with

error terms to provide useful information about the
model;

• Effect of using a small number of point measure-
ments on the results.
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To address these research gaps, we apply Bayesian calibra-
tion with the KOH framework to a single, yet often used
component of an energy supply system model, namely the
heat pump, using fluid temperatures as model input data.
Previous studies have calibrated models of heat pumps
(Fisher et al. 2006; Cacabelos et al. 2015; Niemelä et al.
2016), but not with full consideration of uncertainties.

Through this calibration, our main objective is to test
the ability of the KOH framework to correctly account for
random noise and model discrepancy with several differ-
ent data sets. Each dataset is manually subsampled from
an extensive set of real data to reflect different character-
istics. In addition, we reveal and discuss the interactions
and dependencies in the whole set of calibration results,
i.e. predictions from the calibrated model, inferred model
parameter values and the joint posterior of all (hyper-)
parameters. We do so by investigating how these results
depend on the selected (or indeed available) model input
and output data and prior knowledge. In order to assess the
overall consistency of the inferred posterior information
with regard to the data used, we also compare the cali-
bration results from the manually subsampled data sets to
those of a large set of 200 calibration runs with randomly
sampled data from the extensive data set.

Methodology
Bayes theorem
Bayesian inference can be applied to obtain posterior prob-
ability distributions for unknown model parameters, while
accounting for uncertainty in parameters, measured data
and the model. This approach is based on Bayes’ paradigm
(Equation (1)), which relates the probability p of an event
(or a specific parameter value, θ ) given evidence (or data,
y), p(θ |y), to the probability of the event, p(θ ), and the
likelihood p(y|θ ) (Gelman et al. 2014):

p(θ |y) ∝ p(θ) × p(y |θ). (1)

The relation in Equation (1) can be used to combine prior
belief about an event and evidence about this event, i.e.
measured data, to update said belief and to quantify it in
the form of posterior probabilistic distributions.

Bayesian calibration with the Kennedy O’Hagan
framework
Kennedy and O’Hagan (2001) formulated a comprehen-
sive mathematical framework (KOH framework), which
uses Bayesian inference for model calibration relating field
observations, yf , to computer simulation outputs, yc, over a
range of contour state values, x, as shown in Equation (2):

yf (x) = ζ(x) + ε = yc(x, θ) + δ(x) + ε + εn

= η(x, θ) + δ(x) + ε + εn. (2)

Here ζ is the true physical process that cannot be observed;
ε represents the random measurement errors relating to
the field observations; δ(x) is the structured discrepancy
between the model and the true process, and εn is the ran-
dom numerical error term originating from the simulation
model. As most physical models are computationally very
demanding, it is more convenient to use an emulator, η(x,
θ ), depending on a set of calibration parameters θ , instead
of the original model. In accordance with previous stud-
ies (Kennedy and O’Hagan 2001; Heo, Choudhary, and
Augenbroe 2012), we use GPs to emulate the simulation
outcome η(x, θ ) and the model discrepancy function δ(x).

GP models are a generalization of nonlinear multivari-
ate regression models and quantify the relation between
individual parameters and the model outcome by a mean
and a covariance function. The GP models in this study
are assigned a zero mean function, while the covariance
functions for the emulator, Ση, and the model discrep-
ancy, Σb, are specified according to Equations (3) and (4),
respectively (Higdon et al. 2004):

�η(i,j ) = 1
λη

exp

[
−

p∑
k=1

βη,k(xik − xjk)
2

−
q∑

k′=1

βη,p+k′(θik′ − θjk′)2

]
, (3)

�b(i,j ) = 1
λb

exp

[
−

p∑
k=1

βb,k(xik − xjk)
2

]
. (4)

This formulation introduces several unknown hyper-
parameters to the calibration and inference process: the
precision hyper-parameters λη and λb, and two sets of
correlation hyper-parameters βη and βb. The precision
hyper-parameters (λη and λb), which are also known as
amplitude or signal variance, determine the magnitude of
the covariance function, and thus the variation in the output
explained by the corresponding component (model emu-
lator, model bias, etc.). The hyper-parameters βη and βb
specify the dependence or correlation strength in each of
the dimensions of x and θ , and determine the smoothness
of the emulator and model bias function in dimension of
(x, θ ) and x, respectively. A smooth function will reflect a
consistent trend, similar to a linear relation, which is what
we expect for the heat pump model. A less smooth func-
tion will correspond to a more complex relation, which
might also capture part of the random variation in the out-
puts. Thus, a proper inference of βη and βb is crucial for a
robust assessment of the different errors terms in the KOH
framework. The dimension of βη is equal to the sum of the
number of state variables p, and unknown model parame-
ters q. The dimension of βb is equal to the number of state
variables p.

