
1

Am I in good company?
A privacy-protecting protocol

for cooperating ubiquitous computing devices

Oliver Stannard and Frank Stajano

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom

Abstract. A portable device carries important secrets in encrypted
form; to unlock it, a threshold secret sharing scheme is used, requiring
the presence of several other devices. We explore the design space for the
protocol through which these devices communicate wirelessly, under the
additional constraint that eavesdroppers should not be able to recognize
and track the user carrying these devices.

1 The problem

The user carries a device, the Pico [11], containing important secrets (authen-
tication credentials for all of the user’s accounts) that must not be disclosed to
attackers. The memory of the Pico is encrypted with a key that the Pico peri-
odically forgets and reconstructs, through k-out-of-n secret sharing [9], from the
shares it receives via short-range radio from other devices, the Picosiblings. The
Picosiblings are meant to be physically bound to the user more tightly than the
Pico itself, so that the Pico can equate the proximity of the Picosiblings with
the proximity of the Pico’s owner.

Assuming that the secret has already been split into n shares and that the
devices have already been suitably initialized, what protocol should they use to
communicate? The protocol must offer the following properties (from the original
Pico paper [11]):

– The Pico can ascertain the presence of any of its Picosiblings in the vicinity.
– Each Picosibling responds to its master Pico but not to any other Pico.
– At each ping, each Picosibling sends its k-out-of-n share to the Pico, in a

way that does not reveal it to eavesdroppers.
– An eavesdropper can detect the bidirectional communications between Pico

and Picosiblings but not infer identities or long-term pseudonyms.
– The Pico can detect and ignore old replayed messages.
– The Pico can detect and ignore relay attacks (e.g. with Hancke-Kuhn [3]).

Our attacker model is essentially Dolev-Yao [1] as far as messages go (the
adversary can overhear, intercept and modify all traffic) but with the added
twist that the attacker may also capture the Pico (while it is in a locked state)

Security Protocols Workshop 2012
Revision 8 of 2012-06-23 23:45:40 +0100 (Sat, 23 Jun 2012)



2 Oliver Stannard and Frank Stajano

and some of the Picosiblings (fewer than k). We assume the adversary cannot
capture the Pico while it is unlocked and that the adversary cannot capture
more than k Picosiblings.

The main goal of the attacker is to unlock the Pico: if this happens, it’s
game over. Another goal of the attacker is to recognize an individual user from
the overheard messages between Pico and Picosiblings: since the Pico and the
Picosiblings are strongly tied to an individual, this ability might be used to
violate the individual’s location privacy.

We believe the problem is hard enough that we don’t want to optimize prema-
turely: we won’t add extra constraints before we have found at least one correct
solution. Once we have one, though, additional nice-to-have properties would
take into account the physical constraints on the ubicomp devices, in particular
the very limited energy available to each of the Picosiblings1.

1.1 Timing and storage details for the Pico

This subsection gives some background about the lifetime of the shares and of
the shared secret but is not essential to understand the protocol between Pico
and Picosiblings.

The high level protection goal is that, when the Pico is away from its Picosi-
blings, it becomes locked in a way that prevents an attacker from retrieving the
authentication credentials, even if the attacker can totally dismantle the Pico
and read every bit stored in it. This is achieved by encrypting all2 the non-
volatile memory of the Pico with a master key that is securely erased when the
Pico is locked.

Since the protocol described in this paper (communication between Pico and
Picosiblings) is what allows a locked Pico to reconstruct its master key, it must
obviously be allowed to run even while the Pico is locked. Therefore, if it needs
access to any persistent state, that state cannot be part of the memory that
gets encrypted under the master key; that state will instead be available to an
attacker who captures a locked Pico.

We assume that the hardware architecture of the Pico ensures that, if the
attacker captures an unlocked Pico, it is not feasible to extract the master key
or the shares from the Pico before they are securely erased. Discussion of how
to achieve that is outside the scope of the present paper but we envisage using
a Hardware Security Module3 or perhaps techniques similar to those pioneered
by TRESOR [6], whereby keys are only ever stored in processor registers rather
than in RAM. We may also wish to encrypt the RAM itself, as suggested in
various cryptoprocessor designs such as Kuhn’s TrustNo1 [5].

We define system parameter T1 as the maximum time interval that the Pico
will remain unlocked once it is no longer in range of at least k Picosiblings. We

1 In an ideal world they’d be so parsimonious with energy that they could be imple-
mented as passive RFID tags.

2 Well, almost all—see next paragraph.
3 Such as the TPM (trusted platform module) chip featured in many modern laptops.



Am I in good company? 3

expect it to be in the range between a second and a minute: the exact value will
have to be tuned with user testing. It needs to be short for security reasons, but
not too short for usability and power consumption4 reasons.

