
I bought a new security token
and all I got was this lousy phish—

Relay attacks on visual code authentication
schemes

Graeme Jenkinson, Max Spencer, Chris Warrington, Frank Stajano
{graeme.jenkinson, max.spencer, chris.warrington,

frank.stajano}@cl.cam.ac.uk

University of Cambridge Computer Laboratory, Cambridge, UK

Abstract. One recent thread of academic and commercial research into
web authentication has focused on schemes where users scan a visual code
with their smartphone, which is a convenient alternative to password-
based login. We find that many schemes in the literature (including,
previously, our own) are, unfortunately, vulnerable to relay attacks. We
explain the inherent reasons for this vulnerability and offer an architec-
tural fix, evaluating its trade-offs and discussing why it has never been
proposed by other authors.

1 Introduction

We consider a relatively new class of web authentication schemes, currently at-
tracting significant academic and commercial interest, which we refer to as visual
code authentication schemes. A user may log into a website which supports such
an authentication scheme by scanning a visual code, such as a Quick Response
(QR) code [1], using their hand-held authenticator device, henceforth scanner.
The scanner is generally a smartphone, but might be a dedicated hardware gad-
get. The user carries their scanner at all times, or at least whenever they might
want to authenticate to a website; the scanner may have a mechanism to prevent
its misuse if lost or stolen. Our own Pico system [2] is of course in this class too.

Such schemes are interesting because they have some important usability
benefits which passwords do not; specifically, there is nothing for users to remem-
ber or type1. Furthermore these schemes are resilient to conventional phishing2

because the long-term secrets never leave the scanner and so an attacker can-
not trick the victim into revealing them. However, visual code authentication
schemes present a new risk. Because the information in a visual code is not
human-readable, and visual codes are easily relayed, a user may be tricked into
scanning a visual code displayed outside its intended context.

1 Cfr. definitions of Memoryless, Scalable-for-Users and Nothing-to-Type in the Us-
ability, Deployability and Security (UDS) framework of Bonneau et al. [3].

2 As defined in the UDS framework [3]

Authors’ preprint.
In B. Christianson et al. (eds), Proceedings of Security Protocols Workshop 2014, Springer LNCS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We have surveyed a range of schemes currently in the literature, some com-
mercial [4,5] and some academic [2,6,7]. We find there are significant structural
similarities between the schemes and that they all are3 susceptible to attacks in
which the victim inadvertently authenticates a session for the attacker.

This paper makes the following contributions:

– We show that the architecture of many visual authentication schemes cur-
rently in the literature leaves them inherently vulnerable to attacks that relay
the visual code, allowing an attacker to gain control of sessions authenticated
by other users.

– We present our proposed solution, session delegation, now adopted by Pico,
which uses an additional communication channel to prevent the aforemen-
tioned relay attacks, and discuss why no other scheme has adopted anything
similar.

– We discuss extensions to our session delegation protocol and some alternative
means of mitigating these attacks, while considering their impact on the
usability, deployability and security of the system.

2 Visual code authentication schemes

All of the schemes surveyed offer a similar user experience and share some crucial
architectural features. In this section we describe these commonalities and then
review the individual schemes in more detail.

2.1 User experience when authenticating

When a user visits a website in their web browser, the login page includes a
visual code, possibly alongside a traditional username and password login form.
In order to login, the user scans the code with their scanner, which authenticates
to the website identified by the visual code. After the scanner has authenticated
on the user’s behalf, the web browser receives a session cookie which grants
access to the user’s account through their browser.

The scanner is responsible for the generation and retention of all keys and
secrets. As a result, using the scanner with arbitrarily many accounts and services
does not require additional cognitive (and in particular memory) effort on the
part of the user.

2.2 Protocol

Crucially, these authentication schemes must also be able to authorise a web
browser running on a different host than the scanner. We call this process browser
authorisation. Without this ability users would be restricted to logging into, and
using, websites only on their scanner. But it is this crucial feature, and the

3 Or were, in the case of Pico.

common approach taken by the surveyed schemes to provide it, that leads to the
security vulnerabilities we describe in section 3 below.

The schemes surveyed use differing protocols for the actual authentication
between the scanner and the website. However, we found extensive similarities
between the mechanisms used to perform the browser authorisation and, be-
low, we show a generalised version of the overall protocol, to which the concrete
implementations can all broadly be mapped4. Fig. 1 shows the sequence of mes-
sages sent between the user’s web browser, B, their scanner, S, and the website,
W .

website identifier,
browser nonce

via visual code

website identifier,
browser nonce

2

auth
protocol

34

5

browser nonce

ScannerWeb Browser

Website

1

browser nonce

session cookie

Fig. 1. Generalisation of the flawed browser authorisation protocol used by the re-
viewed visual code authentication schemes. The figure shows how a session cookie, cU ,
for user U is installed into their browser B.