The random error terms for the measurement and
numerical error, ε and εn, are included as unstructured error
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Table 1. List of uncertain parameters in the calibration frame-
work and selected prior probability distributions.

Parameter Parameter description
Prior probability

distribution

θ Model (calibration) parameters Normal (μ, σ )
λη Precision parameter for model

emulator
Gamma (10, 10)

λb Precision parameter for model
bias

Gamma (10, 0.3)

λe Precision parameter for
measurement error

Gamma (10, 0.03)

λen Precision parameter for
numerical error

Gamma (10, 0.001)

βη Correlation strength parameter
for model emulator

Beta (1, 0.5)

βb Correlation strength parameter
for model bias

Beta (1, 0.4)

terms (Equation (2)) meaning they are independent of x
and θ . They are represented by the covariances, Σε and
Σεn, respectively, which are specified by additional preci-
sion hyper-parameters, λε and λεn. The covariance function
of the combined data set Z used for calibration, which con-
tains both field observations and computer model outputs,
is then specified as follows:

�Z = �η +
(

�b 0
0 0

)
+

(
�ε 0
0 �εn

)
. (5)

All hyper-parameters are uncertain elements in the cali-
bration process and are assigned prior probability distri-
butions following suggestions made in previous studies
(Table 1) (Higdon et al. 2004; Guillas et al. 2009; Heo,
Choudhary, and Augenbroe 2012). The prior distributions
for the unknown model parameters θ are specified below
as normal distributions in conjunction with the model
description.

Prior to calibration, we standardize all field and com-
puter simulation responses with regard to their mean and
standard deviation, so the mean function of the GP models
can be assumed to be zero and the model parameter space
for θ is [0, 1]. Accordingly, the variability in the emulator is
expected to be close to 1, hence the prior Gamma (10, 10)
for λη. The chosen shape and scale values for the Gamma
distributions follow the assumption that the model discrep-
ancy accounts for more variability in the observation than
the measurement error, while the numerical error is the
smallest error term. For the correlation hyper-parameters,
βη and βb, we follow the re-parameterization suggested by
Guillas et al. (2009) using ρk = exp( −βk/4) and define
Beta prior distributions for ρk, which puts most of the prior
mass near values of 1, expecting smooth functions with
strong correlations across x and θ for βη, and x for βb.

To obtain an approximation of the posterior probabil-
ity distributions of all the unknown parameters, repeated
model evaluations with iterative sample draws for θ and x
are required (based on Equation (5)) We use Hamiltonian

Monte Carlo (Duane et al. 1987; Neal 2011; Betancourt
2016) to draw from the joint posterior distribution, as
recent studies demonstrated its superiority in terms of con-
vergence speed over the often used random walk Markov
Chain Monte Carlo for applications with BEM (Chong
and Lam 2017; Menberg, Heo, and Choudhary 2017). We
implement the Bayesian calibration framework using the
STAN software (mc-stan.org), which employs a locally
adaptive HMC with a no-U-turn sampler that further
enhances the performance of HMC (Hoffman and Gel-
man 2014). We run HMC with 1000 samples (500 for
burn-in/adaptation) and four independent chains for each
calibration exercise and apply the R̂ criterion, which com-
pares the inner and inter-chain variance of the posterior
samples, to assess the convergence of the results (Gelman
and Rubin 1992).

The calibration process then updates the range of
likely values for the calibration parameters and hyper-
parameters, referred to as posterior distributions. One
important thing to note is that the posteriors of the hyper-
parameters should be interpreted in relation to the standard-
ized model outcomes as they do not reflect the absolute
magnitude of the error terms. These posterior distributions
are used to make posterior predictive simulations of the
model outcome over new values of x.