The Pico requests a share from each of its n possible Picosiblings, staggering
the requests so that each Picosibling is contacted in succession at a definite
time depending on the Picosibling’s number5. The cycle time is set so that the
interval between successive requests for the same share is shorter than T1 by
some margin.

Once share si is received, the Pico loads the share’s countdown timer6 with
the value T1. If the shared secret is not there and at least k shares have a non-
expired timer, the shared secret is recomputed. If the same share is received
again before the countdown timer expires, the timer is reloaded to T1; but when
the timer eventually expires, the share is securely wiped and the shared secret
is recomputed using the remaining available shares, or securely wiped if fewer
than k shares remain.

2 A first attempt

With disregard for computational costs and power consumption concerns, we
first propose a solution based on public key cryptography.

The protocol between the Pico and each of its Picosiblings consists of a ping
from the Pico and a pong from the Picosibling.

The Pico has a key pair for each of its Picosiblings: k1,j , k−1
1,j , with j ranging

over the Picosiblings. Each Picosibling too has a key pair: for Picosibling number
j it will be k2,j , k

−1
2,j .

The ping message, from Pico to Picosibling, means: “hey, Picosibling j, are
you there? If yes, please send me your key share sj .” It consists of a random
nonce r, signed by the Pico with its private key k−1

1,j so that the Picosibling can
verify its provenance and encrypted under the Picosibling’s public key7.

Ping for Picosibling j, broadcast by Pico : Ek2,j
(Sk−1

1,j
(”ping”, r))

4 Shortening T1 increases the minimum frequency of pings from Pico to Picosiblings
and therefore increases the radio communication costs.

5 This allows the Picosibling to go to sleep most of the time except when it expects
a transmission from the Pico. This assumes that the Picosibling has a continuously-
running clock, and that running the clock has negliglible cost compared to turning on
the radio for listening. We need to address the issue of clock sync between the Pico
and the Picosibling, especially in case we also allow the Picosibling to be switched
off completely, clock included.

6 This is only a conceptual description—the implementation does not need to keep a
separate countdown timer for each share so long as the effect is the same.

7 This protocol plays it safe but is potentially redundant; while we do want to protect
the integrity and source authenticity of the nonce r, it is not clear that we need to
protect its confidentiality.



4 Oliver Stannard and Frank Stajano

Note that the so-called “public” key k1,j isn’t actually public: it is only known
to the Pico and to Picosibling j, so nobody else can verify that signature.

On receiving a ping message, Picosibling j verifies the signature8 using the
Pico’s “public” key k1,j . If the signature matches, the Picosibling proceeds. If it
does not match, the Picosibling ignores this message.

Having recognized a valid signature, Picosibling j composes a pong message
by concatenating the received nonce r with its share sj , signing the lot with its
private key k−1

2,j (so that the Pico can verify its provenance) and then encrypting
the signed message under the Pico’s “public” key k1,j .

Pong from Picosibling j : Ek1,j
(Sk−1

2,j
(”pong”, r, sj))

Here the encryption is necessary, to prevent eavesdroppers from learning sj ,
but it could be argued that the signature is redundant, given that no other
principal is supposed to know the Pico’s “public” key k1,j . If we explicitly treat
this “public” key as a secret known only to the Pico and to Picosibling j, then the
k2,j , k

−1
2,j key pair of the Picosibling is no longer necessary: the Pico knows that

the message came from Picosibling j because no-one else could have encrypted
it under k1,j .

At this point one wonders why k1,j , if it’s shared only between the Pico and
Picosibling j, should be a “public” key instead of a symmetric key. More on that
in section 3, but meanwhile here is a major vulnerability that already kills this
first attempt.

2.1 Attack

Assume the attacker records the traffic between the Pico and a sufficient number
of Picosiblings. Later, the attacker captures the locked Pico. Having extracted
k−1
1,j , which by hypothesis is unencrypted even in the locked Pico9, the attacker

decrypts a previously recorded pong from Picosibling j and recovers sj . Provided
that the attacker could record the traffic with at least k Picosiblings, he or she
now has at least k shares and can recover the master secret that unlocks the
Pico. Game over.

3 A symmetric-key ping-pong protocol

We switch to symmetric keys, not to save energy (though that’s always nice)
but primarily to be able to renew keys in order to defeat the previous attack.
8 Clearly there is the possibility of what Stajano and Anderson [12] called a “sleep
deprivation torture” (battery exhaustion) attack against the Picosibling, by forcing
the Picosibling to verify bogus signatures. Under our stated assumptions we won’t
worry about it until we have a solution to the main problem.