1. The user navigates to the login page of a website W in their web browser
B. The login page returned by the website includes a visual code containing
the website’s address (or identifier) W and a fresh browser nonce, nB . Note
that the request and response are performed over HTTPS and therefore
encrypted under a TLS session key, KBW .

W → B : {W,nB}KBW

4 At least as far as we can infer—some schemes have not openly published a complete
specification.

2. The website address W and browser nonce nB are transfered to the scanner,
S, when the user scans the visual code on the website’s login page.

B → S : W,nB (visual channel)

3. The scanner authenticates to the website using a scheme-specific authenti-
cation protocol. The website looks up the user account, U , associated with
the identity authenticated by the scanner. Subsequently, or as part of the
authentication protocol itself, the scanner securely sends the browser nonce
to the website.

S → W : {nB}KSW

The website is then able to associate the nonce nB with the account U .

4. The browser makes another request to the website, again over HTTPS, which
includes the browser nonce nB , with the intention of “trading in” this nonce
for a session cookie.

B → W : {nB}KBW

5. After looking up the user account U associated with nB , the website W
returns a session cookie cU . This cookie grants access to user U ’s account, as
if the user had authenticated using a typical username-and-password-based
scheme.

W → B : {cU}KBW

If the browser had sent its second request (4) before the scanner had validated
the nonce in (3) with the authentication protocol, the website would not have
granted a session cookie in this step.

2.3 Schemes in the class

Method and System for Authenticating a User by Means of a Mobile
Device (2009) This patent [4], held by GMV Soluciones Globales Internet
S.A., describes a visual code authentication scheme in which users authenticate
to remote services with a trusted application running on a mobile phone.

In this scheme the user selects the service to authenticate to by acquiring a
visual code displayed by an untrusted device. The visual code contains both a
random challenge and an identifier of the service to authenticate to. On scanning
the visual code the mobile device creates a response to the challenge by signing it
with a private key. The scheme uses Identity Based Encryption (IBE) allowing
the response to be verified using the user’s public identity such as an email
address.

In common with the other schemes described here, the scheme links the login
session on the untrusted device with the scanner’s response using the random
challenge contained in the visual code. Thus, this random challenge is directly
equivalent to the browser nonce shown in Fig. 1.

Snap2Pass Snap2Pass [8] is a visual code authentication system for web appli-
cations in which users authenticate using a smartphone application.

In this scheme the user selects the service to authenticate to by acquiring a
visual code displayed by an untrusted device. The visual code contains both a
random challenge and an identifier of the service (the relying party) to authenti-
cate to. On scanning the visual code, the mobile device creates a response to the
challenge comprising of the HMAC-SHA1 hash of the entire challenge message
using a pre-shared secret as a key. The provider verifies this responds and, if
successful, the browser session is authenticated with the appropriate account.

The challenge nonce (sometimes referred to as a session key) in the visual code
is directly equivalent to the browser nonce. Snap2Pass explicitly acknowledges
that it does not mitigate active man in the middle attacks such as those discussed
in this paper.

Pico (2011) Stajano’s Pico [2] is a visual code authentication scheme intended
for a dedicated hardware device, although it could also be implemented, trading
off security for convenience, as an application running on a smartphone5. Pico
also includes a novel locking mechanism dependent on the proximity of a number
of other, smaller devices referred to as Picosiblings, as well as on proximity
detection between the user’s Pico and their web browser (or rather the computer
it is running on), allowing the user’s session to lock automatically when they are
away.

A smartphone-based research prototype created by Tian [] under Stajano’s
supervision . Another smartphone-based prototype independently developed by
Fu [9] includes a sessionID in the visual code that is directly equivalent to the
browser nonce above.

tiQR (2011) van Rijswijk’s tiQR [6] is a prototype smartphone-based visual
code authentication system. The scheme uses the OAuth Challenge Response
Authentication (OCRA) [10] protocol to authenticate the user to services. The
user has a four-digit PIN, in addition to a secret held by the phone, for logging
in to each of their accounts.

In this scheme the visual code contains a random challenge that is directly
equivalent to the browser nonce.

Login Using QR Code (2012) This patent [5], held by eBay Inc., describes
an authentication scheme that uses a visual code authenticator to broker secure
log-ins to websites from devices that may be insecure. The scheme uses a trusted
application, running on the mobile device to authenticate to a single third-party
Identity Provider (IdP).

The contents of the visual code displayed on the untrusted device are passed
to the IdP by the authenticator. The contents of the visual code are encrypted

5 As already envisaged in the original paper [2] as well as in our other paper in these
proceedings, “Bootstrapping adoption of the Pico password replacement scheme”.

and can only be read by the IdP. Upon validating the contents of the visual code,
the IdP issues a challenge to the trusted device, such as requesting a password.
Once the user has authenticated, the IdP informs the relying web service which
maintains an association between the QR code contents to active login sessions.
The relying web service then updates the status of that login session.

