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Abstract 
The inverse problem of estimating the spatial distributions of elastic material properties 
from noisy strain measurements is ill-posed. However, it is still typically treated as an 
optimisation problem to maximise a likelihood function that measures the agreement 
between the measured and theoretically predicted strains. Here we propose an 
alternative approach employing Bayesian inference with Nested Sampling used to 
explore parameter space and compute Bayesian evidence. This approach not only aids 
in identifying the basis function set (referred to here as a model) that best describes the 
spatial material property distribution but also allows us to estimate the uncertainty in 
the predictions. Increasingly complex models with more parameters generate very high 
likelihood solutions and thus are favoured by a maximum likelihood approach. 
However, these models give poor predictions of the material property distributions with 
a large associated uncertainty as they overfit the noisy data. On the other hand, the 
Bayes’ factor peaks for a relatively simple model and indicates that this model is most 
appropriate even though its likelihood is comparatively low. Intriguingly, even for the 
appropriate model that has a unique maximum likelihood solution, the measurement 
noise is amplified to give large errors in the predictions of the maximum likelihood 
solution. By contrast, the mean of the posterior probability distribution reduces the 
effect of noise in the data and predicts the material properties with significantly higher 
fidelity. Simpler model selection criteria such as the Bayesian information criterion are 
shown to fail due to the non-Gaussian nature of the posterior distribution of the 
parameters. This makes accurate evaluation of the posterior distribution and the 
associated Bayesian evidence integral (by Nested Sampling or other means) imperative 
for this class of problems. The output of the Nested Sampling algorithm is also used to 
construct likelihood landscapes. These landscapes show the existence of multiple 
likelihood maxima when there is paucity of data and/or for overly complex models. 
They thus graphically illustrate the pitfalls in using optimisation methods to search for 
maximum likelihood solutions in such inverse problems. 
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1. Introduction 
Estimating the spatial distributions of mechanical properties in a heterogeneous solid 
body from the measurements of strains or displacements fields has wide ranging 
applications, including material characterisation, medical diagnosis and civil 
infrastructure monitoring. For example, there has been a recent burst of activity in the 
development of smart civil infrastructure and this includes application of strain 
measurement technologies like fibre optic sensing to monitor the structural health of 
tunnels (Gue et al., 2015), bridges (Ko and Ni, 2005) and concrete sleepers (Butler et 
al., 2017) to name a few. In these applications strains are measured at a small number 
of discrete locations. In some other applications full field measurements of the 
displacement fields within specimens are available. For example, a technique known as 
“displacements under applied loading by Magnetic Resonance Imaging” (dualMRI) has 
been developed to perform in vivo measurements of displacements and strain in 
musculoskeletal tissues (Chan et al, 2012). In all these cases the spatial distributions of 
material properties is the information of primary interest but displacement and strain 
information does not directly describe these material property distributions. The 
reconstruction of material property maps from noisy (and sometimes sparsely spaced) 
strain measurements is an ill-posed inverse problem that requires complex modelling 
approaches. 

A number of methods have been proposed to identify constitutive parameters from 
strain/displacement measurements; readers are referred to Arvil et al. (2008) for an 
overview. Two commonly used approaches are: (i) the finite element model updating 
(FEMU) approach and (ii) the virtual field method (VFM). The former strategy is an 
optimization method and involves adjusting the parameters in order to minimize the 
difference between computed and measured strains as measured by a likelihood 
function (Rouger et al., 1990; Molimard et al., 2005). This approach can be used for 
either full field or discrete strain data. On the other hand, VFM (Grédiac, 1989) is a 
direct identification method that does not require any model iteration and hence is 
computationally less expensive but is best suited for full field data. Moreover, in 
practice, it requires a well-chosen mechanical test that excites of all strain components 
under the known boundary conditions. Examples of proposed specimens include a T-
shaped specimen under tensile loading (Grédiac and Pierron, 1998) and thick laminated 
composite tubes under compression (Pierron et al. 2000). Nevertheless, there is a strong 
similarity between these two identification methods, at-least in the context of linear 
elasticity, as discussed by Avril and Pierron (2007).  

The FEMU and VFM strategies discussed above are best suited for constitutive 
parameter identification problems in homogenous media. In order to use these methods 
to determine spatial property distributions (for example in heterogeneous materials 
such as the articular cartilage or a structurally deteriorating bridge structure), the 
unknown constitutive parameters need to be cast as weights of basis functions used to 
describe the spatial variations of the material properties. This is in fact what is done in 
the so-called “equilibrium gap” method and is equivalent to VFM with piecewise fields. 
The resulting inverse problem of identifying these weights is typically ill-posed with 
the outcome not only depending on the solution strategy, but also on the choice of the 
basis functions. Various types of regularizations have been proposed to reduce the 
intrinsic instability of these solutions, but the reconstructed results are inevitably 
strongly dependent on the choice of the regularization parameters (Richards et al., 
2009). Moreover, the instabilities are aggravated by the presence of measurement noise. 
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Adjoint-weighted and gradient-based variational methods have recently been proposed 
in an attempt to stabilize the solutions in the presence of measurement noise; see for 
example Bal and Uhlmann (2013) and Bal et al. (2014). By contrast, Bellis (2017) 
proposed a reconstruction method based on an integral formulation of the linear 
elasticity problem whereby a given strain field is expressed as the solution of the 
Lippmann–Schwinger equation. This approach circumvents the underlying instability 
issues but is necessarily restricted to linear elasticity and elastic moduli distributions 
with a small contrast. By contrast, Nguyen et al (2015) proposed a multiscale statistical 
inverse method for performing the experimental identification of the elastic properties 
of materials at macro and mesoscales. Their method allows for identification of both 
the mean component and the statistical fluctuations of a stochastic model of the 
elasticity field of a heterogeneous microstructure using experimental data from a single 
specimen 
 
Statistical and probabilistic methods are in fact being increasingly used for solutions of 
ill-posed inverse problems. In particular, the Bayesian approach allows for a full 
characterization of all possible solutions, and their relative probabilities, whilst 
simultaneously addressing the problems associated with the ill-posed problem in a clear 
and precise fashion. Readers are referred to Stuart (2010) and also the monographs by 
Kiapio et al. (2005) and Tarantola (2005) for a detailed discussion of the mathematical 
basis of Bayesian inference methods. Bayesian approaches, although computationally 
expensive to implement, are starting to lie within the range of the available 
computational resources especially given that they allow for the quantification of 
uncertainty in inverse problems. Most of current Bayesian approaches use Markov 
Chain Monte Carlo methods and/or filtering to identify maximum posterior solutions 
with the uncertainty quantified by evaluating the Hessian. Examples in solid mechanics 
include the works of Bui-Thanh et al. (2013) to derive the material property 
distributions via Monte Carlo sampling from seismic measurements and that of Thurin 
et al. (2017) who used Kalman filtering in a two-dimensional Marmousi model. The 
complete Bayesian calculation of evaluating the posterior distribution and computing 
the Bayesian evidence is avoided in these studies, presumably due to the numerical 
difficulties associated with such a task. Consequently, the fidelity of the implicit 
approximations in these Bayesian approaches remains unclear for problems in solid 
mechanics. 
 
In this study follow a Bayesian approach to the inverse problem of determining spatial 
material property distributions from strain measurements. In particular we do not use 
Laplacian or other such approximations for the posterior as in the majority of previous 
studies. Rather we propose a method to estimate the entire posterior probability 
distribution of the material properties and thereby quantify the Bayesian evidence in 
support of particular choices of basis functions. The outline of the paper is as follows. 
We first present an overview of the Bayesian inference technique as applied to the 
inverse problem. Next, we describe the inverse elasticity problem and the Nested 
Sampling technique used to evaluate posterior probability distributions and Bayesian 
evidence for this elasticity problem. Finally, we discuss the computational results by 
comparing solutions based on Bayesian inference and maximal likelihood. 
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Figure 1: Sketch of the problem for predicting the distribution of elastic constants in a double-
notched tensile specimen. The specimen is subjected to a remote tensile strain 𝜀"#$%  and the 
resulting strains within the specimen are measured at locations indicated in Fig. 2. The leading 
dimensions of the specimen are indicated along with the Cartesian co-ordinate system 𝑋'. 
 
 
2. Inverse problems: optimisation versus Bayesian inference  
The focus of the present study is the quantitative reconstruction of the elastic property 
maps that characterize a spatially heterogeneous, isotropic, linear elastic medium from 
measurements of strains within the domain. These strains may either be provided by 
the measurements of deformation at discrete locations within the domain via strain 
gauges (as might be the case for structural health monitoring applications) or obtained 
from strain maps furnished by full-field kinematic measurements (Grédiac and Hild, 
2013) such as digital image correlation (DIC). We discuss the basic principle for the 
case of a limited number of discrete strain measurements with the understanding that 
full-field data is the limiting case of a large number of spatially distributed strain 
measurements. The reconstruction problem from DIC measurements, which often have 
larger noise, will be discussed in future studies. 
 
Consider the representative problem shown in Fig. 1 of a double-notched specimen 
subjected to uniaxial tension in the 𝑋(-direction. With 𝑥' denoting the Cartesian co-
ordinates of a point, the specimen has a spatial distribution of the Young’s modulus 
𝐸(𝑥') and Poisson’s ratio 𝜈(𝑥') while the strains 𝜀.

(/) are measured at locations 𝑘 =
1,… , 𝑁 as indicated in Fig. 2. Here the subscript (𝑗) denotes a component of the strain 
(e.g. 𝑗 = 0, 45 and 90 denote the axial strains at orientations 𝜙 = 0# , 45#  and 90# , 
respectively with respect to the 𝑋< -axis). For a two-dimensional (2D) plane strain 
situation, three independent strain measurements fully specify the strain state at a given 
location and, in the problem, considered here we assume that three strain measurements 
in the 𝑋< − 𝑋( plane are made at each of the 𝑁 locations within the specimen. These 
3𝑁 strain measurements at a given applied remote strain 𝜀"#$%  are the available data 𝒟 
from which we aim to estimate 𝐸(𝑥') and	𝜈(𝑥'). Full field data where displacements 
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are measured on a fine grid (the grid size is typically small but finite) corresponds to 
the case of a large 𝑁 such that the spacing between the strain measurement locations in 
Fig. 2 is small. 
 
2.1 Estimation based on optimisation 
For clarity, we begin by briefly describing the generic optimisation problem as used for 
example in the FEMU approach. For a given guess of the property distributions 𝐸A(𝑥') 
and �̂�(𝑥')  we can solve the boundary value problem sketched in Fig. 1 by any 
appropriate numerical method (e.g. by the finite element method (FEM)) and calculate 
the strains 𝜀.̂

(/) that correspond to the measurements 𝜀.
(/). The aim of the optimisation 

is to choose the distributions 𝐸A(𝑥') and �̂�(𝑥') that minimise the differences between 
𝜀.̂
(/)  and 𝜀.

(/) : this choice is then thought of as the best representative of the true 
distributions 𝐸(𝑥')  and 	𝜈(𝑥') . In mathematical terms this first involves defining a 
likelihood function ℒ, which reaches its maximum value when the difference between 
the measured and calculated strains is zero, and then optimising the distributions 𝐸A(𝑥') 
and �̂�(𝑥')  so as to maximize ℒ . For example, with the standard deviation 𝜎E 
representing the accuracy of the strain measurements, and the measurement 𝜀.

(/) 
assumed to equal the mean from a large number independent measurements, the 
Gaussian distribution 𝒩(𝜀.

(/), 𝜎E)  is the maximum entropy distribution of the 
component 𝑗 of the strain at location (𝑘) (i.e. the Gaussian distributions makes the least 
claim to be informed beyond the available statistical information on the measurements). 
Then assuming that the accuracy of all the strain measurements are equal and that the 
errors are uncorrelated, an appropriate definition of the likelihood is a multivariate 
Gaussian given by 

 ℒ ≡HH
1

𝜎E√2𝜋./

exp O−
1
2
P
𝜀.̂
(/) − 𝜀.

(/)

𝜎E
Q

(

R. (2.1) 

This likelihood has a maximum value  

 ℒT ≡HH
1

𝜎E√2𝜋./

	, (2.2) 

which is attained when all the estimated values 𝜀.̂
(/)  are exactly equal to the 

measurements 𝜀'
(/). Recalling that the calculated strains 𝜀.̂

(/) are functions of 𝐸A(𝑥') and 
�̂�(𝑥'), the optimisation problem is then stated as 

 max
WA,XY

ℒ, (2.3) 

where ℒZ𝐸A, �̂�[ is calculated by solving a standard solid mechanics problem, i.e. given 
the geometry and the experimental boundary conditions, along with the trial material 
property distributions 𝐸A(𝑥')  and �̂�(𝑥') , we calculate  𝜀.̂

(/)  that satisfy the usual 
equilibrium and compatibility constraints. Note that while the solution to the 
optimisation problem (2.3) is independent of 𝜎E, it will be an important parameter for 
Bayesian inference as discussed in Section 4. We emphasize that throughout this study, 
the definition of the likelihood function is that given in (2.1). 
 