9 Otherwise the locked Pico could not run this protocol to obtain the shares that allow
it to unlock itself. Thus the k−1

1,j keys, for all j, are only protected by whatever modest
tamper resistance we can add to the Pico, so we must assume that an attacker with
unsupervised physical access to the Pico will be able to retrieve them.



Am I in good company? 5

Now the Pico shares a symmetric key k3,j with Picosibling j, which is used for
Encrypt-then-MAC in both the ping and the pong. However, after every ping-
pong, the two parties renew this symmetric key by hashing it: this stops the
previous attack because the key that the attacker finds in the Pico cannot be
used to read past messages. A counter cj is included next to the random nonce
r so that the two parties can stay in sync with the number of hashes of the key
even if some messages get lost in transit.

The protocol still consists of only two messages, a ping and a pong, followed
by a local hash computation at both ends:

Ping for Picosibling j, broadcast by Pico : EtMAC k3,j
(”ping”, r, cj)

Pong from Picosibling j : EtMAC k3,j (”pong”, r, cj , sj)

Both (with appropriate sync) : k3,j := h(k3,j)

Why Encrypt-then-MAC [4] rather than just MAC in the ping and just En-
crypt in the pong? As with the previous protocol, we wish to preserve the in-
tegrity of the nonce r, which justifies the MAC in the ping. But this time we
also have a good reason for encrypting the ping: we want to hide the counter cj
from the eavesdropper, who might otherwise use it to correlate pings from the
same Pico to mount a privacy attack. As for the pong, we wish to protect both
the confidentiality and the integrity of the share sj .

3.1 Attack

Although we stopped the previous attack, a more elaborate variation of it still
applies, although it is a little harder to mount for the attacker.

The attacker steals the locked Pico, extracts all its keys k3,j and counters cj ,
extracts a copy of the encrypted non-volatile memory, then returns the Pico and
hopes the victim will continue to use it without noticing the tampering. If so,
the attacker records the future traffic between Pico and k different Picosiblings,
decrypts it using the extracted keys and recovers k shares and hence the master
key that decrypts the extracted memory image. Game over again. With this
countermeasure we can stop the attack towards the past but not the one towards
the future.

We can’t even tell the user: “if you lose your Pico, redo all your secret sharing
before using it again”, because the user can’t easily tell whether he “lost” the Pico.
If he just left it in his room and found it there when he returned, how does he
know that the attacker didn’t come and image it and then left it there? This
can be seen as a distant relative (same social setting, different technical steps)
of Rutkowska’s “evil maid” attack [8].

It would appear that a sensible countermeasure against this attack is to make
the Pico tamper-evident10, although security then dangerously depends on the
user always inspecting the seal with sufficient care.
10 Which is much less demanding than tamper-resistant, and thus not unreasonable.



6 Oliver Stannard and Frank Stajano

4 Reset

A related design issue came up while implementing simulations of these proto-
cols: when and how can a user reset the Pico or the Picosiblings to their factory
default state? Can the attacker do the same? If yes, is there any advantage in
doing so?

In the context of the general problem of resetting unattended devices to
factory default, we [10] previously distinguished between the simple but effective
Big Stick Principle (“anyone with physical access to the device is allowed to take
it over”) and the more elaborate Resurrecting Duckling security policy model, in
which the mother duck can order the duckling to commit seppuku11 but where
the duckling device must be sufficiently tamper resistant to prevent a third party
from doing the same.

In the Pico paper we said the Pico can be reset by invoking seppuku from
the unlocked state. So this is a case of Resurrecting Duckling in which the Pico
is the duckling and the mother duck is any cloud of k or more Picosiblings12.
Therefore, only someone who holds enough Picosiblings can reset the Pico.

How about resetting a Picosibling itself to factory default? We don’t want
an infinite regression of duckling pairings, so we make the Picosiblings obey the
Big Stick Principle. We could have a physical reset button on the Picosibling, for
example, which would make it forget its association with its Pico. The Picosibling
is thus subject to denial of service (adversary pressing the reset button and
cancelling the security association, causing the Picosibling to stop working as
intended), but it is anyway because someone with physical control over it could
equally easily just smash it to pieces. Besides, if the adversary has physical
control of the Picosibling, what worries us much more than denial of service is
the possibility that, with enough of them, he might extract the share (or just
use the Picosibling as is) to unlock the Pico.

5 Re-pairing attack

Another attack, which is independent of the ping-pong protocol, consists of steal-
ing the Pico from the victim while it is still unlocked (grab-and-run style theft)
and then, before T1 expires, re-pairing k new (blank) Picosiblings to the stolen
Pico. Then the attacker can keep the Pico unlocked indefinitely and extract all
its secrets.

This attack is, technically, outside our attacker model, because the Pico is
captured while unlocked; however it is also relatively easy to prevent.