The information contained in the visual code is sent from the IdP to the
website to identify the authenticated web session. Although the description given
in the patent [5] is a bit vague and obscure, it seems reasonable to assume that
this data is somewhat analogous to the browser nonce.

QRAuth (2013) Howard’s QRAuth6 [7] is a research prototype visual code
authentication system with significant similarities to Pico. The authenticator has
a shared secret for each service, unlike Pico which uses asymmetric cryptography
and QRAuth uses a mobile application rather than a dedicated hardware device
as the visual code authenticator.

In this scheme the login identifier is directly analogous to the browser nonce.

Secure Quick Reliable Login (2013) Another recent smart-phone-based
scheme is Secure Quick Reliable Login (SQRL), proposed by Gibson [12]. Visual
codes used in the SQRL scheme contain a URL which includes a session id
and points to an authentication service. The SQRL app signs this URL and
then sends the signature to the authentication service over HTTPS. It uses a
different public-private key pair for each service but, unusually, these key pairs
are not stored, but are derived from a master secret and master password when
needed. The system specifies a revocation protocol to be used when a SQRL
device is lost or stolen.

The session id contained in the URL in the visual code is directly equivalent
to the browser nonce.

3 Attacks

3.1 Core vulnerability

Visual codes are not human readable; so, whilst acquiring a visual code reflects
the user’s intent to authenticate, it is unclear to the user what they are authen-
ticating to, or whether the information in the visual code is fresh. Although the
visual channel itself can reasonably be assumed to be unmodifiable, the user’s
web browser is not a trusted display. Specifically it does not prevent relayed
visual codes from being displayed.

The attacks we describe below all exploit the same core vulnerability. In all
cases the attacker (who uses browser B′) seeks to obtain a cookie, cU , which will
give them access to victim U ’s account for a given website W .

6 There is also a commercial mobile application [11] of the same name, but it is
equivalent to a password wallet and bears only a superficial resemblance to the
other schemes discussed here.

For each attack, the attacker makes a request to W and gets back a visual
code containing W,nB′ (see step 1 in the description of the protocol above).

W → B′ : {W,nB′}KB′W

The attacker then relays this visual code and convinces the victim to scan it,
thereby causing the user’s scanner to authenticate to W and link U ’s account
with nB′ (see steps 2 and 3 above). Note that the relayed channel may or may
not be re-encrypted, depending on the mode of the attack.

B′ → B : W,nB′ (relay)

B → W : W,nB′ (visual channel)

Finally the attacker’s browser can send nB′ back to W , trading it in for the
session cookie cU they want (see steps 4 and 5 above).

B′ → W : {nB′}KB′W

W → B′ : {cU}KB′W

The details of how an attacker might relay a visual code and convince a user
to scan it with their visual code scanner device are given below. None of these
attacks involve the attacker modifying the contents of any visual code7, only
relaying them to trick victims into authenticating sessions they did not intend
to. We show how two well-known types of attacks, phishing and mafia fraud, are
even more insidious when applied to visual code authentication schemes.

Perhaps surprisingly, proponents of several of the schemes surveyed claim
that resilience to phishing is one of their key security benefits; moreover, the
Usability-Deployability-Security evaluation framework [3] for web authentication
schemes does not penalize schemes that are only vulnerable to more elaborate
real-time man-in-the-middle or relay attacks (cfr. the definition of its Resilient-
to-Phishing benefit). However, while this definition is appropriate for the schemes
presented in Bonneau et al.’s evaluation, it fails to tell the whole story for visual
code authentication schemes.

3.2 Phishing with visual codes

In a traditional phishing attack, the victim unwittingly divulges their password
to an attacker, who pretends to be or represent a website the victim trusts. The
use of a scanner appears to offer some protection against phishing because the
secrets used to authenticate the user are contained within the scanner and are
unknown to the user and, depending on the specific authentication protocol,
might even never leave the scanner. While these secrets can be revealed by
physically compromising the device, this is an altogether different type of attack
which doesn’t scale. An attacker can only physically compromise a single device

7 It would still be prudent to sign the contents of visual codes to prevent such attacks.

at a time, with significant effort, rather than attack many of them in parallel
over the net.

However, an attacker is able to convince the victim to use their scanner and
an attacker is able to relay a specific visual code over various communications
channels, including email. For example, the attacker could send an email to the
victim, purporting to be from their bank, claiming they need to scan a code to
“validate” their scanner. When the victim does so, they authenticate the nonce
in the visual code which the attacker knows and relayed (see n′

B above), and the
attacker can now trade this nonce in for the user’s session cookie. (We might
view this as an instance of the “chosen protocol attack” [13].)