In practical terms, the numerical solution of the above defined optimisation problem 
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involves devising a discrete representation of the continuous distributions 𝐸A(𝑥') and 
�̂�(𝑥') so as to reduce the optimisation problem to a finite number of variables. Of 
course, the choice of basis functions for this representation is not unique. For example, 
the values 𝐸\]  and 𝜈] at the 𝑟 = 1,… ,𝑀	nodes of the FE mesh can be treated as the 
optimisation variables, with 𝐸A(𝑥')  and �̂�(𝑥') then obtained from the finite element 
shape (interpolation) functions. However, even this definition of the shape functions is 
non-unique (e.g. the number and spatial distribution of nodes as well as the order of the 
shape functions needs to be chosen) and this adds an extra set of unknown parameters 
to the problem. We label each choice of the discrete representation as a separate model 
ℋℓ(𝒘) where 𝒘 ≡ (𝐸\], 𝜈]) denotes a vector of the 2𝑀 parameters of model ℋℓ. The 
optimisation procedure described above determines the set of parameters for the model 
that best fit the given data, but gives no guidance about the choice of the model. As 
demonstrated below in Section 4, simply choosing the model that yields the highest 
likelihood is misleading. This is because increasingly complex models with more 
parameters can always fit the data better and better. Thus, choosing the model with the 
highest likelihood will inevitably lead us to implausible, over-parameterized models. 
Therefore, another level of inference is necessary to choose an appropriate model. 
 
2.2 The mechanism of the Bayesian razor 
Two levels of inference can be distinguished in the process of data modeling. At the 
first level of inference, we assume that a particular model is true, and fit that model to 
the data, i.e., we infer what values its free parameters should plausibly take, given the 
data. This analysis is repeated for each model. The second level of inference is the task 
of model selection. Here we wish to compare the models in the light of the data, and 
assign some sort of preference or ranking to the alternatives. Bayesian methods are able 
consistently and quantitatively solve both the inference tasks. 
 
We proceed to illustrate how Bayesian inference applies at each level of inference, 
where each model ℋℓ has a vector 𝒘 of parameters. Each model is defined by (i) its 
prior probability distribution 𝑃(𝒘|ℋℓ) that states what values the model’s parameters 
might be expected to take; and (ii) a set of conditional distributions, one for each value 
of 𝒘, defining the prediction 𝑃(𝒟|𝒘,ℋℓ) that the model makes about data 𝒟, i.e. the 
likelihood of the data given the parameters 𝒘 is ℒ ≡ 𝑃(𝒟|𝒘,ℋℓ). 
 
2.2.1 Model fitting 
At the first level of inference we assume that model ℋℓ is correct and the task is to infer 
its parameters 𝒘 given the data 𝒟. Using Bayes’ theorem, the posterior probability of 
the parameters 𝒘 is 

 𝑃(𝒘|𝒟,ℋℓ) =
𝑃(𝒟|𝒘,ℋℓ)𝑃(𝒘|ℋℓ)

𝑃(𝒟|ℋℓ)
. (2.4) 

Then recalling that the sum of the posterior probability over the entire space of 𝒘 equals 
unity, the normalizing constant 𝒵ℓ ≡ 𝑃(𝒟|ℋℓ) follows as 

 𝒵ℓ ≡ 𝑃(𝒟|ℋℓ) = g𝑃(𝒟|𝒘,ℋℓ)𝑃(𝒘|ℋℓ)𝑑𝒘. (2.5) 

In most Bayesian analyses, 𝒵ℓ plays no essential role at this level of inference (and is 
typically not computed when performing the model fitting exercise). This is because it 
is common practice to find the maximum posterior which defines the most probable set 
of parameters 𝒘ij  and 𝒵ℓ has no direct dependence on 𝒘 with respect to which the 
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maximisation is performed. In such cases the uncertainty in the prediction of 𝒘 is 
estimated from the Hessian by assuming that the posterior is Gaussian centred on 𝒘ij . 
We emphasize that the maximum of 𝑃(𝒘|𝒟,ℋℓ) has no fundamental status in Bayesian 
inference and in fact we shall show that for the problem considered here, that the mean 
of the posterior is a more meaningful estimate of 𝒘. Of course, determining the mean 
requires the entire posterior and 𝒵ℓ to be computed even for this first level of inference. 
 
Bayesian fitting can be contrasted to the usual optimisation approach where the best 
guess of 𝒘 is simply taken as the set of parameters 𝒘kjl1 that maximise the likelihood 
ℒ ≡ 𝑃(𝒟|𝒘,ℋℓ), independent of the prior. This approach not only fails to quantify the 
inherent uncertainty of the prediction, but also can result in a poor estimate of the model 
parameters especially in the presence of data noise; see Section 4.3. Of course, the 
maximum likelihood approach also gives no guidance on model selection as indicated 
above. 
 
2.2.2 Model selection and Occam’s razor 
At the second level of inference, we wish to infer which model is most plausible given 
the data. If several models are compatible with a set of observations (i.e. several models 
give sufficiently high likelihoods), Occam’s razor advises us to choose the simplest. 
This principle is typically advocated for one of two reasons. The first is aesthetic: “A 
theory with mathematical beauty is more likely to be correct than an ugly one that fits 
some experimental data” (Kragh (1990) quoting Paul Dirac). The second reason is the 
past empirical success of Occam’s razor. However, there is an additional, different 
justification for Occam’s razor, viz. coherent inference as embodied by Bayesian 
probability, which intrinsically includes Occam’s razor in a quantitative manner. 
 
We wish to compare the plausibility of two alternative models ℋ< and ℋ( in the light 
of data 𝒟, i.e. compare 𝑃(ℋ<|𝒟) and 𝑃(ℋ(|𝒟). To do so we relate 𝑃(ℋ<|𝒟) to the 
predictions made by the model about the data 𝑃(𝒟|ℋ<) via Bayes’ theorem as 

 𝑃(ℋ<|𝒟) =
𝑃(𝒟|ℋ<)𝑃(ℋ<)

𝑃(𝒟) , (2.6) 

where the probability 𝑃(ℋ<)  represents our prior belief in model ℋ<  and the 
probability 𝑃(𝒟) of observing the data 𝒟 is simply the sum over all alternative models 
ℋℓ , i.e. 𝑃(𝒟) = ∑ 𝑃(𝒟|ℋℓ)𝑃(ℋℓ)ℓ . (Note that 𝑃(𝒟|ℋ<)  is defined in (2.5) and 
represents the model likelihood integrated over the entire parameter space.) By 
computing the ratio of their posteriors, we can therefore assess the relative merits of 
any two models ℋ< and ℋ( without reference to further alternatives,  

 
𝑃(ℋ<|𝒟)
𝑃(ℋ(|𝒟)

=
𝑃(ℋ<)
𝑃(ℋ()

𝑃(𝒟|ℋ<)
𝑃(𝒟|ℋ()

. (2.7) 

We now proceed to show how (2.7) embodies the principle of Occam’s razor. To aid 
the discussion we assume, without loss of generality, that ℋ<  is a simpler model 
compared to ℋ(. The ratio 𝑃(ℋ<)/𝑃(ℋ() gives us the opportunity to introduce a prior 
bias in favour of ℋ< on the basis of experience. This would correspond to the aesthetic 
or empirical motivations for Occam’s razor. However, such a prior bias is not necessary 
as the second ratio, which is the data-dependent factor, inherently embodies Occam’s 
razor. Simple models tend to make precise predictions while complex models, by their 
                                                   
1 The maximum likelihood solution 𝒘kjl and maximum posterior solution 𝒘ij coincide for 
the special case of a uniform prior distribution.  
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nature, are more flexible and therefore capable of making a greater variety of 
predictions. Thus, because ℋ( is a more complex model, it will spread its predictive 
probability 𝑃(𝒟|ℋ() more thinly over the data space than ℋ<. Therefore, in the case 
where the data are compatible with both models, the simpler ℋ< will have a higher 
likelihood in (2.6) compared to ℋ(, without us having to express any subjective dislike 
for complex models. Notice that while the probability 𝑃(𝒟|ℋℓ)  plays the role of 
likelihood in (2.6), it is simultaneously the denominator in (2.4) in the first level of 
inference. Because it embodies the concept of Occam’s razor in terms of model 
comparison it is commonly referred to as the evidence 𝒵ℓ ≡ 𝑃(𝒟|ℋℓ) of model ℋℓ 
(MacKay, 2003).  
 
From the above discussion it follows that if we choose to assign equal priors 𝑃(ℋℓ) to 
all the alternative models, we can rank alternative models ℋℓ  by evaluating the 
evidence 𝒵ℓ. The idea is formalised by defining the Bayes’ factor 

 𝛥𝒦ℓ ≡ 10 log<T t
𝒵ℓ
𝒵uvw

x, (2.8) 

that quantifies the support for model ℋℓ over a reference model ℋuvw (with evidence 
𝒵uvw). In (2.8), 𝛥𝒦ℓ is in units of decihartleys (dHart)2 with 𝛥𝒦ℓ > 0 meaning that ℋℓ 
is more strongly supported by the data than ℋuvw. Decihartley is a particularly useful 
unit as a measure of information in Bayes’ factor, with 10 decihartleys corresponding 
to odds of 10:1, 20 decihartleys to 100:1 odds etc. In fact, Good (1979) suggested that 
a change in 𝛥𝒦 of 1 dHart (i.e. a change in the odds from evens to about 5:4) is about 
as finely as humans can reasonably be expected to quantify their degree of belief in a 
hypothesis. We note in passing that the minimum description length (MDL) principle 
(Rissanen, 1978) can always be interpreted as Bayesian model comparison with MDL 
having no apparent advantages over the direct probabilistic approach; see MacKay 
(2003). 
 
Jeffreys (1961) gave a scale for the interpretation of 𝛥𝒦  (Table 1). For example, 
𝛥𝒦ℓ < −5 suggests at-least substantial support for model ℋuvw over ℋℓ (note that the 
definition of the Bayes’ factor is symmetric such that 𝛥𝒦ℓ > 5  would imply at a 
minimum substantial support for model ℋℓ over ℋuvw).  
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Interpretation of the Bayes’ factor as proposed by Jeffreys (1961). 
 
                                                   
2 Hartley (symbol Hart and also called a ban or a dit) is a unit that measures information or 
entropy using base 10 logarithms rather than base 2 logarithms that define the Shannon (symbol 
Sh) or bit.  

𝜟𝓚𝓵 (dHart) Support of evidence for model 
𝓗𝐫𝐞𝐟 over 𝓗𝓵 

> 0  negative (supports ℋℓ over ℋuvw) 
0 to -5 barely worth mentioning 
-5 to -10  substantial 
-10 to -15 strong 
-15 to -20  very strong 
< -20  decisive 
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Figure 2: The location of strain gauge rosettes in synthetic experiments with (a) 𝑁 = 7, (b) 
𝑁 = 13 and (c) 𝑁 = 23 strain gauge rosettes. The rosettes measure the strains at orientations 
𝜙 = 0#, 45# and 90#, respectively with respect to the 𝑋<-axis. The actual spatial distributions 
of the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 within the specimen are indicated in (a) and 
(b), respectively.  
 
3. Estimation of spatial distributions of material properties 
As an illustration of the Bayesian inference methodology for prediction of the spatial 
distribution of material properties given strain data, here we consider a double-notched 
tensile specimen with spatially varying isotropic elastic constants. The specimen of 
height 𝐻 = 300	mm and width 𝑊 = 200	mm has two semi-circular notches of radius 
𝑅 = 50	mm at mid-height as shown in Fig. 1. The specimen is subjected to a nominal 
remote tensile strain 𝜀"#$%  and strains 𝜀T

(/), 𝜀��
(/), 𝜀�T

(/) are measured at 𝑁 locations 𝑘 =
1,… , 𝑁  via strain gauge rosettes. The locations of symmetrically and regularly 
positioned strain gauges are indicated in Fig. 2 for 𝑁 = 7, 13 and 23.  
 
3.1 Problem description 
Since the aim of this study is to investigate the fidelity of the Bayesian inference 
technique for the prediction of material property distributions, we use numerically 
generated “synthetic experimental data”. This enables us to compare the inferred 
properties with the known true distributions and thereby make judgements with regards 
the predictive capabilities of the Bayesian approach. We thus first explain the procedure 
for numerically generating the required input data. 
 
Spatial distributions of 𝐸  and 𝜈  in the 𝑋< − 𝑋(  plane were generated via 2D non-
uniform rational B-spline (NURBS) functions (Piegl and Tiller, 1997), i.e. no variations 
of properties in the 𝑋�-direction. The NURBS are specified by B-splines of order 𝑞 and 
a grid of 𝑝 × 𝑝 control weights over the 𝑊 ×𝐻 rectangular domain that circumscribes 
the specimen. Open uniform knot vectors with 𝑞 + 1	equal knot values at each end were 
used in both the 𝑋<  and 𝑋(  directions. The “synthetic experimental specimen” was 
generated using quadratic (𝑞 = 2) B-splines with a 𝑝 = 5 control weight grid, i.e. 25 
control weights 𝑬�  and 25 control weights �̂�  for the distributions of 𝐸  and 𝜈 , 
respectively. To generate the experimental specimen, the control weights were assumed 
to be random variables such that 𝐸\~𝒰(0.01, 2.0)	GPa	 and 𝜈~𝒰(0.1, 0.45) , 
respectively where 𝒰(𝑎, 𝑏) denotes a uniform distribution with support [𝑎, 𝑏]. One 
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such randomly generated distribution was chosen to be the synthetic experimental 
specimen and the distributions of 𝐸 and 𝜈 within this experimental specimen are shown 
in Figs. 2a and 2b, respectively (Young’s modulus distributions in a range of specimens 
generated with 𝑝 = 3, 5 and 8 are shown in Supplementary Information Fig. S1 to give 
a sense of the wavelengths associated with different control weight grids). The synthetic 
experimental measurements of the strains 𝜀.