Calibration parameters of the energy supply model
For this study, we use the heat pump component of a
ground source heat pump system of a building at Cam-
bridge University as a case study (Figure 1). The building
contains a workshop on the ground floor and the Architec-
ture Design Studio on the first floor, for which cooling is
supplied via a radiant ceiling. We choose the building sim-
ulation software TRNSYS, which facilitates the modelling
of the ground source heat pump system and its individual
system components in detail under a series of user-specific
input parameters. Modelling the whole energy supply sys-
tem revealed that the heat pump component is the most
important component for the system performance and its
parameters have a significant impact on the cooling supply
temperature. Thus, we focus on modelling the heat pump

Figure 1. Photos showing the Architecture Studio building (left)
and the energy supply system cabinet with the heat pump on the
bottom and the buffer tank on the top.
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Figure 2. Schematic of the heat pump model in cooling mode
with the corresponding input and output parameters. Uncertain
parameters selected as calibration parameters are in italic.

component in our analysis, which represents an often used
component in energy building modelling and allows us to
perform a large number of evaluations under a whole range
of different conditions.

The dynamics of the building in use under certain
environmental conditions are reflected in the return flow
temperature from the Studio room, which represent the
load inlet flow to the heat pump model (Figure 2). While in
TRNSYS constant component characteristics are referred
to as parameters, and time-varying characteristics that link
to other components as inputs/outputs, we here follow
the conventional notation in modelling and calibration. In
accordance with the equations of the KOH framework, we
refer to the quantity of interest as model output (y), to
contour state variables as inputs (x), and to all types of
unknown system characteristics as parameters, of which
those chosen for calibration are denoted as θ (Figure 2).
We perform a sensitivity analysis on the heat pump model
applying Morris method to identify the most influential
unknown model parameters using the load side outlet tem-
perature of the heat pump as quantity of interest (Morris
1991; Menberg, Heo, and Choudhary 2016). Of the 12
uncertain parameters in the heat pump model, we focus on
the four most influential parameters (θ ): load side fluid spe-
cific heat [kJ kg−1 K−1] (θ1), rated cooling capacity of the
heat pump [kJ h−1 or W] (θ2), source side flow rate in the
heat pump [kg h−1] (θ3) and load side flow rate in the heat
pump [kg h−1] (θ4) (Figure 2), which together explain most
of the variance in the model output caused by the uncertain
parameters.

The values of other important parameters for the per-
formance of the water-to-water heat pump can be inferred
from the manual of the specific heat pump used in the
system and are assumed to be known. The design load
flow rate for this specific heat pump type is given as
0.45 m3 h−1, the design source flow rate as 1.2 m3 h−1, and
the operational temperature range for cooling is given as
8–20°C for the load side and 5–25°C for the source side,
respectively.

All four uncertain parameters are assigned a normal
prior distribution, which is a common choice for an infor-
mative or weakly informative prior, depending on the
chosen variance. Based on the technical specification for

the investigated system, we define an expected range and
mean value for the four parameters. For the specific heat
of the cooling fluid, θ1, we set the prior mean value to
4.25 kJ kg−1 K−1, which is slightly higher than the antic-
ipated value of water (4.18 kJ kg−1 K−1) so that we expect
a shift in the posterior distribution towards the lower value.
The prior mean of the rated cooling capacity, θ2, is set
to a slightly lower value (19,100 kJ h−1) than in the heat
pump specifications (19,600 kJ h−1), with an expectation
of a posterior shift towards higher values. For both parame-
ters, the variance is set to reflect a variability within ± 10%
of the mean. Regarding the source and load side flow rates,
θ3 and θ4, we are more uncertain about the true values,
so we assume a range of ± 20% around the respective
mean values of 1800 and 890 kg h−1 for the prior dis-
tribution with no precise expectation about the posterior
distributions.

Field and computer data used for calibration
The load and source side inlet temperatures of the heat
pump represent important boundary conditions for the heat
transfer process occurring in the heat pump (Figure 2)
and need to be specified as inputs to the TRNSYS model.
Accordingly, they are selected as contour state variables x
for the calibration process, and different combinations of
the two are applied to explore their effect on the calibration
results. We will henceforth refer to different combinations
of contour states as calibration scenarios.

Measured data for the inlet and outlet temperatures of
the heat pump of the Architecture Studio are available as
15 min interval data for a period of two years. From the vast
number of measurements available, we select different data
sets to examine the influence of outliers and data trends
on the calibration results. The selected data only refer
to periods when the system operates at full load capac-
ity, and measurements from the first and last two hours
of each operation period are disregarded. We select sub-
sets of hourly data instead of using time-series data, which
ignores time correlation of the measured data; the effects of
time-dependency are expected to be very small in our case,
as system components typically have a very low thermal
mass.