A visual code phishing email may come with the usual carrots (“you will
be entered into a prize draw”) and sticks (“your account may be locked”) to
persuade the victim to comply. However, there are several reasons why it would
be more difficult for a user to spot a visual code phishing attempt, making the
new attack more insidious. In a traditional phishing attack, the victim must
either reply to the attacker’s email, in which case the attacker must disclose an
email address they control; or the victim must enter their password into a form
on a fake version of the trusted website, which the attacker must provide. With
a visual code phishing attack, neither is required of the attacker: the victim can
scan the visual code right in their email client, thus contacting the legitimate
website directly, and needn’t reply to the attacker in any other way. By the same
token, no “suspicious address” (email or web) will be found in the email that an
alert user could spot to detect the fraud.

Furthermore, it is important to see that the victim’s scanner also does not
contact any server controlled by the attacker; the scanner really does authenti-
cate to the website the phisherman is impersonating. If the scanner prompted
the user for confirmation before each authentication, it would still not defend
against this type of attack because the website identified by the visual code and
contacted by the scanner for authentication is “correct”; the victim wants to
authenticate to it. Any existing training the user may have received, to check for
the right website address or the HTTPS padlock, is useless here, even if followed
to the letter.

In light of this attack, the only advice that users could be given is that they
should never scan a visual code contained in an out-of-band communication,
such as an email, and they should only scan visual codes found on websites that
they trust. But it is well known that reliably authenticating the website to the
user is a hard, unsolved problem.

Besides, users may be accustomed to scanning visual codes with their smart-
phone for other purposes than authentication; therefore they are unlikely to
appreciate the difference between scanning an authentication visual code and
a visual code on an advert. Furthermore, there are additional attacks if users
trust websites which are not trustworthy and then do not pay full attention to
all confirmation messages the scanner might present to them.

3.3 Mafia fraud with visual codes

A “mafia fraud” relay attack against a visual code authentication systems results
from users trusting an untrustworthy (mafia-operated, in the canonical example)
website. The mafia fraud, as first described by Desmedt et al. [14], is a type
of man-in-the-middle attack in which a challenge from the verifier is relayed
without modification, in real time, to an honest prover. The man-in-the-middle
then transmits the honest prover’s response back to the verifier as shown in
Fig. 2.

Customer Mafioso Jewellery store

Man-in-the-middle

Response

Challenge

Mafia-owned
resturant

Fig. 2. Anatomy of a mafia fraud. The honest customer thinks they are paying for
their meal, but is actually being tricked by the mafia into buying them some jewelry.

A mafia fraud with a visual code authentication system is slightly different
because the response of the user, or rather the user’s scanner, goes directly to
the verifier, but the structure of the attack is otherwise the same.

As an example, consider a discussion forum website. This is a low-value site
that the user trusts sufficiently to read discussion threads and sometimes post
comments. If the user logged in to the forum with a username and password
it would be difficult for the malicious site operator to trick the user into au-
thenticating to the forum using their credentials for another high-value website,
such as their online banking website8. However, with a visual code authentica-
tion system, only the non-human-readable visual code tells the scanner which
website to authenticate to. The user may not detect the substitution, by the
malicious operator, of a visual code for the forum with one from their online
banking website.

If the consequences of such an attack were simply that the victim authenti-
cates to a different website to the one they intended, then the advantage that
a malicious actor gains is modest. However, as with the phishing attack above,
the attacker can record the browser nonce, nB , contained in the visual code,
before relaying the code to the victim U and later trade this nonce in to obtain
a session cookie cU granting them access to the victim’s account. Fig. 3 shows
the sequence of messages sent when such a mafia fraud attack is carried out.

8 Unless of course the victim uses the same password on every site.

website identifier,
browser nonce

website identifier,
browser nonce

2

auth
protocol

3

4

5

browser nonce

ScannerWeb Browser

Website

browser nonce

session cookie

Malicious
Website

via visual code

Attacker

website identifier,
browser nonce

1b

1a

Fig. 3. Relay attack on the flawed browser authorisation protocol shown in Fig. 1.
Figure shows how the attacker obtains a session cookie, cU , for user U using a malicious
website they control.

Any attacker could start up their own malicious website to perform this kind
of attack, or they could hijack another website with existing users. In either case
they could try to avoid detection by launching the attack only a fraction of the
time, so that users would assume any discrepancy was the fault of their scanner
rather than the malicious website.

The key difference between this mafia fraud attack and the previous phishing
attack is that the user is not tricked into thinking that the attacker represents
someone else. This means the user has an opportunity to spot that something is
wrong if their scanner asks them to confirm the authentication and tells them
the service that the visual code identified. However we do not think highly of
protection techniques that dump back on the user the actual onus of checking.
Users are conditioned by false alarms to accept or override such warning messages
indiscriminately. Furthermore, because the user wants to log into the malicious
website, which they trust and which they may have logged into successfully many
times before, they are unlikely to be looking out for any discrepancies.

4 Solutions

4.1 Session delegation

We call “session delegation” our proposed solution to prevent these types of
attacks. Instead of having the website W initially send the browser B a browser
nonce nB , which the browser can later “trade in” for the session cookie cU after
the authentication has linked nB with a user’s account U , we propose passing cU
from the website to the browser via the trusted scanner. In order to do that we
need a new channel from the scanner to the browser and furthermore we propose
this new channel be authenticated and encrypted, so that a scanner may only
delegate to a browser with which it has previously established a trusted pairing.