(/) were then generated via a small-strain, 
plane strain FE analysis. The specimen was discretised into 1015 constant strain 
triangles of side ~1.1	mm and the elastic constants (𝐸, 𝜈) of each element were set 
equal to the value obtained by interrogating the NURBS functions at the centroid of 
triangles. The FE analysis was then conducted by subjecting the specimen to 
displacements 𝑢( = 𝜀"#$% 𝐻 on the top surface and 𝑢( = 0 on the bottom surface with 
the tractions 𝑇< = 0 on both these surfaces; see Fig. 1. The experimental measurements 
of the strains 𝜀.

(/) at the locations indicated in Fig. 2 were then directly ascertained from 
the FE calculations. The linearity of the problem described here implies that the strains 
𝜀.
(/)  scale linearly with 𝜀"#$% . Therefore, without loss of generality, we present 

numerical simulations for the choice 𝜀"#$% = 0.1. 
 
In order to better mimic real experimental data we included some measurement 
noise/error in the values of 𝜀.

(/) generated via the FE calculations. This noise was added 
to 𝜀.

(/) in the form of independent Gaussian noise with a zero mean and a standard 
deviation 𝜎vuu. We consider three cases: (i) no noise with 𝜎vuu = 0; (ii) low noise with 
𝜎vuu = 0.016𝜀"#$%  and (iii) high noise with 𝜎vuu = 0.05𝜀"#$% . The values of 𝜀.

(/) with 
this superimposed noise and the applied strain 𝜀"#$%  were then treated as the only 
available experimental data to be used in the inference of the spatial material property 
distributions. We emphasize that since the added noise is random, it is conceivable that 
there exists no spatial distribution of (𝐸, 𝜈) that yields a solution of the elastic boundary 
value problem that exactly matches the strain data 𝜀.

(/). 
 
3.2 Nested Sampling for phase space exploration and evaluation of evidence 
The aim here is to predict the spatial distribution of the elastic constants shown in 
Figs. 2a and 2b given the strains 𝜀.

(/), with the specimen subjected to a remote strain 
𝜀"#$% = 0.1. As discussed in Section 2.1, the inverse problem is made numerically 
tractable by choosing a discrete representation for the estimated distribution (𝐸A, �̂�): this 
reduces the inverse problem to a finite number of variables. Here we choose a discrete 
representation based on the NURBS functions described in Section 3.1 and vary the 
number of control weights: a representation with a 𝑝 × 𝑝  control weight grid and 
therefore 2𝑝( parameters 𝒘 ≡ (𝑬�, �̂�) is labelled as model ℋ�. Thus, in model ℋ� the 
𝑝( weights 𝑬� give the estimated spatial distribution 𝐸A(𝑥') while the 𝑝( weights �̂� give 
the estimated spatial distribution �̂�(𝑥'). The models are nested in the sense that model 
ℋ�� produces a set of distributions that is a subset of the distributions of model ℋ� 
where 𝑝 > 𝑝′. Non-nested models where we keep 𝑝 fixed but vary the order 𝑞 of the 
B-spline functions are discussed in Appendix A. 
 
Calculation of the posterior probability distribution and evaluation of the evidence 𝒵�  
of model ℋ�  in this 2𝑝(  dimensional space represents a significant numerical 
challenge. Nested Sampling is an algorithm specifically designed to sample high 
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dimensional spaces for systems where the bulk of the high likelihood mass is contained 
in an exponentially small fraction of the parameter phase space. For example, Baldock 
et al. (2016) used it to sample the phase space of metals and construct pressure-
temperature phase diagrams with the likelihood given by the Boltzmann factor. The 
algorithm outputs a set of samples and associated weights from which we can not only 
estimate the evidence and calculate the posterior probability but also derive information 
on the structure of the phase space. Here we briefly describe the Nested Sampling 
algorithm; readers are referred to Skilling (2006) for further details of the theoretical 
basis and to Pártay et al. (2010) and Pártay et al. (2014) for the numerical methods used. 
We begin by defining the prior mass 𝑋(𝜆) of model ℋ� with likelihood ℒ > 𝜆 as 

 𝑋(𝜆) = g 	𝑃Z𝒘 ℋ�[𝑑𝒘
ℒ(𝒘)¡¢

, (3.1) 

where the subscript 𝑝 is omitted on 𝑋 for the sake of brevity of notation. In the case of 
using a uniform probability distribution for the prior 𝑃Z𝒘 ℋ�[, X(𝜆) can be thought of 
as the fraction of parameter space corresponding to a likelihood ℒ > 𝜆. Then noting 
that 𝑑𝑋 ≡ 𝑃Z𝒘 ℋ�[𝑑𝒘, the evidence follows as 

 𝒵� = g𝑃Z𝒟 𝒘,ℋ�[𝑃Z𝒘 ℋ�[𝑑𝒘 = g 	ℒ(𝑋)𝑑𝑋
<

T

. (3.2) 

The Nested Sampling algorithm is an iterative procedure which generates a sequence 
of likelihood levels ℒ< < ℒ( < ℒ� … where for each iteration 𝑠, ℒ¤ is chosen such that 

 
∫ 𝕀[ℒ(𝒘) > ℒ¤]𝑑𝒘𝒘

∫ 𝕀[ℒ(𝒘) > ℒ¤§<]𝑑𝒘𝒘
≈ 𝛼, (3.3) 

with 0 < 𝛼 < 1 being a fixed fraction and 𝕀 the indicator function. Hence the algorithm 
takes equidistant steps in the logarithm of the phase space volume, with 𝛥𝑋¤ = 𝜔¤ =
𝛼¤§< − 𝛼¤	being the portion of the prior mass corresponding to distributions of material 
properties with likelihood between ℒ¤§< and ℒ¤. Numerical integration of (3.2) then 
gives 

 𝒵� ≈«𝜔¤ℒ¤.
¤

 (3.4) 

The sequence of likelihood levels ℒ¤ is calculated by maintaining an active set of 𝐾 
samples, uniformly distributed over the set of configurations3 with likelihood above the 
current level. The set is initialised with samples uniformly distributed throughout the 
whole phase space. At the first iteration the lowest likelihood configuration in the active 
set is chosen to assign the first likelihood level ℒ< and the corresponding configuration, 
Ω<, is removed from the active set. Now a single new configuration is required to 
replace the one that was removed. The key to the algorithm is to perform this 
replacement while ensuring that the samples in the active set are kept uniformly 
distributed over the phase space with likelihood ℒ > ℒ<. The original algorithm does 
not prescribe a specific method to perform this replacement and here we use the 
following Monte Carlo scheme. First, a randomly selected member of the remaining 
𝐾 − 1 samples in the active is cloned. Next, this member is used to initialise a Markov 
chain with equilibrium distribution given by 𝑃(Ω) ∝ 𝕀[ℒ(Ω) > ℒ<]. Finally, the end 
                                                   
3 Each possible spatial distribution of the elastic constants within the specimen is referred to as 
a configuration. 
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configuration of the Markov chain is used to replenish the active set. The next 
likelihood level ℒ( is then taken to be given by lowest likelihood configuration Ω( 
within the replenished active set and the procedure repeats, generating a sequence of 
configurations with increasing likelihood ℒ�, ℒ�, …  . Additional details on the 
numerical procedure are given in Appendix B with the numerical codes used in this 
study available in Vigliotti and Deshpande (2018).  
 

 

Figure 3: Predictions of the variation in the normalised likelihood ℒ̄ with the prior mass 𝑋 for models 
ℋ�, ℋ� and ℋ° used to analyse the reference case of the experiment with 𝑁 = 23 strain gauges and 
experimental noise 𝜎vuu = 0.016𝜀"#$% . A zoom-in of the variation of ℒ̄ at relatively high values of 𝑋 is 
shown in the inset. 

At each iteration 𝑠, the fraction of the configuration space with likelihood higher than 
ℒ¤ is proportional to the Beta distribution ℬℯ(𝐾 + 1,1) (Skilling, 2006) and therefore 
𝛼  is approximately the mean of this distribution, i.e. 𝛼 ≈ 	𝐾/(𝐾 + 1) . Thus, after 
iteration 𝑠, 

 𝑋¤ = 𝛼¤ = ³
𝐾

𝐾 + 1´
¤

, (3.5) 

of the initial unit prior mass remains to be explored. The Nested Sampling algorithm 
does not prescribe a specific terminating condition, other than running until the 
estimators for the observables of interest have satisfactorily converged. Here we 
terminate the simulation at iteration 𝐽 when 

 
2(ℒ¶,·$¸¹ − ℒ¶,·$º")
ℒ¶,·$¸¹ + ℒ¶,·$º"

< 𝜖, (3.6) 

where ℒ¶,·$º" and ℒ¶,·$¸¹ are the minimum and maximum values of the likelihoods of the 
𝐾  samples in the active set at iteration 𝑠 = 𝐽  and 𝜖  a user defined tolerance. The 
likelihood of the sample removed at 𝑠 = 𝐽 is labelled ℒv"¼. We note in passing that 
given an appropriately small choice of 𝜖 , ℒv"¼  is a good approximation of the 
maximum likelihood that can be attained by the model ℋ�  for the given dataset. 
Moreover, as discussed by Skilling (2006) the sequence {Ω<, Ω(,… } gives a set of 
posterior representatives such that the posterior probability of the parameter set 𝒘¤ of 
the sample Ω¤ removed in iteration 𝑠 is  
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 𝑃Z𝒘¤ 𝒟,ℋ�[ =
𝜔¤ℒ¤
𝒵�

. (3.7) 

All calculations presented in this study were performed with a 𝐾 = 256 active set and 
a tolerance 𝜖 = 10§�. Convergence tests confirmed that increasing 𝐾 and decreasing 𝜖 
resulted in no appreciable change in the estimation of the evidence and posterior 
distributions. Typical calculations reported here required between 𝐽 = 40 × 10� and 
110 × 10�	iterations with a Markov chain of 𝒯 = 512 steps was used to generate the 
sample to replenish the active set. Therefore, the evidence calculation for each model 
ℋ�  involved between 𝐽𝒯 ≈ 20 × 10À	 and 56 × 10À  likelihood evaluations, where 
each likelihood evaluation required a FE calculation to determine the strains 𝜀'̂

(/) for 
the assumed spatial distribution of elastic constants (𝐸A, �̂�) . The priors in all the 
calculations were chosen to be the same as those used in generating the elastic constant 
distributions within the synthetic experimental specimen. Thus, the control weights for 
the Young’s modulus for each step in the Markov chain were 𝑬�~𝒰(𝐸$º", 𝐸$¸¹), while 
the weights for the Poisson’s ratio �̂�~𝒰(𝜈$º", 𝜈$¸¹) , where (𝐸$º", 𝐸$¸¹) =
(0.01, 2.0)	GPa  and (𝜈$º", 𝜈$¸¹) = (0.1, 0.45) . Unless otherwise specified, 
calculations presented here employ a standard deviation of the measurements 𝜎E =
0.005 = 0.05𝜀"#$% 	to evaluate the likelihood via (2.1). The parameter 𝜎E characterises 
the error in the data4 and is typically not known precisely but rather estimated from 
considerations of the accuracy of the experimental measurements. For example, if 
strains are measured using strain gauges, we expect a ±5% scatter in the gauge factor 
that is usually not corrected for. In this case, an appropriate choice for 𝜎E is therefore 
5% of a representative strain such as the applied nominal strain 𝜀"#$% .  
 
 
4. Predictions based on Bayesian inference 
Unless otherwise specified, all results are presented for the reference case of the 
synthetic experiment with 𝑁 = 23  strain gauges and an experimental noise 𝜎vuu =
0.016𝜀"#$% . Further, since the elastic constant distributions in the specimen were 
generated with a 5 × 5 grid of control weights, we shall use model ℋ� as the reference 
model ℋuvw  in calculating the Bayes’ factor (2.8), i.e. if Bayesian inference is 
successful, the Bayes’ factor will peak for model ℋ�  with 𝛥𝒦 = 0 . Recall that 
Bayesian inference is performed on two levels: (i) model fitting to determine the 
posterior parameter distributions and (ii) using these distributions to evaluate evidence 
for model selection. However, it is more convenient to discuss the results in the reverse 
order, i.e. first discuss the selection of the appropriate model and then present the 
posterior predictions of that model.  We proceed here in this manner. 
 

                                                   
4 We emphasize that the parameter 𝜎vuu characterizing the experimental noise is an artefact of 
the synthetic experimental data used here and will not be present when dealing with real 
experimental data. On the other hand, 𝜎E used in the likelihood function is our estimate of the 
error in the experimental data and is required for the Bayesian inference analysis. 
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Figure 4: Predictions of the (a) maximum normalised likelihood ℒ̄v"¼ and (b) Bayes’ factor 
𝛥𝒦 as a function of the model order 𝑝. The predictions are for the case of synthetic experiments 
with a measurement noise of 𝜎vuu = 0.016𝜀"#$%  and 𝑁 = 7, 13 and 23 strain gauge locations. 
The Bayes’ factor is calculated using model ℋ� as the reference. 
 