Each calibration run requires a set of computer sim-
ulation results and associated field data. For calibration
exercises in this study, we use 10 measurements of the load
side outlet temperature yf at corresponding inlet tempera-
tures xf (Figure 2). For the computer simulation outputs
yc, the heat pump model is evaluated at the same tempera-
ture conditions xc ( = xf ), where field data are available.
At each point of xc, 40 simulation outputs are obtained
with varying values for the four unknown model param-
eters θ using 40 Latin Hypercube samples that cover the
above-predefined parameter space.

The field data points and computer outputs used for cal-
ibration are displayed in Figure 3 against the two contour
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Figure 3. Measured field data and simulated computer data for the three data sets A, B and C showing the different temperature ranges
and trends of each data set across the two dimension of load (upper plots) and source inlet temperature (lower plots).

state variables. Figure 3 indicates that the supplied temper-
ature to the room – the load outlet temperature – in all data
sets lies between 10°C and 18°C, implying that the cool
water supply meets the system’s design values. The source
outlet temperatures (heat rejected to the ground) for data
A and B (not shown in Figure 3) are between 30–41°C
and 20–32°C, respectively, and thus between 4K and 7K
higher than the source inlet. These extremely high values
indicate that the system exceeds its design capacity by a
large amount.

The data sets A, B and C show different trends. Data
set A contains field data with an almost linear trend across
the operational regime between 19°C and 25°C of load
inlet temperature (heat extracted from a room) albeit with
some gaps across 25–40°C of source inlet temperature.
Data set B has significant noise, as well as gaps in the
data across a roughly similar range of load inlet tem-
perature, and a lower range of source inlet temperature
(15–30°C), but with some significant outliers (Figure 3(b)
and 3(e)). Accordingly, data set B relates to scenarios,
where measured field data contain a significant random
error. Data set C has fewer outliers from the general
trend, but a rather pronounced offset between the field and
computer data (Figure 3(c) and 3(f)). From a calibration
point of view, data A and B represent cases in which the
general trend in the measured data agrees well with the
simulation outputs, but a different magnitude of random
effects impacts the quality of measurements. Data set C
shows a significant difference between field data and com-
puter simulation results (Figure 3(c) and (f)). This relates
to scenarios in which the model might not sufficiently

represent the true physical behaviour, and we would expect
the calibration framework to detect a significant model
bias.

Results and discussion
Posterior predictive simulation results
With data sets A, B and C, we first evaluate the ability of
the KOH framework to match the model predictions with
observations over the range of x. To do so, we also exam-
ine the emulator outputs and model bias obtained from
the calibration runs. Results from using x2, the sourceside
inlet temperature, as the only contour state to calibrate the
model return posterior distributions identical to the priors
(results not shown). Thus, this calibration setup does not
enable any interference about the model parameters. This
is most likely related to weak correlations between the load
side outlet temperature (y, the supplied temperature to the
room) and the source inlet temperature (x2). Accordingly,
we focus on two calibration scenarios: (1) scenario ‘1x’:
using the load side inlet temperature as the only x and
(2) scenario ‘2x’: using both load and source side inlet
temperatures as x1 and x2 at the same time.

Emulator and model predictions
Figure 4 shows a series of results computed by the model
calibrated with data sets A, B and C. In the case of data
A, the emulator outputs η(x, θ ) of the scenario ‘2x’ fol-
low the observations better, with a slightly tighter range of
uncertainty around the mean value (Figure 4(a)). However,
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Figure 4. Results for predictive simulations for the emulator (a, d, g), the whole model term (b, e, h) and the model bias function (c, f,
i) for data sets A, B and C over the load inlet temperatures (x1).

the overall model outputs y(x) are similar under both
calibration scenarios (Figure 4(b)). This implies that in
the absence of information provided by the second con-
tour state variable, the model bias is able to identify the
slight discrepancy between the emulator outputs and the
observations (Figure 4(c)). The small magnitude of the
model bias in both calibration scenarios suggests that the
heat pump model appropriately represents all important
physical effects for the investigated load and source inlet
temperature ranges.

In the case of data set B with more significant outliers
and data gaps, neither of the calibration scenarios are able
to capture the observations well, and uncertainty around
the mean is larger than for data A (Figure 4(d) and 4(e)).
This behaviour is typical for GP models, especially when
observations are sparse and randomly distributed over x
(Williams and Rasmussen 2006). It should be noted that the
addition of second contour variable causes an upward trend
of predictions. Indeed, Figure 3(e) shows that the load
outlet temperature increases between 25°C and 30°C of
source inlet temperature. Thus, Figure 4(d) and 4(e) shows
that the information provided by the source inlet tempera-
ture (x2) helps to identify the correct trend in the emulator
and model predictions in regions, where the first contour
variable does not contain enough meaningful information.
The magnitude of the model bias function for data B is
small for both scenarios, yet it correctly shifts the y(x) pre-
dictions towards lower outlet temperatures (Figure 4(e)).
This is particularly true for lower inlet temperatures in
scenario ‘2x’.