A visual code authentication scheme that requires this new channel with these
constraints suffers from reduced deployability, which may be why the schemes
surveyed do not do so. In our ongoing work to improve deployability of this
solution we are developing a rendezvous point. Provided that browser and scanner
have an Internet connection, the rendezvous point allows them to communicate
even when their net connection is heavily restricted by NATs and firewalls. We
also present a fallback mechanism for the protocol so users can still log in when
the browser they are using cannot be modified to carry out the cryptographic
pairing procedure.

First we describe the session delegation protocol in more detail. Fig. 4 shows
the sequence of messages sent when the session delegation protocol is used.

1. The user navigates to the login page of a website W in their browser B.
The login page returned by the website includes a visual code containing the
websites address (or identifier) W, but now no browser nonce.

W → B : W

website identifier,
browser identifier

via visual code

website identifier

2

session cookie

ScannerWeb Browser

Website

4

session cookie

auth
protocol

31

Fig. 4. Our proposed browser authorisation protocol: session delegation. Figure shows
how a session cookie, cU , for user U is installed into their browser.

2. The website address W is transferred to the scanner S when the user scans
the visual code on the websites login page:

B → S : W,B (visual channel)

3. The scanner authenticates to the website, W . There is no longer a nonce to
send at this stage. The website looks up the user account, U , associated with
the identity authenticated by the scanner. The website creates the session
cookie cU and returns to the scanner:

W → S : {cU}KSW

4. Via a new authenticated and encrypted channel, the session cookie cU is
transferred to the browser. cU grants access to user Us account through the
browser as previously.

A → B : {cU}KAB
(new channel)

The new channel Our session delegation protocol shown in Figure 4 imposes
two requirements: first, there must exist a new channel from scanner to browser9

in order to transmit message 4. Second, this channel must be authenticated and
encrypted.

We have built prototypes using two different types of channel: one using
a local Bluetooth link and another using the Internet. The former does not

9 The existing visual channel from browser to scanner is of course unsuitable because
it is unidirectional in the wrong direction.

require the scanner to have its own Internet connection, reducing its hardware
requirements, but it imposes requirements on the hardware of the host on which
the web browser is running. For the second type, the Internet-based channel,
we implemented a HTTP-based rendezvous point in the public Internet. In an
ideal world, the browser would simply put the IP address of its host into the
visual code and the scanner could connect to that, but this is not possible for
all browser-scanner pairs due to NATs and firewalls.

To use our rendezvous point, the web browser first makes request for a “chan-
nel” and the server responds with a URL of the form:

http://rendezvous.example.com/channel/<channel-uuid>

The browser includes this URL in the visual code, and the browser and scanner
may subsequently write to this channel by making HTTP POST requests and
read from it by making GET requests.

We suggest that this new channel should be authenticated and encrypted
so that a cookie sent over it cannot be eavesdropped and an attacker cannot
have a scanner return a cookie to their web browser, B′, simply by getting a
user to scan a code containing B′’s identity and address. In other words, the
scanner must only send cookies to those browsers which can prove ownership of
a private key corresponding to an identity the scanner trusts. Our suggestion is
that before step 4 above, the authenticator and the browser carry out a mutual
authentication protocol, such as the SIGMA protocol [15], which has the side-
effect of generating a session key, KAB thereby providing the authentication and
encryption simultaneously.

For the trusted browser to authenticate some identity to the scanner they
must have previously “paired”. This pairing could be done through a menu in
the browser which causes the browser’s full public key to be displayed to the
scanner in a visual code.

Increasing deployability: fallback mode Unfortunately, if the new channel
is to be authenticated and encrypted, the user’s web browser requires mod-
ification, harming the deployability of the system by removing the Browser-
Compatible UDS benefit [3]. The browser must be able to receive cookies over
an encrypted channel and install them as if they had been set by the website
directly. This is possible using a browser addon, but installing such an addon will
not be possible for all users in all situations. We propose a fallback mechanism,
transcription of a URL, to be used in these, hopefully rare, circumstances.

When the website W returns cookie cU to the scanner (see step 3 above), it
also returns a special single-use login URL, lU , which is of the form:

https://<domain-of-W>/?<nonce>

The website links the nonce in lU with U , such that opening the URL in a web
browser will cause the corresponding cookie cU to be installed. So if the scanner
is unable to write the cookie back to the browser automatically because the latter

is unmodified and/or no channel is available, the scanner can instead display the
login URL lU for the user to transcribe into the browser’s address bar manually
and after another round-trip to W the cookie is installed. In effect the user
themselves takes on the role of the new required channel. Clearly this impacts on
usability, notably compromising the Physically-Effortless and Infrequent-Errors
benefits of the UDS framework [3]. From a usability perspective typing out lU ,
which must contain an unguessable random nonce, is at least as difficult as
having to type a password, but it is just a fallback to save the user in rare cases
and there is still nothing for the user to remember.