4.1 Bayesian evidence versus maximum likelihood model selection  
Predictions of the variation of the normalised likelihood ℒ̄ ≡ ℒ/ℒT with the prior mass 
𝑋 are included in Fig. 3 for models ℋ�, ℋ� and ℋ° (i.e. models with a 𝑝 × 𝑝 control 
weight grid and 𝑝 = 4, 5 and 8, respectively). The normalisation of ℒ is chosen such 
that ℒ̄ ≤ 1 and Fig. 3 is interpreted as follows: for any given ℒ̄∗ the corresponding 
value 𝑋 = 𝑋∗  is the prior mass with likelihood higher than ℒ̄∗. At high 𝑋, ℒ̄ is the 
highest for model ℋ� but with decreasing 𝑋, the more complex models (i.e. ℋ� and 
ℋ°) show a continuing increase in likelihood while the likelihood of model ℋ� begins 
to plateau. In fact, the likelihood of model ℋ� overtakes model ℋ� at 𝑋 ≈ 1.0 × 10§° 
(see inset of Fig. 3) and similarly the likelihood of model ℋ° overtakes model ℋ� at 
𝑋 ≈ 2.0 × 10§�< . These results are understood by recognising that a significantly 
larger number of configurations are available for complex models compared to simpler 
models, but a larger fraction of the configurations of the complex models result in low 
likelihoods, i.e. ℒ̄ remains relatively low in the complex models at high 𝑋. However, 
the greater flexibility offered by complex models such as ℋ°  implies that a small 
fraction of the available configurations attain higher likelihoods than any configuration 
that a simpler model can generate. As a consequence ℒ̄v"¼ increases with increasing 
number of control weights in the model, i.e. ℒ̄v"¼ increases in the order ℋ� → ℋ� →
ℋ°. 
 
Predictions of ℒ̄v"¼ as a function of the model order as parameterised by 𝑝 (recall that 
model ℋ� has 2𝑝( degrees of freedom) are included in Fig. 4a (here we focus on the 
𝑁 = 23 case and subsequently in Section 4.4 elaborate on the effect of the quantity of 
data). Clearly, ℒ̄v"¼ increases with 𝑝 suggesting that a likelihood measure favours the 
more complex models. However, it is clear that this inference is misleading: in the case 
of 𝑁 = 23, i.e. the densest grid of gauges, ℒ̄v"¼ for model ℋ� is a nearly a factor of 
four lower than for model ℋ° even though the underlying synthetic experimental data 
was generated using NURBS with 𝑝 = 5. This discrepancy arises because the input 
data used included a 1.6% measurement noise. This results in the “correct” model ℋ� 
being unable to closely fit the measured strain values. On the other hand, the additional 
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flexibility of model ℋ° (i.e. its capability of generating spatial variations in 𝐸A and �̂� 
with a smaller wavelength), allows it to achieve a higher likelihood by fitting to the 
noise in the data. We shall subsequently show that this overfitting results in poor 
predictions of the spatial distributions of the elastic constants. 

 
 
Figure 5: Spatial distributions of the error 𝜌W in predictions of the Young’s modulus using the 
mean of the posterior distribution for (a) model ℋ� and (b) model ℋ°. The predictions are for 
the reference case of the synthetic experiment with 𝑁 = 23 strain gauges and measurement 
noise 𝜎vuu = 0.016𝜀"#$% . The strain measurement locations are indicated in both (a) and (b). 
 
The corresponding estimates of the Bayes’ factor 𝛥𝒦 are in Fig. 4b and show that	it is 
maximal for model ℋ� (recall that the model ℋ� is set as the reference ℋuvw and hence 
𝛥𝒦 = 0 for 𝑝 = 5). Thus, Bayes’ factor peaks for model ℋ� even though, as seen in 
Fig. 4a, the maximum likelihood of this model is relatively low.  The next highest value 
of the Bayes’ factor is 𝛥𝒦 ≈ −5 for model ℋ�:  the interpretation in Table 1 therefore 
indicates substantial evidence in support of model ℋ� over ℋ�. Moreover, since 𝛥𝒦 <
−20 for all other models there is decisive evidence for ℋ� over these models. Thus, 
Bayesian inference correctly predicts that the underlying spatial distribution of elastic 
constants is best represented by NURBS with 𝑝 = 5 even though the likelihood ℒ̄v"¼ 
of this model is relatively low.  
 
4.2 Predictions of the spatial distributions of material properties 
While Bayesian evidence correctly predicts that model ℋ� is the appropriate model to 
estimate the material property distributions, it remains to verify the accuracy with 
which model ℋ� predicts the distributions of 𝐸 and 𝜈. While such verification is not 
possible under normal circumstances where the true material property distributions are 
unknown, the advantage of the synthetic experiment used here is that we can precisely 
quantify the accuracy of the predictions. The statistics of the posterior such as the mean 
or the mode of the posterior distribution have no fundamental status in Bayesian 
inference but are still useful to summarise the predictions. Here we choose to use the 
mean and standard deviation of the posterior distribution as representative of the 
Bayesian estimate of the material properties and the associated uncertainty in the 
predictions: the advantages of this choice are further discussed in Section 4.3 in the 
context of maximum likelihood/posterior predictions. To define these quantities recall 
that the sample Ω¤  removed in iteration 𝑠  of the Nested Sampling algorithm 
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corresponds to a configuration with spatial distributions 𝐸A¤(𝑥')  and �̂�¤(𝑥')  of the 
Young’s modulus and Poisson’s ratio, respectively. We then obtain the mean of the 
spatial distribution of the Young’s modulus via (3.7) as 

 

〈𝐸A(𝑥')〉 ≡ g𝑃Z𝒘 𝒟,ℋ�[𝐸A(𝑥')𝑑𝒘

=
1
𝒵�

«(𝜔¤ℒ¤)𝐸A¤(𝑥')
·

¤É<

,	 
(4.1) 

while the standard deviation of 𝐸A is given by 

 ΔWA(𝑥') ≡ Ë 1
𝒵�

«𝜔¤ℒ¤Ì𝐸A¤(𝑥') − 〈𝐸A(𝑥')〉Í
(

·

¤É<

.	

 

(4.2) 

An error measure quantifying the difference between the predicted mean and actual 
distribution of the Young’s modulus is then defined as  

 𝜌W(𝑥') ≡
 𝐸(𝑥') − 〈𝐸A(𝑥')〉 

𝐸(𝑥')
. (4.3) 

Predictions of 𝜌W  within the specimen are shown for models ℋ� and ℋ° in Figs. 5a and 
5b, respectively. While relatively large errors are evident for both models near some of 
the straight edges of the specimen it is clear that the errors are small in the specimen 
interior especially for model ℋ�. The large errors near straight edges stem from the fact 
that the stress states in those regions are nearly uniaxial and this makes the set of elastic 
constant distributions that are compatible with the strain data highly non-unique in 
those locations. Nevertheless, the errors in both models ℋ�  and ℋ°  are reasonably 
similar and we shall proceed to demonstrate that the key advantage of model ℋ� (as 
quantified by its higher evidence) is the lower level of uncertainty in its predictions. 

 
 
Figure 6: Spatial distributions of the uncertainty in the predictions as quantified by the 
normalised standard deviation �̅�WA  of the predicted Young’s modulus for (a) model ℋ� and (b) 
model ℋ°. The predictions are for the reference case of the synthetic experiment with 𝑁 = 23 
strain gauges and measurement noise 𝜎vuu = 0.016𝜀"#$% . The strain measurement locations are 
indicated in both (a) and (b). 
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One of the main strengths of the Bayesian approach is that it can estimate the inevitable 
uncertainty associated with making predictions for this inherently ill-posed inverse 
problem. We quantify this uncertainty via the standard deviation of the posterior 
distribution, with a larger standard deviation indicative of a higher uncertainty in the 
predictions. Before the arrival of the data, we had a prior belief that the Young’s 
modulus was uniformly distributed over the range (𝐸$º", 𝐸$¸¹) and thus there was a 
spatially uniform uncertainty (𝐸$¸¹ − 𝐸$º")/(2√3) as given by the standard deviation 
of the uniform distribution. We therefore define a normalised measure of the uncertainty 

 �̅�WA(𝑥') ≡
2√3ΔWA(𝑥')
𝐸$¸¹ − 𝐸$º"

,	

 
(4.4) 

to quantify the reduction in the level of uncertainty of the Young’s modulus after the 
arrival of the data: �̅�WA(𝑥') = 1 indicates no reduction in the level of uncertainty while 
�̅�WA(𝑥') = 0 implies that we know the Young’s modulus at 𝑥' precisely. Predictions of 
�̅�WA(𝑥') are shown for models ℋ� and ℋ° in Figs. 6a and 6b, respectively. It is clear that 
�̅�WA  is significantly lower for model ℋ� compared to ℋ° with the largest uncertainties 
along the straight edges of the specimen where the errors 𝜌W  were also the highest. On 
the other hand, large uncertainties are seen throughout the specimen for model ℋ° with 
�̅�WA  only reducing in the vicinity of the strain measurement locations. The excess 
parameters in model ℋ° aid in closely matching the available data but the associated 
overfitting results in a large variability in between the data locations. In summary, 
Bayesian inference correctly predicts the most appropriate model, and this model gives 
predictions with the highest fidelity and the lowest uncertainty. In fact, spatial 
distributions of the uncertainty also give an indication of where the errors in the 
estimated properties are likely to be the highest. We note that analogous quantities 
〈�̂�(𝑥')〉, �̅�XY(𝑥') and 𝜌X(𝑥') for the Poisson’s ratio can also be defined via �̂�¤(𝑥'); see 
Supplementary Information Figs. S2 and S3. 
 
4.3 Bayesian versus maximum likelihood predictions 
An alternative to Bayesian inference in such inverse problems is an optimisation 
approach where a search is conducted for the maximum likelihood solution (for the 
case of a uniform prior as used here this is equivalent to the maximum posterior 
solution). While it is clear that this approach cannot be used to distinguish between 
models as more complex models inevitably give higher likelihoods, here we examine 
the fidelity of this approach in selecting the parameters of a given model that is a priori 
assumed to be appropriate.  
 
Maximum likelihood configurations are usually not uniquely defined with multiple 
different configurations giving equal or approximately equal local maxima of the 
likelihood function; see discussion in Section 5.2. Nevertheless, to illustrate predictions 
of this approach we obtain a maximum likelihood solution as follows. We first select 
the configuration with the highest likelihood in the active set after the termination of 
the Nested Sampling algorithm and then use it to seed a Nelder-Mead (Nelder and 
Mead, 1965) optimisation calculation to maximize ℒ̄ . The configuration that the 
optimisation outputs as the local maximum in ℒ̄ is treated as the best representation of 
the maximum likelihood solution. We then define an error 𝜌W(𝑥') analogous to (4.3) 
except that 〈𝐸A(𝑥')〉 is replaced by the spatial distribution 𝐸Akjl(𝑥') of the Young’s 
modulus in the maximum likelihood configuration. Predictions of 𝜌W  are shown for 
models ℋ� and ℋ° in Figs. 7a and 7b, respectively (also see Supplementary Fig. S4 for 
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a replot of Fig. 7 using a larger scale for 𝜌W). Not only are  the magnitudes of the errors 
larger for model ℋ° compared to model ℋ� (compare Figs. S4a and S4b), the more 
significant finding is that the errors of these maximum likelihood solutions are 
significantly higher compared to the solutions based on the mean of the posterior 
distributions given in Fig. 5. This suggests that even if the true underlying model was 
known a priori (model ℋ� in this case), an estimate of the material properties based on 
the mean of the posterior distributions is more accurate than a maximum likelihood 
solution. 

 
 
Figure 7: Spatial distributions of the error 𝜌W  in predictions of the Young’s modulus using 
maximum likelihood solutions for (a) model ℋ� and (b) model ℋ°. The predictions are for the 
reference case of the synthetic experiment with 𝑁 = 23 strain gauges and measurement noise 
𝜎vuu = 0.016𝜀"#$% . Note that a colour scale that is the same as in Fig. 5 has been chosen to 
highlight the contrast between the maximum likelihood and mean posterior predictions. (A 
replot of this data using a larger scale for 𝜌W is included in Supplementary Information Fig. S4 
and better indicates the true values of the errors.) 
 
This intriguing result is linked to the 1.6% measurement noise in the available data and 
is understood as follows. For the true model ℋ�, there exists a near unique maximum 
likelihood configuration (see Section 5.2 and Fig. 14a) and thus the large errors in Fig. 
7a are not a result of the presence of multiple maximum likelihood solutions (i.e. not 
directly related to the non-unique nature of the optimisation problem). Rather, the poor 
solution is an outcome of “overfitting” in the sense that the optimisation procedure 
converges to a configuration that matches the available data as closely as possible 
irrespective of the fact that there is noise in the strain measurements. In fact in the 
absence of measurement noise, the maximum likelihood solution of model ℋ� very 
accurately predicts the material property distributions with errors 𝜌W  and 𝜌X  less than 
about 3% over nearly the entire specimen (Supplementary Information Fig. S5).  Thus, 
remarkably the overfitting inherent in the maximum likelihood solution results in an 
amplification of the 1.6% measurement noise in the strain data to an error in excess of 
30% in the predicted Young’s modulus (Fig. S4a). 
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Figure 8: Predictions of the (a) maximum normalised likelihood ℒ̄v"¼ and (b) Bayes’ factor 
𝛥𝒦 as a function of the model order 𝑝. The predictions are for the case of synthetic experiments 
with a measurement noise 𝜎vuu = 0.05𝜀"#$%  and 𝑁 = 7, 13 and 23 strain gauge locations. The 
Bayes’ factor is calculated using model ℋ� used as the reference. 
 