For data C, which contains a significant discrepancy
between field and computer data (Figure 3(c) and 3(f)), the
emulator and model predictions from the two calibration
scenarios are identical (Figure 4(g) and 4(h)). However, the

predictions based on scenario ‘2x’ follows the data points
more tightly and show a slightly curved prediction func-
tion, which is in contradiction with our knowledge about
the heat transfer processes in the heat pump component.
This effect may be caused by conflicting information from
the two contour states.

Model bias predictions
The inadequacy of the model to replicate the measured
data C is correctly compensated in both calibration scenar-
ios by the error terms included in Equation (2). However,
an opposite trend is observed for the two calibration sce-
narios: While the model bias from scenario ‘1x’ simply
subsumes all differences between emulator predictions and
field data (Figure 4(g) and 4(h)), the model bias based on
two contour states (scenario ‘2x’) better reflects the expec-
tation of an increasing model bias function (Figure 4(i)).
This increasing trend for scenario ‘2x’ is linked to a very
similar upward trend in the model bias function over the
source inlet temperature (x2) (Figure 5(i)). Indeed, while
the discrepancy between measured and modelled data is
constantly increasing over x1 (Figure 3(c)), the trend over
x2 is less clear and large discrepancies occur for low source
inlet temperatures (Figure 3(f)).

While all calibration scenarios are statistically valid
representations of the model inadequacy of the heat pump
model, differences arise from the information contained in
different data sets and due to the quality of the data (i.e.
gaps and outliers) and the choice of contour states (x1,
or x1 and x2). Furthermore, limited data without cover-
ing the sufficient range of x impede the ability to make
meaningful posterior predictions outside the initial data
range, as discussed in detail by Brynjarsdóttir and O’Hagan
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(2014). Based on similar findings, Li, Augenbroe, and
Brown (2016) also suggested that the model bias function
should primarily be treated as a way to prevent over-fitting.
However, our results show that in case of a significant

discrepancy between simulation outputs and field data,
such as data C, the derived model bias function can indeed
be used to obtain information about the type, magnitude,
etc. of this discrepancy. In the next section, we discuss the

Figure 5. Results for predictive simulations for the emulator (a, d, g), the whole model term (b, e, h) and the model bias function (c, f,
i) for data sets A, B and C over the source inlet temperatures (x2).

Figure 6. Prior and posterior probability distributions shown as boxplots for the reciprocal of the precision hyper-parameter λb and the
correlation hyper-parameters (βb1 refers to x1, i.e. load side flow rate, βb2 refers to x2, i.e. source side flow rate) of the model bias for
the three investigated data sets A, B and C. The centre line represents the median of the posteriors, boxes cover the interquartile range
and whiskers include approx. 99% of the obtained posterior samples. The dashed line indicates the magnitude of the prior median value.
Please note the parameter values do not represent the absolute value of the error term, as they are inferred from the normalized model
data.
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main hyper-parameters that influence the calculation of the
model bias function.

The model bias hyper-parameters
We examine the posteriors of the hyper-parameters relating
to the model bias function because they represent impor-
tant information about the shape and magnitude of model
inadequacies that can help improve the physical model.
Figure 6 shows the boxplots of the inverse of the prior and
posterior distributions for the precision hyper-parameter λb
(Figure 6(a) and 6(c)), which directly determines the mag-
nitude of the model bias function. The precision λbshows
no significant changes from the prior for the data sets A
and B (Figure 6(a) and 6(c)), while for data set C the model
bias increases by a large magnitude (Figure 6(a) and 6(c)),
which is the reason for the large negative values in Figures
4 and 5(i).

The correlation strength hyper-parameter βb deter-
mines the smoothness of the model bias function in the
different dimensions of x (Figure 6(b), 6(d) and 6(e)) with

a lower value for βb indicating a smoother model bias
function. As shown, the significantly higher βb2values for
data A and B in Figure 6(e) reflect the more curved form of
the model bias and y(x) predictions across the source inlet
temperature (x2) (Figure 5(c) and 5(f)).