The benefit of using a login URL which is typed directly into the browser’s
address bar, is that it’s hard to send the nonce to the wrong person. Browser B
making a request to a URL of the above form, is effectively the same as:

B → W : {n}KBW

Crucially the URL contains the nonce to send, n, the website to send it to, W ,
and the protocol to use, HTTPS, which provides the encryption under KBW . If
instead the user were asked to transcribe a single-use password into some specific
form field on the website’s login page, an attacker could coerce the user to enter
it into a form field on their own fake login page (using traditional phishing
techniques) and then forward it to the real site10.

Session gifting attack Unfortunately, introducing this fallback mechanism
introduces a new vulnerability11. An attacker, U ′, can use their scanner to obtain
a fallback URL lU ′ and then get a victim to open it, leaving the victim with a
cookie cU ′ . In other words, the attacker gifts the victim a session for an account
they (the attacker) control, just by having them open lU ′ . If a user did not notice
this, they might divulge sensitive information, such as credit card details, which
would later be accessible to the attacker.

To defend against such attacks we augment the new session delegation proto-
col with something similar to the “browser nonce”, nB , from the original (flawed)
protocol above (see section 2.2).

When the user navigates to the login page of the website, the website installs
a fresh “browser identifying cookie”, cB , in the user’s browser, B. This browser
ID cookie will automatically be sent back to the website with each future request
until it is deleted. The value of cB is also included in the visual code and thus
reaches the scanner. The scanner sends cB back to the website when it authen-
ticates, allowing the website to form a link between cB , and the session cookie
cU and login URL lU it returns.

Now, whenever a browser makes a request to a login URL, the website simul-
taneously receives the nonce in the URL, and any browser ID cookie previously
set for that browser. The website can check if the correct browser ID cookie is
included in any such request before granting session cookie cU .

10 It would still be possible for attackers listen for nonces by typosquatting on domains
similar to the domain of a popular website W .

11 We thank Olgierd Pieczul for pointing this out during the workshop.

With this countermeasure, the session gifting attack is no longer possible.
The attacker may acquire the fallback URL lU ′ , but if the victim opens it they
will not be granted cookie cU ′ , because their browser doesn’t have the required
browser ID cookie.

4.2 Other solutions

It may be argued that the challenges in the visual code should only remain valid
for a limited period to reduce the window of vulnerability. However we consider
this to be merely an implementation feature that does not fundamentally address
the underlying security issue. The attacker can relay the visual code more quickly,
perhaps requesting it on-demand, or they can relay the same code to many
targets simultaneously to improve the chances of a catch before it expires.

Trusted visual code display An alternative solution to attacks where the
visual code is relayed from one site to another would be to extend the trusted
computing base to include the browser. In such a scheme the browser, or browser
addon, verifies that the domain of the website presenting the visual code matches
the website identifier or address being transmitted to the scanner in that code.
Unfortunately we deem this to be a non-solution for several reasons.

It is not in general possible for the web browser to tell when it is displaying a
visual code. An attacker clearly wouldn’t helpfully tag their relayed visual codes
to make them easier for the browser to find, so it would have to run a detection
algorithm on every displayed image. But then an attacker might not use an
actual embedded image, but create a visual code by arranging other HTML
elements12.

Alternatively, the browser could provide a special trusted display area specif-
ically for visual codes somewhere in the chrome of the browser window and offer
some kind of API to allow websites to have visual codes for their own domain dis-
played there. However this does not prevent other visual codes being displayed
in the normal, non-trusted browser window and experience with mechanisms
such as the HTTPS padlock shows that such signals are not fully understood by
users. A user may not understand the difference between a visual code in the
trusted display area and one in the normal web page.

Furthermore visual codes might be present in any number of other locations
including physical locations; we already discussed an email-based session phish-
ing attack above. There is no way that everywhere a visual code is displayed
on-screen, or printed, can be trusted.

Secure bookmarks As the session phishing attacks presented in this paper
rely on the user scanning a relayed visual code, they can, of course, be prevented
using a different sort of authentication scheme which doesn’t use visual codes. In

12 For example the qrcode.js library (https://github.com/davidshimjs/qrcodejs
uses the new HTML5 canvas drawing element.

https://github.com/davidshimjs/qrcodejs

a secure bookmarks scheme, such as Phoolproof [16], a hardware authenticator
device, analogous to our scanner, holds all the keys and secrets and authenticates
to websites on behalf of the user. When using a secure bookmark system, the
user is responsible for manually selecting the website they wish to authenticate
to.