By contrast, the Bayesian prediction using the mean of the posterior smooths out the 
random measurement noise and reduces the errors in the Young’s modulus to less than 
5% over most of the specimen (Fig. 5a). To understand the lower error compared to the 
maximum likelihood solution, recall that the likelihood function (2.1) recognises the 
presence of measurement noise and weights deviations between the measured and 
predicted strain values via an inputted measurement accuracy 𝜎E . The mean of the 
posterior (which is weighted sum of the likelihood) therefore includes contributions 
from all configurations that give strain measurements that agree with the data within 
the specified accuracy 𝜎E . This diminishes the effect of measurement noise of the 
predicted configuration and automatically avoids overfitting. (As a corollary, reducing 
𝜎E  to below the noise level in the measurements will decrease the fidelity of the 
Bayesian predictions based on the mean of the posterior; see Section 4.5.) This ability 
of Bayesian inference through the mean of the posterior to reduce the effect of the 
unknown measurement noise is one the key strengths of the Bayesian approach. 
 
The maximum likelihood predictions discussed above are obtained by solving what 
seems like a non-regularised ill-posed optimisation problem. Often, a regularised 
version of such optimisation problems is posed in an attempt to avoid overfitting of the 
data and reduce the amplification of data noise via the solution of the inverse problem. 
This is typically, but not exclusively, done by regularisations such as Tikhonov 
regularisation (Tikhonov and Arsenin, 1977), where a regularization term is added to 
the likelihood function in order to give preference to a particular solution with desirable 
properties (e.g. smoothness). However, the problem under investigation here is already 
highly regularized with smooth NURBS describing the spatial distribution of material 
properties. Moreover, the comparison between the Bayesian and maximum likelihood 
solutions discussed here was restricted to the true model ℋ�. This bypasses the model 
selection problem with attention restricted to the model that has the correct wavelengths 
of the material property distributions. Thus, further regularisations are expected to yield 
no improvements in the maximum likelihood predictions and this is demonstrated 
explicitly in Supplementary Section S5 where we show numerical results for 
predictions using Tikhonov-type regularisation. 



 20 

 

 
 
Figure 9: Predictions of the (a) maximum normalised likelihood ℒ̄v"¼ and (b) Bayes’ factor 
𝛥𝒦 as a function of the model order 𝑝. The predictions are for the case of synthetic experiments 
with no measurement noise (𝜎vuu = 0) and 𝑁 = 7, 13 and 23 strain gauge locations. The Bayes’ 
factor is calculated using model ℋ� used as the reference. 
 
4.4 Model selection: quantity of data and measurement noise 
We now return to the model selection problem and discuss the sensitivity of the Bayes’ 
factor to the quantity of data and measurement noise. Predictions of ℒ̄v"¼ and 𝛥𝒦 as a 
function of the model order 𝑝 are included in Figs. 4a and 4b, respectively for 𝑁 = 7 
and 13 strain gauge locations (measurement noise 𝜎vuu = 0.016𝜀"#$% ). The key 
difference with less data is that unlike the 𝑁 = 23 case, ℒ̄v"¼ ≈ 1 for 𝑝 ≥ 5 for both 
the 𝑁 = 7 and 13 cases. This is because the models are required to fit to less data, which 
in turn results in higher likelihoods. Thus, given less data the likelihood estimates 
suggest that all models with 𝑝 ≥ 5 are equally acceptable. On the other hand, even with 
less available data 𝛥𝒦  still correctly attains its maximum value for model ℋ� . 
However, we observe that the 𝛥𝒦 versus 𝑝 curve is less peaked as the amount of data 
used in the estimation process reduces. For example, the Bayes’ factor for model ℋ° is 
𝛥𝒦 ≈ −4 and -53 for estimation with 𝑁 = 7 and 23, respectively. Thus, while the 
evidence for model ℋ� over ℋ° is barely worth mentioning (Table 1) when strain data 
from only 7 locations is available, the evidence is decisive when strain data from 23 
locations is used. Bayesian evidence is therefore seen to quantify what we would have 
intuitively expected, i.e. our ability to differentiate between models reduces with 
decreasing quantity of data because we gain less information about the specimen. (The 
information gain from the available data can be quantified via the Kullback-Leibler 
divergence (Kullback and Leibler, 1951); see Supplementary Information Fig. S7.) On 
the other hand, inferences based on only the likelihood erroneously suggest that we are 
obtaining higher fidelity predictions, with multiple models being equally suitable, as 
the amount of available data decreases. 
 
The effect of measurement noise on the likelihood and Bayes’ factor estimates is 
illustrated in Figs. 8 and 9 for 𝜎vuu = 0.05𝜀"#$%  and 𝜎vuu = 0 , respectively. First 
consider the 𝜎vuu = 0.05𝜀"#$%  case. A consequence of the higher noise level is that 
increasingly complex models are necessary in order to attain high levels of likelihood. 
For example, with 𝑁 = 13 strain measurement locations, the likelihood only attains its 
maximum value of ℒ̄v"¼ = 1  for 𝑝 ≥ 8  when 𝜎vuu = 0.05𝜀"#$% , while with 𝜎vuu =
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0.016𝜀"#$%  the maximum likelihood was attained for all models with 𝑝 ≥ 6 . 
Furthermore, comparing Fig 4b and Fig 8b, we observe that the 𝛥𝒦 versus 𝑝 curve is 
less peaked with increasing measurement noise. In fact, when data is available from 
only 7 locations (𝑁 = 7)  with 𝜎vuu = 0.05𝜀"#$% , the Bayes’ factors are unable to 
differentiate between models with 𝑝 ≥ 5 (Fig. 7b). Thus, even without any a priori 
knowledge of the measurement’s noise level, Bayesian evidence appropriately indicates 
that with increasing measurement noise more data is required to achieve the same 
strength of evidence for model ℋ� over competing models.  
 
Next, consider the case of measurements with no noise (Fig. 9). Now all models with 
𝑝 ≥ 5 , irrespective of the quantity of data, attain ℒ̄v"¼ = 1 . This is because the 
underlying material property distributions were generated using NURBS with a 5 × 5 
grid of control weights and therefore all the (nested) models with 𝑝 ≥ 5 are capable of 
reproducing the noiseless data. However, again the Bayes’ factor correctly peaks for 
model ℋ�  and correctly identifies the appropriate model for the material property 
distributions. It is worth emphasizing here that the Bayes’ factor predictions in Fig. 9b 
suggest that when measurement noise is absent, the available data is consistent with 
both models ℋ� and ℋ�. This is mainly a consequence of the fact that while the data 
had no measurement noise, we had a used an estimated accuracy of 𝜎E = 0.05𝜀"#$%  in 
the likelihood function: this large discrepancy between the actual and estimated 
measurement noise decreases the fidelity of the model selection process as we now 
proceed to discuss in Section 4.5. 
 
4.5 Choice of measurement accuracy in the likelihood function 
The choice of the standard deviation 𝜎E in the likelihood definition (2.1) is motivated 
by considerations of the accuracy of the experimental measurements. Nevertheless, this 
accuracy is rarely known with precision and here we illustrate its influence on both 
model selection and the Bayesian predictions of the material property distributions. 
Predictions of 𝛥𝒦  as a function of the model order 𝑝  for the reference synthetic 
experiment with 𝑁 = 23  strain measurement locations and an experimental noise 
𝜎vuu = 0.016𝜀"#$%  are included in Fig. 10a for selected values of 𝜎E. The uncertainty in 
the model selection is increased when 𝜎E is increased to 𝜎E = 0.1𝜀"#$%  (i.e. 𝜎E ≫ 𝜎vuu) 
and equivalently the confidence with which the Bayes’ factor predicts that model ℋ� is 
most appropriate is enhanced when 𝜎E is brought closer to 𝜎vuu with the choice 𝜎E =
0.025𝜀"#$% . However, in this regime with 𝜎E > 𝜎vuu the Bayes’ factor always correctly 
estimates that model ℋ� is at least one of the appropriate models. Now consider the 
case when 𝜎E < 𝜎vuu  with 𝜎E = 0.007𝜀"#$% . Here there 𝛥𝒦  versus 𝑝  relation is 
sophisticated but the key fact is that the Bayes’ factor now favours the most complex 
model (i.e. model ℋ� in this case). This is because by using such a small value of 𝜎E 
we are stating that the data is extremely accurate. This then means that fitting the data 
closely is not overfitting but a true representation of the underlying material property 
distributions.  
 
To illustrate the effect of 𝜎E  on the Bayesian predictions of the material property 
distributions we proceed to present predictions of 𝜌W  calculated from the mean of the 
posterior for model ℋ� for selected choices of 𝜎E. Spatial distributions of 𝜌W  with 𝜎E =
0.025𝜀"#$%  and 𝜎E = 0.007𝜀"#$%  are included in Figs. 10b and 10c, respectively. These 
figures are analogous to Fig. 5a where 𝜎E = 0.05𝜀"#$%  was employed. The errors in Fig. 
10b are similar to those in Fig. 5a suggesting that not anticipating the measurement 
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noise accurately does not significantly affect the predictions. However, reducing 𝜎E to 
much below 𝜎vuu (Fig. 10c) significantly increases the error as the mean of the posterior 
now averages over a very small regime around the data and thereby excludes 
configurations that have strain predictions that lie within the noise of the data. In fact, 
reducing 𝜎E to much below the actual measurement noise in effect reduces the Bayesian 
inference process to the maximum likelihood approach with more complex models 
being favoured as seen in Fig. 10a and also bringing the mean of the posterior closer to 
the maximum likelihood solution. The discussion presented here suggests that for both 
model selection and property predictions it is better to err on the side of using a 𝜎E value 
that is slightly higher than what we might anticipate the measurement noise to be and 
thereby avoid overfitting. Thus, for the Bayesian inference methodology presented here 
it suffices to have a good upper bound estimate of the measurement noise to set 𝜎E. 
 

 
 
Figure 10: (a) Predictions of the Bayes’ factor 𝛥𝒦  as a function of the model order 𝑝 . 
Predictions are included for four choices of the standard deviation 𝜎E used in the likelihood 
function definition. Spatial distributions of the error 𝜌W in predictions of the Young’s modulus 
using the mean of the posterior distribution for model ℋ�  with estimated measurement 
accuracies (b) 𝜎E = 0.025𝜀"#$%  and (c) 𝜎E = 0.007𝜀"#$% . The dataset used here is the reference 
case with 𝑁 = 23 strain gauges and experimental noise 𝜎vuu = 0.016𝜀"#$% . 
 
4.6 Approximation of the Bayes’ factor 
While the Bayes’ factor is shown to predict the appropriate model with high fidelity, it 
is computationally expensive to evaluate. Often, other criteria that are simpler to 
compute, but still include considerations of Occam’s razor, are used for model selection. 
The two most commonly used criteria are the Bayesian information criterion (BIC) 
proposed by Schwarz (1978) and Akaike information criterion (AIC) introduced by 
Akaike (1974). The BIC is derived using Laplace’s method to approximate the 
Bayesian evidence integral (2.5) and thus assumes that the parameter posterior is 
approximately Gaussian centred on the maximum a posteriori probability (MAP) 
estimate of the parameters. This allows the Occam factor and uncertainties in the model 
parameters to be directly evaluated from the Hessian (MacKay, 2003). In many 
circumstances, this Gaussian approximation becomes increasingly accurate as the 
amount of data increases, with the probability of selecting the true model by the BIC 
approaching unity in the limit of an infinite dataset. This consistency feature has 
resulted in the wide use of the BIC and thus here we only consider the BIC. With the 
available data being the 3𝑁  strain measurements, the BIC for model ℋ�  with 2𝑝( 
parameters is given by 



 23 

 (BIC)� = 	2 ³𝑝( ln t
3𝑁
2𝜋x − ln

Zℒ̄$¸¹[´, (4.5) 

where ℒ̄$¸¹ ≈ ℒÖend is the maximum normalised likelihood of model ℋ� (the 2𝜋 factor 
in (4.5) is often is dropped as typically 𝑁 ≫ 2𝜋). The BIC is defined such that a model 
with the lowest BIC is preferred: Kass and Raftery (1995) suggest that the strength of 
evidence against model ℋ�  compared to a reference model ℋuvw  is very strong if 
𝛥BIC ≡ (BIC)� − (BIC)uvw > 10. 
 
 

 
 
Figure 11: Predictions of the differential Bayesian information criterion	𝛥BIC as a function of 
the model order 𝑝 . The predictions are for the case of synthetic experiments with a 
measurement noise 𝜎vuu = 0.016𝜀"#$%  and 𝑁 = 7, 13 and 23 strain gauge locations. The 𝛥BIC 
is calculated using model ℋ� used as the reference. The inset shows a zoom-in for 3 ≤ 𝑝 ≤ 5. 
 
Predictions of 𝛥BIC  are included in Fig. 11 for the case of the experiment with a 
measurement noise of 𝜎vuu = 0.016𝜀"#$%  and model ℋ�  set as ℋuvw . It is clear that 
unlike the accurately computed Bayes’ factors, the BIC suggests a preference for overly 
simple models with the preference for ℋ�  and even ℋ�  over ℋ�  being very strong 
(𝛥BIC < −10 for models ℋ�  and ℋ�  for all data cases; see inset of Fig. 11). The 
primary reason for the failure of this criterion in this inverse elasticity problem is that 
for a given compatible strain field, multiple distributions of elastic constants can satisfy 
equilibrium depending on the precise boundary value problem. This directly violates 
the Gaussian posterior assumption on which the BIC is based (also see the likelihood 
landscapes in Section 5 that clearly show the non-Gaussian nature of the 
likelihood/posterior functions). Therefore, model selection for this problem cannot be 
performed using BIC. We emphasize here that model selection based on AIC was also 
similarly unsuccessful: for the sake of brevity these results are not explicitly discussed 
here. 
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Figure 12: Connectivity graphs for model (a) ℋ�  and (b) ℋ°  with increasing normalised 
likelihood ℒ̄  for the reference case of 𝑁 = 23 strain gauges and experimental noise 𝜎vuu =
0.016𝜀"#$% . 
 