Measurement and numerical error
As expected, data set B has higher values for measurement
error λe (Figure 7(a) and 7(c)). Recall that data set B is
the most ‘noisy’ one with many outliers. At the same time,
the calibration with two contour states suggests slightly
lower random errors (for all data sets), which indicates
that with more information available the algorithm is bet-
ter able to attribute uncertainty to different sources than just
the unstructured random error.

The posterior distributions of λen confirm the prior
belief about a very small numerical error associated with
the discretization of the numerical model and the algo-
rithms used in the computer code. As we are using a set
of measurements for the calibration, which does not reflect

Figure 7. Prior and posterior distribution for the reciprocal of the random error λe and numerical error λen for different data sets on
logarithmic scales. The centre line represents the median of the posteriors, boxes cover the interquartile range and whiskers include
approx. 99% of the obtained posterior samples. The dashed line indicates the magnitude of the prior median value. Please note the
parameter values do not represent the absolute value of the error term, as they are inferred from the normalized model data.
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Figure 8. Prior and posterior distributions as boxplots for the four calibration parameters θ for different data sets. The centre line
represents the median of the posteriors, boxes cover the interquartile range and whiskers include approx. 99% of the obtained posterior
samples. The dashed line indicates the magnitude of the prior mode value.

any specific points in time, the chosen time step of the
transient model plays no significant role for the error in
the model outcome.

The similarity of the posteriors for the different data set
can be explained by the fact that the same code, discretiza-
tion, algorithms and software are used in all calibration
runs. Again, the use of a second contour state variable leads
to a significant reduction of this unstructured error.

Inference about uncertain model parameters
This section evaluates the posterior distributions of the four
uncertain model parameters. Figure 8 shows the inferred
posterior distributions for the four model parameters that
exhibit noticeable differences depending on the selected
data sets and contour states. As expected, the posterior
mode values of θ1, the fluid specific heat, show a shift
towards lower values for all data sets, with a more pro-
nounced shift for data set A than for B and C. Regarding
θ2 and θ4, the inferred posterior modes for data A also
show a larger deviation from the prior into the expected
direction of higher values than for data B and C. These
observations are consistent for both combinations of x. The
posteriors for θ1 and θ2 are almost equally improved from
the prior for the two scenarios, indicating that more infor-
mation to further update these posteriors is not provided by
the added contour state. θ3 exhibits posteriors identical to
the prior distribution for all data sets under scenario ‘1x’,
which indicates either confirmation of the prior knowledge
or non-identifiability of this parameter. Indeed, additional
calibration runs (results not shown) with different prior
distributions for θ3 always resulted in posteriors identical

to the selected priors, which confirms that this parameter
is unidentifiable due to a lack of information in the used
calibration data.

Adding source inlet temperatures as second contour
state results in slightly different posteriors for θ3 and θ4
under all three data sets. Although the posterior of θ3 is
shifted from the prior for data A with two x, there is no
clear knowledge at hand to assess the robustness of the
inference about the flow rate on the source side (θ3) of the
heat pump. We also observe a certain variation in the pos-
teriors of θ4 in the scenario with ‘2x’ particularly for data
A, which may indicate that there is a confounding between
the source (θ3) and load (θ4) flow rate of the heat pump.
This un-identifiability of the source flow rate and the con-
founding between the source and load flow rate may be
caused by the structure of the underlying physical model.
The heat exchanged across the heat pump is determined by
the product of fluid temperature (input data), specific heat
capacity and mass flow rates, which are uncertain for both
load and source side and have very similar effects on the
heat exchange.

A close inspection of the size of the prior and posterior
interquartile ranges in Figure 8 reveals that there is only
little reduction in posterior uncertainty for the four cali-
bration parameters, while the posterior mode values are
successfully updated according to our expectations. This
effect was also observed by Freni and Mannina (2010) for
posterior distributions of calibration parameters in a water
quality model. Also, it must be noted that fixing the remain-
ing unknown parameters at their estimated values may
potentially affect the posterior values for the four calibrated
parameters, although a study by Heo et al. (2014) showed
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Figure 9. Posterior distributions of θ1, θ2, θ4, λe
−1 and βb for data sets A, B and C under scenario ‘1x’ for different priors on λb

(GAM(10, 0.03), GAM(10, 0.1), GAM(10, 0.3), GAM(10, 1), GAM(10, 2.5) corresponding to an amount of variation in y caused by the
model bias of ∼ 0.3%, ∼ 1%, ∼ 3%, ∼ 10% and ∼ 25%. The base case ( ∼ 3%) is indicated in bold. Resulting posteriors for θ3 are not
shown as this parameter is unidentifiable as well, and does not show any changes.

that the effect of the settings of the other parameters on
calibration results is very small.