While such a system is resilient to session phishing because it doesn’t use any
kind of browser nonce, it does require a channel from the authenticator device
to the web browser, just like a scanner using our session delegation protocol, and
thus faces the same deployability issues. The secure devices have a similar role
in both types of scheme, namely that of brokering a session between the browser
and the website. One usability benefit of visual code authentication schemes
over secure bookmark schemes is that they do not require the user to select the
website and browser they want to broker a session between because both are
identified in the visual code.

5 Related work

Desmedt et al. [17] introduces the term mafia fraud in the context of a mafia
owned restaurant (cfr. Fig 3). In this paper we appropriate the term mafia fraud
to describe the similar attack in which the visual code is relayed unchanged by
an active man-in-the-middle. It is clearly impossible to relay the visual channel
undetectably between the web browser and the scanner. And whilst it is possible
to relay the channel between the scanner and website, the use of SIGMA-I ensures
that the attacker gains no benefit for doing so.

Beth and Desmedt [18] seek to mitigate relay attacks by enforcing a maxi-
mum round-trip time of a challenge-response protocol. Brands and Chaum [19]
refine the technique and make it robust, introducing the first distance-bounding
protocol. But distance-bounding does not relay attacks; rather, it solves the
simpler problem of ensuring that the prover and verifier are located within a
specified distance bound. However, when authenticating to web services, phys-
ical proximity is irrelevant because the honest prover could be in a different
country or continent from the verifier. Furthermore, an honest user may wait
an indeterminate amount of time before scanning a visual code even after it has
loaded.

Parno, Kuo and Perrig’s “Phoolproof Phishing Prevention” [16] uses a trusted
mobile device to mutually authenticate with remote services from an untrusted
terminal, the main objective being to prevent or limit the efficacy of phishing
attacks. In this scheme the user selects a web service to authenticate to from a
secure bookmark on the trusted authenticator device. A secure session is then
brokered between the web service and the untrusted terminal by the trusted au-
thenticator device. While Phoolproof is not a visual code authentication scheme,
it does require a channel from the authentication device to the browser, like the
scanner does when using our session delegation protocol; the comparison between
the two is therefore instructive.

Mannan and van Oorschot [20] define a protocol, MP-Auth, for user authenti-
cation and secure financial transactions from an untrusted device with assistance
of a trusted mobile device. Although not a visual code authentication scheme,
MP-Auth shares many architectural similarities with such schemes. MP-Auth
does not seek to address the fundamental security weakness of passwords, nor
does it reflect the realities of modern mobile phone platforms where malware is
common. And so, whilst MP-Auth is not vulnerable to the relay attacks pre-
sented in this paper, it does not offer the security and usability benefits of visual
code authention schemes.

Laurie and Singer [21] argue that it is impossible to have a system which
is both general-purpose and trustworthy. Furthermore, they define the require-
ments for a trusted device, referred to as the Neb, that may be used to au-
thenticate online transactions. This is relevant to the decision as to whether the
scanner should be a dedicated device or a smartphone application.

6 Conclusion

We presented the first comprehensive analysis of visual code relay attacks on
the emerging class of authentication schemes in which users login to websites
by scanning a visual code. We identified a variety of schemes in this class and
highlighted their common features. In particular we generalised the protocol they
all use to authorise a web browser running on a separate host. We found that all
of the currently proposed schemes that we reviewed are vulnerable to attacks in
which the visual code is relayed.

We have presented examples of such attacks and discussed the architectural
reasons for the vulnerability. Such attacks are worrying because the attacker
does not have to modify any visual code and the user’s scanner authenticates to
a trusted website. In particular, if the user’s scanner acted according to specifi-
cation there may be a burden of proof on the user to prove that any resulting
transactions were fraudulent13.

We reject claims that these attacks can be mitigated by requiring the user
to carry out manual checks or using a trusted display. The root cause of this
vulnerability is the use of a browser nonce which the browser obtains at the
start of the protocol and then “trades in” for an authorisation cookie, cU , once
the scanner has, independently, authenticated user U . Our proposed solution,
the session delegation protocol, allows authorisation of the web browser without
the use of a browser nonce. Instead, the website sends the session cookie to the
browser, via the trusted scanner, only after the authentication has taken place.

The cost of that solution is the need for an authenticated and encryped com-
munication channel from the scanner to the browser. We have explored the use
of a local radio channel (Bluetooth) and a connection via the Internet, assisted
by a rendezvous point. In either case, modification of the browser is required
which harms the deployability of scheme, which is perhaps why none of the

13 The real problem instead being that the specification was wrong, in so far as the
scheme is vulnerable to relay.

schemes surveyed adopted a similar approach. However, we have provided a fall-
back mechanism for the occasions when browser modification is not possible.

The class of visual code authentication systems seemed a promising contender
for replacing passwords but that critical and seemingly inherent vulnerability
present in all past implementations made it not credible. By allowing ourselves
to consider more fundamental changes to the architecture (such as the inclusion
of another channel from scanner to web browser) rather than being constrained
by backwards compatibility, we have found a way to stop an array of session
phishing attacks. Now we can move forward by selecting the most appropriate
trade-off between usability, deployability and security.