 
5. The structure of parameter phase space 
Visualising the likelihood function can greatly enhance the understanding of the models 
as it shows the multiple likelihood maxima and the associated prior masses. However, 
the graphical representation of the 2𝑝( −  dimensional likelihood function is a 
challenging task. A similar problem is faced in statistical mechanics where it is useful 
to visualise the 3𝑛 −dimensional potential energy function of system comprising 𝑛 
atoms. One way of depicting the topology of the energy basins and transition states is 
a disconnectivity graph (Wales et al., 1998) or the scaled disconnectivity graph (Wales 
and Bogdan, 2006) where in the latter case the width of the graph is made proportional 
to the number of minima. However, the disconnectivity graph does not provide 
information on the number of configurations available for a given energy level, i.e. does 
not contain entropy information. Here, to visualize the likelihood landscapes, we shall 
employ a method introduced by Pártay et al. (2010) that identifies the large-scale basins 
of the likelihood landscape by postprocessing the output sample set {Ω<, Ω(,… } 
produced by Nested Sampling algorithm. The key point is that while we do not discover 
all the local maxima of ℒ̄, we get a broad-brush view of the landscape using relatively 
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few samples. The procedure comprises two steps: (i) construction of connectivity 
graphs of the samples at a series of increasing levels of ℒ̄ and (ii) using these graphs to 
build likelihood landscapes where the width of a basin is proportional to the prior mass 
of the basin at the given likelihood level. 
 

 
 
Figure 13: Likelihood landscapes with (1 − ℒ̄) on the vertical axis and the normalised as well 
as rescaled phase space volumes of the basins on the horizontal axis. The right-hand axis shows 
the prior mass available below the given level Z1 − ℒ̄[. Predictions are shown for models (a) 
ℋ�  and (b) ℋ°  for the reference case of the experiment with 𝑁 = 23 strain gauges and a 
measurement error 𝜎vuu = 0.016𝜀"#$% . Note the differences in the likelihood scales in (a) and 
(b). The inset in (b) shows a magnified view of the deep basin to emphasize the splitting that 
occurs within that basin.  
 
5.1 Connectivity graphs and splitting of the phase space with increasing likelihood 
The output of the Nested Sampling for model ℋ�  is a sequence {Ω<, Ω(, … }  of 
configurations with increasing likelihood ℒ̄ . To construct the connectivity graph, a 
metric for the distance between two configurations is required and here we use a 
measure of the separation between configuration (𝑖) and (𝑗) defined as 

 𝑟('.) ≡ ËP
Ú𝑬�' − 𝑬�.Ú(

𝛥𝐸
Q
(

+ P
Ú�̂�' − �̂�.Ú(

𝛥𝜈
Q
(

	, (5.1) 

where (𝑬�', �̂�')  are the 2𝑝(  control weights that define the configuration and ‖∙‖( 
denotes the Euclidean norm. The Young’s modulus and Poisson’s ratio components are 
normalized by 𝛥𝐸 ≡ (𝐸$¸¹ − 𝐸$º")  and 𝛥𝜈 ≡ (𝜈$¸¹ − 𝜈$º")  respectively so as to 
appropriately weight their relative contributions. We begin with constructing a graph 
𝒢< whose nodes are all the configurations collected by the Nested Sampling algorithm. 
Each of these nodes is connected via edges to 𝜂 nearest nodes (using the above distance 
measure) that have a lower likelihood. Thus, a connection in the graph implies 
proximity of two configurations in phase space, as we shall clarify subsequently. 
 
We then construct the connectivity graphs as follows. The lowest likelihood of the 
nodes in graph 𝒢< is ℒ̄< and this node is removed and all edges connected to this node 
eliminated to create a new graph 𝒢(. This process of removing the node with the lowest 
likelihood is continued and at each stage 𝑟 a new graph 𝒢] is created. In this process 
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the initial graph 𝒢< will split into two or more disconnected subgraphs with increasing 
ℒ̄ as connections are lost between nodes. We illustrate the outcome of this procedure 
for the reference case of the synthetic experiment with 𝑁 = 23  strain gauges, 
experimental noise 𝜎vuu = 0.016𝜀"#$%  and the choice of connectivity 𝜂 = 10. Graphs5 
with increasing ℒ̄ are plotted in Figs. 12a and 12b for models ℋ� and ℋ°, respectively. 
With increasing ℒ̄ there is no splitting of the graph for model ℋ� expect at ℒ̄ ≈ ℒ̄v"¼ ≈
0.25 where the graphs splits into two basins with approximately equal number of nodes. 
This is in contrast with model ℋ° where significant splitting occurs at ℒ̄ ≈ 0.5ℒ̄v"¼. 
The physical interpretation of these split subgraphs is that a path in configuration space 
cannot be found connecting a configuration in one of the disconnected subgraphs to a 
configuration within another subgraph without passing through lower likelihood 
configurations. Note that in Fig. 12b, some subgraphs are eliminated with increasing 
likelihood when all nodes within those subgraphs have likelihood lower than the current 
level. This represents a local extremal point in the likelihood function. We shall now 
proceed use this understanding to construct likelihood landscapes. 
 
5.2 Likelihood landscape charts 
The information included in the connectivity graphs can be effectively portrayed in a 
single figure in the form of likelihood landscape charts, where we plot (1 − ℒ̄) on the 
vertical axis and the width of the chart proportional to the prior mass available above 
the given ℒ̄ . Here we choose to plot (1 − ℒ̄) on the vertical axis so that the high 
likelihoods appear as minima in the chart – this makes the chart more intuitive as it is 
analogous to the energy landscapes used to visualize the phase space of chemical 
systems with the basins depicted as valleys.  
 
Recall that each node in the graph in Fig. 12 represents a fraction 𝜔¤ of the prior mass 
that is associated with the likelihood range ℒ̄¤§< < ℒ̄ < ℒ̄¤. Here the subscript 𝑠 is the 
iteration number at which that node (configuration) was extracted during the Nested 
Sampling algorithm. At low likelihoods there are no disconnected subgraphs indicating 
the existence of a single basin. The prior mass 𝑋¤ of this single basin at a likelihood ℒ̄¤ 
is 

 𝑋¤ = t
𝐾

𝐾 + 1x
¤

≈«𝜔'

·

'É¤

	, (5.2) 

where the Nested Sampling was terminated at iteration 𝑖 = 𝐽, i.e. 𝑋¤ is the sum of the 
weights of all nodes with a likelihood greater than ℒ̄¤  and the approximate sign 
emphasizes that since 𝐽 is finite we have not fully explored the phase space in the 
Nested Sampling algorithm. In Fig. 12 as the likelihood is increased and the graph splits 
into two or more disconnected subgraphs, the nodes in the subgraphs are grouped within 
newly formed basins. The prior mass 𝑋¤

(ß) of each basin 𝑚 at likelihood level ℒ̄¤  is 
𝑋¤
(ß) = ∑ 𝜔'

(ß)·
'É¤  where 𝜔'

(ß)  are the weights of the nodes within basin 𝑚  and of 
course the total prior mass at ℒ̄¤ is given by the sum 𝑋¤ = ∑ 𝑋¤

(ß)
ß  over all basins 𝑚. 

If at a given ℒ̄¤ a subgraph is eliminated without further splitting, it represents a basin 
associated with a local minimum in (1 − ℒ̄) (corresponding to local maxima in ℒ̄). The 
output of the algorithm is a hierarchical nested tree of basins, with known prior masses.  

                                                   
5 The graphs were drawn using subspace embedding (Koren, 2005) by first plotting the graph 
nodes in a 100-dimensional subspace and then projecting back into a 2D space. 
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Figure 14: Likelihood landscapes with (1 − ℒ̄) on the vertical axis and the normalised as well 
as rescaled phase space volumes of the basins on the horizontal axis. The right-hand axis shows 
the prior mass available below the given level Z1 − ℒ̄[. Predictions are shown for models (a) 
ℋ�  and (b) ℋ°  for the synthetic experiment with 𝑁 = 7 strain gauges and an experimental 
noise 𝜎vuu = 0.016𝜀"#$% . In (a) we have labelled three basins as A, B and C with configurations 
corresponding to the maximum likelihood in these basins illustrated in Fig. 15. 
 
The rapid shrinking of the available prior mass with decreasing (1 − ℒ̄) presents a 
challenge to visualize the landscapes. In order to make the visualisation feasible we 
recursively scale the horizontal phase volume axis as follows: 
(i) We begin by first defining logarithmically normalized prior masses of the basins 
as 

 𝑋A¤
(ß) = log<T P

𝑋¤
(ß)

𝑋·
Q	, (5.3) 

where 𝑋· ≡ [𝐾/(𝐾 + 1)]· with Nested Sampling terminated at iteration 𝐽.  
(ii) The process of constructing the landscapes begins at a low likelihood when only 
one basin exists (Fig. 12). Let this basin split into daughter basins at a likelihood level 
ℒ̄� with 𝑌A� = 𝑋A� denoting the normalized prior mass at ℒ̄�. We then define a scaled 
prior mass for daughter basin 𝑚 at ℒ̄¤ as 𝑋\¤

(ß) ≡ 𝑋A¤
(ß)/𝑌A�.  

(iii) This rescaling is carried out recursively such that when the daughter basin in 
(ii) splits at a scaled prior mass 𝑌\â

(ß) = 𝑋\â
(ß), the rescaled prior mass of its daughter 𝑛 

is defined as 𝑋\¤
(ã) ≡ 𝑋A¤

(ã)/𝑌\â
(ß). This recursive rescaling is equivalent to redefining the 

horizontal axis scale for each basin when it forms, i.e. the prior mass of the basins 
depicted in the landscapes are relative to the prior mass of the basins at their formation. 
Such a rescaling makes it complicated to work out from the landscapes the absolute 
prior masses of basins that recursively split but is required to visualize the prior masses 
of the basins that can span more than 150 orders of magnitude. 
 
The likelihood landscapes of models ℋ� and ℋ° for the reference case of the synthetic 
experiment with 𝑁 = 23 strain gauges and an experimental noise 𝜎vuu = 0.016𝜀"#$%  
are plotted in Fig. 13. In this plot, the width of each basin at a given likelihood level 
(1 − ℒ̄¤)  is the normalized and rescaled prior masses 𝑋\¤

(ß)  while the horizontal 
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ordering of the basins is arbitrary. The likelihood level Z1 − ℒ̄[ is indicated on the left-
hand axis while the right-hand axis indicates the corresponding prior mass with 
likelihood greater than the current level. The landscape for model ℋ� (Fig. 13a) has 
two local maxima at approximately the same likelihood. This is contrasted with the 
landscape for model ℋ° in Fig. 13b where the landscape first splits into multiple basins 
at a relatively low likelihood. Thereafter, some of the basins undergo further repeated 
splits with the landscape containing multiple local maxima in ℒ̄. This is especially true 
for the deep basin in the model as shown in the inset in Fig. 13b. Model ℋ� therefore 
predicts a near unique maximum likelihood solution while model ℋ°  suggests the 
existence of multiple approximately equally probable maximum likelihood solutions.  
 

 
 
Figure 15: The predicted spatial distributions of the Young’s modulus 𝐸A for configurations 
corresponding to the maximum likelihood in basins A, B and C marked in Fig. 14a. The colour 
scale is set to be equal to the prior distribution of the Young’s modulus. 
 
Paucity of available data was shown in Section 4.1 to decrease the strength of the 
evidence for model ℋ� over more complex models (Fig. 4). To better understand this, 
we show in Fig. 14 likelihood landscapes for the synthetic experiment with 𝑁 = 7 
strain gauge locations and an experimental noise 𝜎vuu = 0.016𝜀"#$% . Now even model 
ℋ�  (Fig. 14a) has multiple basins with a large number of local likelihood maxima 
similar to model ℋ° (Fig. 14b). The main difference between the landscapes of models 
ℋ� and ℋ° is that the landscape of model ℋ° splits into multiple basins starting at a 
lower likelihood. The multiple basins with only 𝑁 = 7  strain gauge locations are 
consequence of the scarcity of data, which allows both models to make a greater variety 
of predictions that are compatible with the available data. This results in the strength of 
evidence for model ℋ�  over ℋ°  being “barely worth mentioning” with the slight 
preference for model ℋ� over ℋ° being due to the fact that the landscape of model ℋ° 
splits into multiple basins at a lower likelihood.  
 
With a deficiency of available data (𝑁 = 7) multiple equal likelihood maxima are 
predicted (Fig. 14). Each of these basins is associated with configurations that differ 
significantly in terms of the spatial distributions of the elastic constants. To illustrate 
this we consider the three basins labelled A, B and C in Fig. 14a. The spatial 
distributions 𝐸A(𝑥') of the Young’s modulus for the highest likelihood configuration in 
each of these basins are plotted in Fig. 15. Clearly, each of these distributions is 
significantly different even though they all have approximately the same likelihood. As 
mentioned in the Introduction, the search for high likelihood solutions is usually posed 
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as an optimization problem, and solved using algorithms such as gradient searches, 
simulated annealing etc. These algorithms deliver a single solution associated with a 
local or global minimum depending on the solution strategy and the initialisation 
procedure for the calculation. The discussion here illustrates the pitfalls of such an 
approach for this ill-posed problem with multiple equally likely solutions: an 
optimisation approach would not only arbitrarily pick one of the high likelihood 
solutions but also does not give an indication of the inherent uncertainty associated with 
the proposed solution.  
 