Influence of model bias on calibration results
Recall that our posterior results for the precision of the
model λbfor data sets A and B strongly follow the prior
(Figure 6(a) and 6(c)). Even with different priors, the
posteriors are the same (results not shown). This found
non-identifiability of the model precision parameter, λb,
not only leaves us with no updated knowledge about the
potential true magnitude of the model bias function, but
also poses a problem for the interpretation of the remaining
posteriors. To investigate this further, we run the calibra-
tion setup for a set of different priors on λb: (GAM(10,
0.03); GAM(10, 0.1), GAM(10, 1), GAM(10, 2.5). These
correspond to a magnitude of variation in y caused by the
model bias of ∼ 0.3%, ∼ 1%, ∼ 10% and ∼ 25%, respec-
tively, while preserving the original spread by keeping the
shape parameter of the Gamma distribution at 10. Priors of
all other (hyper-)parameters remain the same.

The effect of different priors on λb on other posteriors
is investigated for all three data sets A, B and C under
scenario ‘1x’ (Figure 9). The significant changes in the
median values of the posteriors of 1, θ2 and θ4 for data
A and B (Figure 9(a–c) and 9(f–h)) indicate that the pos-
teriors distributions of the calibration parameters absorb

part of the model bias effect due to the non-identifiable
hyper-parameter. Thus, the lack of information about the
magnitude of the model precision, λb, leads not only to
less reliability in the inference of the uncertain model
parameters, but also influences the inference of the shape
and smoothness of the model bias, represented by βb in
Figure 9(d), 9(i) and 9(o).

The changes in the corresponding inferred magnitude
of the random measurement error, λe, for data A and B
(Figure 9(e) and (j)) are mostly minor and show no clear
trend with increasing prior values for the magnitude of the
model bias. For a very high model error of ∼ 25% of the
overall variation in the outcome, yz, there is a significant
change in the posterior of %e, indicating a larger random
error particularly for data set A (Figure 9(e)). As we know
that this data set has a rather small measurement error,
this observation suggests that there might be a confound-
ing between the identification of the random error and the
model bias, as the calibration algorithm partly compensates
the suggested large model bias with a large measurement
error, in conjunction with a smoother model bias function
(Figure 9(d) and 9(e)).

Data C with the large model discrepancy exhibits minor
variations in the posteriors for the calibration parameters
(Figure 9(l), 9(m) and 9(n)). Even though the large model
bias is inferred correctly, the joint posterior distribution
from Bayesian inference represents a compromise between
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the data and the chosen prior distribution, and, conse-
quently, a prior distribution with lower values for λb results
in a slightly different posterior than a prior with higher
λb values. The increase in the magnitude of the random
error with larger model bias priors again hints at a potential
confounding between these two error terms (Figure 9(p)).
It appears that part of the suggested large model bias is
absorbed by the random error instead, while the model bias
only accounts for the strictly linear part of the discrepancy,
as indicated by the low βb values (Figure 9(o)).

These observations highlight the importance of select-
ing meaningful and representative priors for all hyper-
parameters in order to achieve meaningful results from the
parameter inference. However, one also has to note that the
expectations of a model bias of 0.3 or 25% of the original
variation are certainly extreme cases that are less likely to
occur in most applications. In contrast to the parameters
shown in Figure 9, we observe no significant dependency
on λb for the hyper-parameters relating the model emula-
tor terms, λη and βη, and for the random numerical error
term, λen (results not shown), which shows that there is no
confounding between these parameters. Overall, the differ-
ent priors for the model bias precision appear to have a
larger impact on the posterior distribution of the random
error term than on the calibration parameters in the heat
pump model.

Calibration results from randomly sampled data sets
In order to test how the selection of 10 data points from the
overall data set affects the calibration results, and how rep-
resentative the results from the specifically designed data
sets (A, B and C) are, we conduct an additional analysis
with randomly sampled data sets from the original 4015
measurements available. Overall, 200 sets with 10 random
data points each were created and processed according to
the same procedure as for data A, B and C using the same
prior distributions.

Of the 200 data sets only 152 show convergence after
1000 HMC runs under scenario ‘1x’, while 199 data sets
exhibit very good convergence when both source and load
side inlet temperature are used as contour states x (scenario
‘2x’). The improvement of convergence with more contour
states shows that the additional information contained in
the additional x can not only explain different outcomes of
y for similar values of one of the x, but also help overcome
data gaps in any one dimension of x.