7 Acknowledgments

We gratefully acknowledge the European Research Council for funding this re-
search under grant 307224.

We also thank Olgierd Pieczul for pointing out the login gifting attack during
the workshop.

References

1. ISO: Information technology—Automatic identification and data capture
techniques—QR Code 2005 bar code symbology specification. ISO 18004:2006,
International Organization for Standardization, Geneva, Switzerland (2006)

2. Stajano, F.: Pico: no more passwords! In: Proceedings of the 19th international
conference on Security Protocols. SP1́1, Berlin, Heidelberg, Springer-Verlag (2011)
49–81

3. Bonneau, J., Herley, C., Oorschot, P.C.v., Stajano, F.: The quest to replace pass-
words: A framework for comparative evaluation of web authentication schemes.
In: Proceedings of the 2012 IEEE Symposium on Security and Privacy. SP ’12,
Washington, DC, USA, IEEE Computer Society (2012) 553–567

4. Cobos, J.J.L., Hoz, P.C.D.L.: Method and system for authenticating a user my
means of a mobile device. Patent filed 2009-09-17, published 2012-09-04.

5. DeSoto, D.B., Peskin, M.A.: Login using qr code. Patent filed 2013-02-15, published
2013-08-22.

6. Van Rijswijk, R.M., Van Dijk, J.: Tiqr: A novel take on two-factor authentication.
In: Proceedings of the 25th International Conference on Large Installation System
Administration. LISA’11, Berkeley, CA, USA, USENIX Association (2011) 7–7

7. Howard, A.: Qrauth. Bsc. thesis, Bournemouth University, Bournemouth, UK
(2012)

8. Dodson, B., Sengupta, D., Boneh, D., Lam, M.S.: Secure, consumer-friendly web
authentication and payments with a phone. In: In Conference on Mobile Comput-
ing, Applications, and Services (MobiCASE’10). (2010)

9. Fu, H.P.: Pico: No more passwords! Msc. thesis, University of Leuven, Flanders,
Belgium (2013)

10. M’Raihi, D., Rydell, J., Bajaj, S., Machani, S., Naccache, D.: OCRA: OATH
Challenge-Response Algorithm. RFC 6287 (Informational) (June 2011)

11. Inc., C.O.: QRAuth. http://www.computingobjects.com/qrauthinfo (2012) Ac-
cessed: 2013-11-13.

12. Gibson, S.: Secure Quick Reliable Login. https://www.grc.com/sqrl/sqrl.htm

(October 2013) Accessed: 2013-11-6.
13. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol

attack. In: Proceedings of the 5th International Workshop on Security Protocols,
London, UK, UK, Springer-Verlag (1998) 91–104

14. Desmedt, Y., Goutier, C., Bengio, S.: Special uses and abuses of the fiat-shamir
passport protocol. In: Advances in CryptologyCRYPTO87, Springer (2006) 21–39

15. Krawczyk, H.: Sigma: The sign-and-mac approach to authenticated diffie-hellman
and its use in the ike protocols. In Boneh, D., ed.: Advances in Cryptology -
CRYPTO 2003. Volume 2729 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2003) 400–425

16. Parno, B., Kuo, C., Perrig, A.: Phoolproof phishing prevention. In Crescenzo, G.D.,
Rubin, A.D., eds.: Financial Cryptography and Data Security, 10th International
Conference, FC 2006, Anguilla, British West Indies, February 27-March 2, 2006,
Revised Selected Papers. Volume 4107 of Lecture Notes in Computer Science.,
Springer (2006) 1–19

17. Desmedt, Y., Goutier, C., Bengio, S.: Special uses and abuses of the fiat-shamir
passport protocol. In: A Conference on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology. CRYPTO ’87, London, UK, UK,
Springer-Verlag (1988) 21–39

18. Beth, T., Desmedt, Y.: Identification tokens or: Solving the chess grandmaster
problem. In: Proc CRYPTO 90. Number 53 in LNCS (1990)

19. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In:
EUROCRYPT93, Lecture Notes in Computer Science 765, Springer-Verlag (1993)
344–359

20. Mannan, M., Van Oorschot, P.C.: Using a personal device to strengthen password
authentication from an untrusted computer. In: Proceedings of the 11th Inter-
national Conference on Financial Cryptography and 1st International Conference
on Usable Security. FC’07/USEC’07, Berlin, Heidelberg, Springer-Verlag (2007)
88–103

21. Laurie, B., Singer, A.: Choose the red pill and the blue pill: A position paper. In:
Proceedings of the 2008 Workshop on New Security Paradigms. NSPW ’08, New
York, NY, USA, ACM (2008) 127–133

http://www.computingobjects.com/qrauthinfo
https://www.grc.com/sqrl/sqrl.htm

	I bought a new security token and all I got was this lousy phish— Relay attacks on visual code authentication schemes