 
6. Discussion 
The Bayesian approach used here tackles both the problem of model selection as well 
as estimating the model parameters using the mean of the posterior distribution. The 
numerical results presented above suggest clear advantages of this Bayesian approach 
over traditional optimisation methods based on maximum likelihood. However, these 
gains come at the price of considerably higher computational costs and finding ways to 
reduce these costs is of interest. In the majority of the Bayesian inference literature 
model selection is performed using approximations of the Bayes’ factor with BIC and 
AIC being the most common criteria. However, here we have shown that the highly 
non-Gaussian nature of the posterior distribution of the problem analysed in this study 
implies that these more traditional approaches to reduce computational costs fail. 
Rather, we foresee that the development of computationally more efficient strategies 
for Bayesian inference in this class of problems will involve improving the performance 
of the Nested Sampling algorithm. This might include two approaches:  
(i) Use of more sophisticated Monte Carlo schemes than the simple Gibbs type sampler 
employed here. For example, Hamiltonian Monte Carlo or Galilean Monte Carlo has 
recently been used (Baldock et al., 2017) to gain a speedup factor equal to the 
dimensionality of atomistic systems. Similar gains might very well be possible in 
elasticity problems too. 
(ii) Development of fast surrogate models to be used for evaluating the likelihood 
functions instead of FE solvers. In this initial investigation, we wanted to study the 
application of Bayesian inference for inverse elasticity problems, and not end up mixing 
together errors due to noise and sampling with errors due to the use of surrogate or 
reduced models. However, recent advances in machine learning schemes for 
differential equation solutions (Raissi et al. 2017a, 2017b) suggest such approaches are 
worth investigating. 
 
The Bayesian formalism allows for educated choices of experimental designs (e.g. 
number and location of the strain gauge rosettes in this case) to be made by maximising 
the expected utility of an experiment. In particular, the utility is defined as the prior-
posterior gain in Shannon information and thus the goal in Bayesian experimental 
design is to maximise the expected Kullback–Leibler divergence 𝐷¶å  between the prior 
and the posterior distributions. The Bayesian calculations using Nested Sampling 
immediately provide 𝐷¶å . Such calculations to gauge the relative utility of increasing 
number 𝑁 of measurement locations are presented in the Supplementary Information 
section S6 and suggest that increasing the utility begins to plateau around 𝑁 = 23, 
justifying our choice of the reference number of gauges used here. However, we 
emphasise that in this study, the precise location of the strain gauge rosettes was not 
chosen using a Bayesian approach. Rather, similar to most current experimental studies 
the given number of strain gauges were distributed as uniformly as possible over the 
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specimen. The improvement in the predictions by using a Bayesian approach to select 
the location of the strain gauges remains a topic for future investigations. 
 
 
7. Concluding remarks 
The inverse problem of estimating the spatial distribution of elastic constants from the 
measurement of strains within the domain is an ill-posed problem in the following 
sense: (i) the solution is dependent on the choice of the model (i.e. set of basis functions) 
used to represent the distribution of elastic constants and (ii) multiple parameter sets 
for a given model might be compatible with the available data. Here we have 
investigated the application of Bayesian inference to both identify the appropriate 
model as well as to estimate the model parameters and their uncertainty, given the 
available strain data. Nested Sampling, which is an algorithm specifically designed to 
sample high dimensional phase spaces where the bulk of the probability mass is 
contained in an exponentially small fraction of the phase space volume, was used to 
determine the posterior distributions of the parameters and calculate the Bayesian 
evidence of the models. 
 
In order to illustrate the method we numerically generated a synthetic specimen with a 
random spatial distribution of isotropic elastic constants using NURBS functions with 
grid of 5 × 5 control weights. The synthetic strain data was then calculated via the 
finite element (FE) method. These strains, with and without added measurement noise, 
were then used as the only available data from which to estimate the spatial distribution 
of material properties using models with a grid of 𝑝 × 𝑝  control weights. In the 
presence of measurement noise, the maximum likelihoods increased with increasing 𝑝 
(i.e. increasing model complexity). However, this was a consequence of the complex 
models overfitting the experimental data, which ultimately resulted in poor predictions 
of the actual spatial distributions of the material properties. On the other hand, the 
Bayes’ factor correctly estimated that a model with a grid of 5 × 5 control weights best 
describes the spatial distribution of elastic constants within the specimen and with the 
lowest uncertainty. Moreover, inference based on the Bayes’ factor appropriately 
indicates an increasing uncertainty in model selection with decreasing data and 
increasing measurement noise. By contrast, inference based purely on likelihood is 
misleading with the maximum likelihood increasing as the amount of available data 
decreases. Simpler model selection criteria such as Bayesian information criterion 
(BIC) were shown to fail for the inverse elasticity problem investigated here and this 
makes accurate evaluation of the posterior distribution and the associated Bayesian 
evidence integral (by Nested Sampling or other means) imperative for this class of 
problems. 
 
The output of the Nested Sampling algorithm was also used to construct likelihood 
landscape charts. These charts show that when there is sufficient quantity of data, the 
correct model with 𝑝 = 5 model has a near unique maximum likelihood solution. On 
the other hand, with increasing model complexity (i.e. 𝑝 > 5) or with a paucity of data, 
the landscapes show multiple local maxima in the likelihood with a wide variety of 
equally probable distributions of elastic constants. While an optimisation approach will 
undoubtedly mislead when the likelihood landscape has multiple maxima, intriguingly 
even for the correct 𝑝 = 5 model with a near unique maxima, the mean of the posterior 
distribution was seen to predict material properties with significantly higher fidelity 
compared to the maximum likelihood solution. This is because the maximum likelihood 
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solution amplifies the measurement noise by overfitting to the noisy data while the 
mean of the posterior, at-least to some extent, cancels out the random noise. In 
summary, there are clear advantages of Bayesian inference over optimisation 
approaches based on maximum likelihood. The downside of Bayesian inference is of 
course the considerably higher computational cost – but we believe that in many real 
world and safety critical applications, the availability of cheap computational power 
would tip the balance in favour of the better inference method.  
 
While Bayesian inference using Nested Sampling has been demonstrated here with the 
focus on an inverse elasticity problem, the ideas are general and can be readily used for 
a wide range of high dimensionality problems in mechanics. This includes selection of 
constitutive models given available (noisy) material data as well as the corresponding 
estimation of parameters and the associated uncertainty.  The key advantages of 
Bayesian inference over optimisation procedures typically used in these problems 
include: (i) an in-built Occam’s razor that aids in avoiding overfitting both for model 
selection and parameter estimation; and (ii) a quantification of the uncertainty 
associated with the estimated parameter values. 
 
 
Appendix A: Effect of the order of the B-spline functions 
All numerical results presented in the main text employ nested models where the size 
𝑝 of the control weight grid is varied between models ℋ� but the NURBS always use 
quadratic (𝑞 = 2) B-spline functions. Here we explore the Bayes’ factors for non-
nested models where we keep 𝑝 = 5  fixed and vary the order 𝑞  of the B-spline 
functions. Knot vectors similar to models ℋ� are employed in all these models, i.e. 
open and uniform with 𝑞 + 1  equal knot values at both ends. Consistent with the 
remainder of the study, here we set ℋuvw to be model ℋ� (i.e. a model with a 𝑝 = 5 
control weight grid and quadratic B-spline functions) to define 𝛥𝒦. 
 
Predictions of the evolution of the normalised likelihood ℒ̄ with the prior mass 𝑋 are 
included in Fig. A1a. When nearly all the initial parameter space is available (i.e. at 
high 𝑋), ℒ̄ rises faster for models with higher 𝑞. This is because; models with higher 
order B-splines are more non-local such that a perturbation of a control weight affects 
the elastic constant distributions in a larger portion of the domain. This implies that 
larger fractions of the initial parameter space attain relatively high values of ℒ̄ . 
However, the maximum likelihoods attained by the model peak for the model with 
quadratic B-splines as the distributions within the synthetic experimental specimen 
were generated using the same NURBS functions. These predictions of the maximum 
likelihoods, as parameterised by ℒ̄v"¼, are summarised in Fig. A1b as a function of 𝑞. 
Clearly ℒ̄v"¼ peaks at 𝑞 = 2 although the cubic B-spline model also gives reasonably 
high maximum likelihoods. The corresponding predictions of 𝛥𝒦 are also included in 
Fig. A1b and indicate that Bayesian inference procedure is unable to distinguish 
between models with 𝑞 = 2 and 𝑞 = 3 (𝛥𝒦 ≈ 5 for the 𝑞 = 3 model which as per 
Table 1 is interpreted as “not worth mentioning” in terms of the strength of evidence). 
This ambiguity arises because while the 𝑞 = 2 model attains a higher likelihood, a 
greater fraction of the possible configurations of the 𝑞 = 3  model have a higher 
likelihood a high 𝑋  (see inset in Fig. A1a). Thus, while the Bayes’ factor can 
unambiguously predict that model ℋ� is most appropriate among the nested models 
ℋ�, there is some ambiguity in the predictions using the same dataset for these non-
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nested models. Nevertheless, the Bayes’ factor correctly indicates that the 𝑞 = 2 model 
is one of the two approximately equally probable candidates.  
 

 
 
Figure A1: (a) Predictions of the variation in the normalised likelihood ℒ̄ with the prior mass 
𝑋 for models with order 𝑞 of the B-spline functions used in the NURBS. (b) The corresponding 
predictions of the Bayes’ factor and normalised maximum likelihood ℒ̄v"¼. The dataset used 
here is the reference case with 𝑁 = 23  strain gauges and experimental noise 𝜎vuu =
0.016𝜀"#$% . All models have a control weight grid with 𝑝 = 5.  
 
 
Appendix B: Description of the Monte Carlo procedure used to regenerate the 
active set in Nested Sampling 
In Nested Sampling, when the sample with the lowest likelihood is removed from the 
active set, a single new configuration is required to replace the one that was removed. 
This new sample needs to be chosen such that the regenerated active set with 𝐾 samples 
remains uniformly distributed over the phase space with likelihood above the current 
level. However, new samples cannot be generated in the 𝑠æç  iteration by rejection 
sampling (whereby random configurations are proposed and only samples with ℒ̄ >
ℒ̄¤§< are accepted). This is because the volume of the allowed region in configuration 
space collapses exponentially as the Nested Sampling calculation progresses: if we used 
rejection sampling, then after 100𝐾 iterations the probability of accepting proposed 
configurations would be 𝑒§<TT  the probability at the first iteration. Instead, new 
samples are generated from the prior distribution by Markov Chain Monte Carlo 
(MCMC) with equilibrium probability distribution 𝑃(Ω) ∝ 𝕀[ℒ(Ω) > ℒ¤§<] . The 
Markov chain is initialised by cloning a randomly selected existing sample from the 
region ℒ̄ > ℒ̄¤§< (i.e. from the remaining active set with 𝐾 − 1 samples) with the chain 
being sufficiently long so that the final configuration has lost correlation with its 
starting point. This Markov chain is generated using the Metropolis et al. (1953) 
algorithm as follows: 
(i) Randomly pick one control weight from 𝑬� and one control weight from �̂�. These 
weights are then perturbed by two independently drawn random numbers with 
probability density functions 𝒰(−𝜍𝛥𝐸, 𝜍𝛥𝐸) and 𝒰(−𝜍𝛥𝜈, 𝜍𝛥𝜈), where 0 ≤ 𝜍 ≤ 1 is 
the step size while 	𝛥𝐸 ≡ (𝐸$¸¹ − 𝐸$º")  and 𝛥𝜈 ≡ (𝜈$¸¹ − 𝜈$º") . If the perturbed 
weights lie outside the prior intervals (𝐸$º", 𝐸$¸¹) and (𝜈$º", 𝜈$¸¹) then the perturbed 
state is rejected and the process repeated until a perturbed state within the prior is 
obtained. 
(ii) The likelihood ℒ̄ of this new configuration is computed via a FE calculation. 
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(iii) The Metropolis criterion is used to decide whether or not to accept this perturbed 
configuration so as to obtain a chain with equilibrium probability distribution 𝑃(Ω) ∝
𝕀[ℒ(Ω) > ℒ¤§<] , i.e. if ℒ̄ > ℒ̄¤§<  the perturbed state is accepted, otherwise the 
configuration prior to step (i) is repeated in the Markov chain.  
(iv) A Markov chain with 𝒯 steps is generated and the active set replenished with the 
configuration from the last step of Markov chain. 
 
In line with typical MCMC calculations, we attempt to achieve an acceptance rate of 
about 35% in the Metropolis criterion and periodically adjust 𝜍 in order to ensure that 
we stayed with ±5%  of this target acceptance rate. Thus, the Nested Sampling 
algorithm has only two numerical parameters: the walk length 𝒯 and active set size 𝐾. 
The parameter 𝒯 should be set large enough so that the decorrelated sample is equally 
likely to have originated from each of the other samples while the error in calculating 
the evidence 𝒵�  is proportional to 1/√𝐾 (Skilling, 2006).  
 