The individual 199 posterior median values, indicated
by circles in Figure 10, show that the most likely poste-
rior values of the four calibration parameters cover a rather
small range of values, which suggests overall good consis-
tency with the results from the different random data sets
(Figure 10(a)–10(d)). For the fluid specific heat (θ1) and
the rated cooling capacity (θ2), the range of posterior mode

Figure 10. Prior distributions and combined histogram plots of all posterior samples from 199 converged calibration runs with 2000
samples each, inferred from the evaluation of the random data sets. The circles indicate the posterior median values of the individual
199 posterior sample sets, while the vertical solid and dashed lines indicate the posterior medians of data A and B, respectively. Note the
logarithmic scale on the x-axes for the inverse of the model bias λb

−1, measurement error λe
−1 and numerical error λen

−1.
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values of the random data cover the posterior mode of data
A, but slightly differ from the median of data B, which
highlights the effect of the quality of this data set. The
non-identifiability of the source side flow rate observed
for data A, B and C is confirmed by the posterior results
from the random data sets (Figure 10(c)). Thus, the non-
identifiability is not caused by the way we selected data
sets A, B and C and the information contained therein, but
rather by a lack of information provided by the whole data
set and/or by the structure of the model/emulator. Inter-
estingly, there are a few random calibration runs, where
the model bias precision shows a difference between prior
and posterior median value (Figure 10(e)), which hints at
a slightly improved identifiability compared to data A and
B. This suggests that the inferred posterior of the precision
of the model bias is very susceptible to the data points used
for inference.

The posteriors of the measurement error, λe, from the
random datasets exhibit posterior values between the medi-
ans of data A and B, which is related to the fact that data
A and B were designed to have a particularly low and
high measurement error, respectively. For model bias cor-
relation strength parameters, the random data sets yield
overall ranges of posterior distributions quite close to the
prior, whereas data A and B yield a stronger correlation,
in particular with the source side inlet temperature. This
difference suggests that the inferred posteriors of the cor-
relation strength parameters may also be susceptible to the
data points used for inference.

Conclusions
We apply the Bayesian calibration framework developed
by Kennedy and O’Hagan (2001) to the heat pump com-
ponent of a space cooling system model using point mea-
surements of inlet and outlet temperatures on both load
and source sides. By scrutinizing the calibration results
from three data sets with different characteristics under dif-
ferent sets of contour state variables and different priors,
we assess the capability of the method to provide robust
posterior predictions for all unknown parameters.

We found that the framework can reasonably com-
pensate for model discrepancy and measurement error
through structured and non-structured error terms under
most investigated scenarios. Inference about calibration
parameters is quite robust in the presence of large random
or structured error terms, which highlights the particu-
lar suitability of this method when models do not exactly
reflect reality and cases with sparse, noisy data. However,
the non-identifiability of the source side flow rate high-
lights the importance of information contained in the data,
and implies that a high sensitivity index is no guarantee
for identifiability of a parameter during the calibration pro-
cess. Thus, we recommend to assess the identifiability and
robustness of calibration parameters, which can be easily

done by testing different prior information and calibration
scenarios.

Analysis of different calibration scenarios shows that
adding more information to the Bayesian calibration
exercise can have very diverse effects on the resulting
model predictions and posterior distributions. Therefore,
we emphasize choosing the contour state variables, such
as environmental conditions, very carefully. Investigating
the posterior information about individual parameters in
combination with their priors and other available prior
knowledge can be a helpful tool to find the right bal-
ance between improving the calibration results and causing
unnecessary constraints.

In addition, we uncovered a potential confounding in
the inference of the model bias in the heat pump model,
which leads to a strong dependency of the joint posterior
distribution on the prior information about this parame-
ter. Thus, a more detailed statistical representation of the
model bias should be considered for detailed, complex
models – especially if the goal of the calibration process is
to learn about the model structure and parameter values. In
the complete absence of knowledge about these error terms
and if the aim of calibration is minimizing the discrepancy
between measurements and model outcomes, it might be
worthwhile for future studies to compare the performance
of the Kennedy & O’Hagan framework to other calibra-
tion approaches, such as optimization-based methods. For
future studies in the field of Bayesian calibration, more
effort should be undertaken to obtain better prior knowl-
edge about the bias of any particular model instead of using
standard priors from the literature.
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