The Markov chain in Nested Sampling involves 𝐾 independent copies of the system, 
which evolve quasi-simultaneously, and it is only in this replicated space that we expect 
the sampler to converge. Individual walkers are not expected to mix well within a single 
iteration, and traditional measures of convergence such as trace plots are not 
informative. In fact, it is one of the advantages of the Nested Sampling algorithm that 
it starts with completely independent walkers, and so relatively short MCMC 
trajectories are enough at each iteration to maintain sufficient uniformity of the 
sampling distribution for the evidence and final solution to converge adequately. We 
ascertained convergence of the entire Nested Sampling procedure by varying the walk 
length 𝒯  over two orders of magnitude and 𝐾  over the range 150 to 5000. These 
convergence studies demonstrated that the choice 𝐾 = 256 and 𝒯 = 512 is adequate 
and hence used for all the calculations presented here. In order to reduce computational 
time, a parallel version of the above algorithm proposed by Baldock (2014) was 
employed. Given 𝒫  processors, the active set comprising 𝐾  samples was divided 
equally among the processors. At each iteration, the sample with the lowest likelihood 
in the entire active set (over all processors) was removed. A clone was then generated 
(from the entire active set) to replace the sample that was removed. Now not only was 
this cloned sample decorrelated using the Markov chain as described above, but also 
one randomly selected sample on each of the remaining processors also underwent the 
MCMC process. However, in this parallel version a Markov chain of length 𝒯/𝒫 was 
employed on each processor. This thereby decreases computational time by a maximum 
of a factor of 𝒫 (i.e. linear scaling with number of processors). All calculations reported 
here were performed on 𝒫 = 16 processors and the accuracy of the parallel algorithm 
was confirmed by comparing with a few selected single processor calculations. 
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Supplementary Information 
 

S1. Material property distributions available to the different models 
One randomly selected distribution of material properties with a 𝑝 = 5 control weight 
grid is shown in Fig. 2 and that is used as the synthetic experimental specimen in the 
whole of the study. To give a sense of the wavelengths associated with the different 
control weight grids here we show in Fig. S1 randomly selected distributions of the 
Young’s modulus with 𝑝 = 3, 5 and 8 control weight grids. These distributions were 
generated in a manner identical to that used to generate configurations for models 
ℋ�,ℋ�  and ℋ°  and thus give a sense of the configurations achievable with these 
models. Clearly the configurations have longer wavelengths for the variation of 𝐸 with 
decreasing 𝑝. 
  

 
Figure S1: Spatial distributions of Young’s modulus 𝐸 in the specimen generated via control 
weight grids with (a) 𝑝 = 3, (b) 𝑝 = 5 and (b) 𝑝 = 8.  In each case four randomly generated 
specimens are shown. 
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S2. Bayesian predictions of Poisson’s ratio distributions 
Bayesian predictions for the Poisson’s ratio analogous to the Young’s modulus 
distributions shown in Figs. 5 and 6 are presented here. We define the mean of the 
posterior distribution of the Poisson’s ratio as 

 〈�̂�(𝑥')〉 ≡
1
𝒵�

«(𝜔¤ℒ¤)�̂�¤(𝑥')
·

¤É<

,	 (S1) 

where �̂�¤(𝑥') is the spatial distribution of Poisson’s ratio in the sample removed in 
iteration 𝑠 of the Nested Sampling. Similarly, the standard deviation of the posterior 
distribution of �̂� is given by 

 ΔXY(𝑥') ≡ Ë 1
𝒵�

«𝜔¤ℒ¤[�̂�¤(𝑥') − 〈�̂�(𝑥')〉](
·

¤É<

,	

 

(S2) 

with the normalised standard deviation defined as 

 �̅�XY(𝑥') ≡
2√3ΔXY(𝑥')
𝜈$¸¹ − 𝜈$º"

.	

 
(S3) 

The error  

 𝜌X(𝑥') ≡
|𝜈(𝑥') − 〈�̂�(𝑥')〉|

𝜈(𝑥')
,	 (S4) 

in the prediction based on the mean of the posterior of the Poisson’s ratio is plotted in 
Fig. S2 while predictions of �̅�XY are included in Fig. S3 for models ℋ� and ℋ°. The 
overall conclusions discussed for the Young’s modulus in the context of Figs. 5 and 6 
hold for the Poisson’s ratio too.  
 

 
 
Figure S2: Spatial distributions of the error 𝜌X in predictions of the Poisson’s ratio using the 
mean of the posterior distribution for (a) model ℋ� and (b) model ℋ°. The predictions are for 
the reference case of the experiment with 𝑁 = 23 strain gauges and an experimental noise 
𝜎vuu = 0.016𝜀"#$% . The strain measurement locations are indicated in both (a) and (b). 
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Figure S3: Spatial distributions of the uncertainty in the predictions as quantified normalised 
standard deviation �̅�XY of the predictions of the Poisson’s ratio for (a) model ℋ� and (b) model 
ℋ°. The predictions are for the reference case of the experiment with 𝑁 = 23 strain gauges and 
an experimental noise 𝜎vuu = 0.016𝜀"#$% . The strain measurement locations are indicated in 
both (a) and (b). 
 

 
 
Figure S4: Spatial distributions of the error 𝜌W in predictions of the Young’s modulus using 
maximum likelihood solutions for (a) model ℋ� and (b) model ℋ°. The predictions are for the 
reference case of the synthetic experiment with 𝑁 = 23 strain gauges and measurement noise 
𝜎vuu = 0.016𝜀"#$% . This is the same data as in Fig. 7 but re-plotted on a different scale.  
 
 
S3. Errors in the maximum likelihood predictions of the Young’s modulus 
The error distributions 𝜌W  in Fig. 7 are shown on a scale equal to that in Fig. 5 to 
illustrate the differences in the magnitudes of the errors between predictions based on 
the mean of the posterior and the maximum likelihood. This obscures information on 
𝜌W  in Fig. 7 as 𝜌W > 0.2  over most of the domain. Here in Fig. S4 we include 
distributions of 𝜌W  using a larger scale (i.e. same data as in Fig. 7 but re-plotted on a 
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different scale). The error 𝜌W  from a maximum likelihood solution is approximately 
three times larger than the corresponding Bayesian predictions (Fig. 5). 
 
 
S4. Maximum likelihood predictions in the absence of measurement noise 
Predictions of the spatial distributions of the error 𝜌W  in the Young’s modulus and 
Poisson’s ratio 𝜌X  for the maximum likelihood solution of model ℋ� using the 𝑁 = 23 
dataset with no measurement noise (𝜎vuu = 0) are included in Figs. S5a and S5b, 
respectively. In contrast to the large errors when 1.6% measurement noise is present 
(Fig. S4a) the errors in both the Young’s modulus and Poisson’s ratio are now less than 
about 3% throughout the specimen. This clearly shows that the measurement noise is 
amplified due to overfitting of the maximum likelihood solution (even with the correct 
model) to the noisy data. Of course, even with no measurement noise the errors can be 
high in the maximum likelihood solutions that employ overly complex models (These 
models will give multiple solutions with equal maximum likelihoods and while the 
errors will be low for at-least of those of those solutions, they can be very high for the 
other solutions.) 
 

 
 
Figure S5: Spatial distributions of the errors (a) 𝜌W  and (b) 𝜌X  of the maximum likelihood 
predictions of the Young’s modulus and Poisson’s ratio, respectively for model ℋ�. The dataset 
with 𝑁 = 23 gauges and no measurement noise (𝜎vuu = 0) was used in these predictions. Note 
the significantly smaller scale in (a) and (b) compared to other equivalent figures. 
 
 
S5. Tikhonov-type regularisation 
Tikhonov regularisation is the most commonly used method for regularisation of ill-
posed optimisation problems. In the context of the elasticity problem analysed here, the 
forward problem of predicting strains from known material properties is equivalent to 
a relatively low pass filter such that errors in the material properties are not significantly 
amplified in the predicted strains. However, the inverse mapping operates as a high-
pass filter that has the effect of amplifying noise in the strain measurements as seen in 
Section 4.3. The goal of regularisation is to add a term to the likelihood function so as 
to give preference to particular types of solutions and in Tikhonov regularisation 
typically preference is given to solutions with smaller norms (e.g. Euclidean norms, 
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variance etc.). Given that in the problem analysed here, our prior belief that the Young’s 
modulus and Poisson’s ratio are uniformly distributed over the ranges (𝐸$º", 𝐸$¸¹) and 
(𝜈$º", 𝜈$¸¹), respectively we define a regularised likelihood function  

 ℒ̄∗ = ℒ̄ − 𝜍ℒ̄ì, (S5) 

where 

 ℒ̄ì =
1

2	í𝑝
P
Ú𝐸\ − 𝐸îÚ(

𝐸î
+
‖𝜈 − �̅�‖(

�̅�
Q, (S6) 

and ‖∙‖(  denotes the Euclidean norm. Here, 𝐸î ≡(𝐸$º" + 𝐸$¸¹)/2 and �̅� ≡ (𝜈$º" +
𝜈$¸¹)/2 are the means of the priors and 𝜍 is the Tikhonov regularisation parameter. The 
regularised optimisation problem then reduces to maximising ℒ̄∗  and here this was 
performed using a Nelder-Mead (Nelder and Mead, 1965) scheme with the solution that 
maximises ℒ̄ as the starting guess to the optimisation. 
 
The predictions of this optimisation are included in Fig. S6 where distributions of the 
Young’s modulus (model ℋ�  with 𝑁 = 23 strain gauges and a measurement noise 
𝜎vuu = 0.016𝜀"#$% ) plotted for selected values of 𝜍. In Fig. S6 the left-hand column 
shows spatial distributions of the error 𝜌W  in the predictions while the right-hand 
column shows the modulus distributions. For small levels of regularisations with 𝜍 ≤ 1 
the solution is largely unaffected by the regularisation term. By contrast, at larger values 
of 𝜍  the predicted modulus distributions are uniform as ℒ̄∗  is dominated by the 
regularisation term ℒ̄ì and hence the solution is insensitive to the strain measurements. 
In fact, there is no intermediate value of 𝜍 where the regularisation term improves the 
quality of predictions. This is also true for the predictions of Poisson’s ratio and these 
results are omitted here for the sake of brevity. We also attempted a variety of other 
forms of ℒ̄ì but were unable to find a regularisation term that improved the maximum 
likelihood predictions. This is traced back to the fact that the underlying model is 
already highly regularised and has the appropriate spatial wavelengths of the material 
property distributions. Thus, further smoothing/regularisation has no beneficial effect. 
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Figure S6: Optimisation predictions of the error 𝜌W  (left column) and Young’s modulus 
distributions (right column) using a Tikhonov-type regularised likelihood function. Predictions 
are shown for selected values of the Tikhonov regularisation parameter 𝜍 for model ℋ� with 
𝑁 = 23 strain gauges and a measurement noise 𝜎vuu = 0.016𝜀"#$% . 
 
 
S6. Information gained from the strain measurements 
In Bayesian inference, the Kullback-Leibler divergence 𝐷¶å  is a measure of the 
information gained when we revise our belief from the prior probability distribution 
𝑃Z𝒘 ℋ�[ to the posterior distribution 𝑃Z𝒘 𝒟,ℋ�[ after the arrival of the data 𝒟. The 
Kullback-Leibler divergence or information gain in units of Hart is defined as  
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 𝐷¶å = g𝑃Z𝒘 𝒟,ℋ�[log<T ï
𝑃Z𝒘 𝒟,ℋ�[
𝑃(𝒘|ℋ�)

ð 𝑑𝒘, (S7) 

which upon using (2.4) and (2.5) reduces to 

 𝐷¶å = −log<TZ𝒵�[ + g𝑃Z𝒘 𝒟,ℋ�[log<TÌ𝑃(𝒟|𝒘,ℋ�)Í𝑑𝒘.	 (S8) 

Recalling that the likelihood ℒ ≡ 𝑃(𝒟|𝒘,ℋ�), 𝐷¶å  as given by (S6) is obtained from 
the output of the Nested Sampling via the sum 

 𝐷¶å = −log<TZ𝒵�[ +
1
𝒵�

«(𝜔¤ℒ¤)log<T(ℒ¤)
·

¤É<

.	 (S9) 

The information gain in units of dHart is plotted in Fig. S7 for models ℋ�,ℋ� and ℋ° 
as a function of the number 𝑁 of strain measurement locations for the case of the data 
with experimental noise 𝜎vuu = 0.016𝜀"#$% . Of course, the information gain increases 
with increasing amount of data 𝑁  but the rate of increase in 𝐷¶å  decreases with 
increasing 𝑁 as additional strain data adds increasingly smaller amounts of information 
to determine the model parameters. This decrease in 𝜕𝐷¶å/𝜕𝑁 with increasing 𝑁 is 
most pronounced for the models with the least number of parameters.  
 
The plateauing out of 𝐷¶å  with increasing 𝑁 suggests that obtaining further data by 
measuring strains on increasingly finer grids may not add significant information for 
solving the inverse problem investigated here. This additional data might in fact be 
detrimental if it were obtained by changing to a measurement system with higher noise 
(measurement noise is amplified while solving the inverse problem; see Section 4.3).  
 

 
 
Figure S7: Predictions of information gain 𝐷¶å  as a function of the number 𝑁  of strain 
measurement locations for models ℋ�,ℋ� and ℋ° (strain data with 𝜎vuu = 0.016𝜀"#$% ). The 
lines are labelled by the model order 𝑝. 