One possible countermeasure is to ensure that the process of adding a new
Picosibling takes longer than T1, so the operation can’t be completed without
being in the aura of k already-paired Picosiblings to keep the Pico unlocked.
11 Seppuku is the ritual suicide of the samurai. In this context it means, essentially,

that the duckling will reset itself, forgetting any existing security associations and
preparing to be taken over by a new master.

12 We gloss over the business of the additional special shares like the biometric and the
remote server [11].



Am I in good company? 7

Another possible countermeasure is to ensure that changing the set of Picosi-
blings requires the two special shares (where the biometric share in particular is
used to indicate explicit user consent).

The two countermeasures could even be combined, for good measure.

6 Related work

The most comprehensive work about this problem space is Peeters’s PhD dis-
sertation [7], published a couple of months after this workshop, which addresses
related issues in much greater depth and provides much more elaborate, robust
and mathematically verified solutions than the protocol we sketched here. On
the security side, it offers a method for storing shares on devices (like the Pi-
cosiblings) that do not offer secure rewritable storage; the main requirement
is that the devices be able to store, in tamper-proof secure storage (such as a
PUF [2]), an immutable factory-defined private key. On the privacy side, it offers
a privacy-protecting mutual authentication protocol, efficient enough to be us-
able with RFID tags and capable of supporting multiple readers. Unfortunately,
though, it does not appear easy to combine these two useful but independent
primitives into a single solution that would offer the benefits of both.

References

1. Danny Dolev and Andrew Chi-Chih Yao. “On the security of public key protocols”.
IEEE Transactions on Information Theory, 29(2):198–207, 1983.

2. Blaise Gassend, Dwaine Clarke, Marten van Dijk and Srinivas Devadas. “Con-
trolled Physical Random Functions”. In “ACSAC ’02: Proceedings of the 18th
Annual Computer Security Applications Conference”, p. 149. IEEE Computer So-
ciety, Washington, DC, USA, 2002. ISBN 0-7695-1828-1.

3. Gerhard P. Hancke and Markus G. Kuhn. “An RFID Distance Bounding Protocol”.
In “Proc. IEEE SECURECOMM 2005”, pp. 67–73. 2005. http://www.cl.cam.ac.
uk/~mgk25/sc2005-distance.pdf.

4. Hugo Krawczyk. “The Order of Encryption and Authentication for Protecting
Communications (or: How Secure Is SSL?)”. In Joe Kilian (ed.), “CRYPTO”, vol.
2139 of LNCS, pp. 310–331. Springer, 2001.

5. Markus Kuhn. “The TrustNo 1 Cryptoprocessor Concept”, 1997. http://www.cl.
cam.ac.uk/~mgk25/trustno1.pdf. Manuscript.

6. Tilo Müller, Felix C. Freiling and Andreas Dewald. “TRESOR Runs Encryption
Securely Outside RAM”. In “USENIX Security Symposium”, USENIX Association,
2011. http://www.usenix.org/event/sec11/tech/full_papers/Muller.pdf.

7. Roel Peeters. Security Architecture for Things That Think. Ph.D. thesis,
KU Leuven, Jun 2012. http://www.cosic.esat.kuleuven.be/publications/
thesis-202.pdf.

8. Joanna Rutkowska. “Why do I miss Microsoft BitLocker?”,
2009. http://theinvisiblethings.blogspot.co.uk/2009/01/
why-do-i-miss-microsoft-bitlocker.html.

9. Adi Shamir. “How to Share a Secret”. Communications of the ACM, 22(11):612–
613, Nov 1979. http://securespeech.cs.cmu.edu/reports/shamirturing.pdf.

http://www.cl.cam.ac.uk/~mgk25/sc2005-distance.pdf
http://www.cl.cam.ac.uk/~mgk25/sc2005-distance.pdf
http://www.cl.cam.ac.uk/~mgk25/trustno1.pdf
http://www.cl.cam.ac.uk/~mgk25/trustno1.pdf
http://www.usenix.org/event/sec11/tech/full_papers/Muller.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-202.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-202.pdf
http://theinvisiblethings.blogspot.co.uk/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://theinvisiblethings.blogspot.co.uk/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://securespeech.cs.cmu.edu/reports/shamirturing.pdf


8 Oliver Stannard and Frank Stajano

10. Frank Stajano. Security for Ubiquitous Computing. Wiley, 2002. ISBN 0-470-
84493-0.

11. Frank Stajano. “Pico: No more passwords!” In Bruce Christianson et al. (ed.),
“Proc. Security Protocols Workshop 2011”, vol. 7114 of LNCS. Springer, Mar 2011.
http://www.cl.cam.ac.uk/~fms27/papers/2011-Stajano-pico.pdf.

12. Frank Stajano and Ross Anderson. “The Resurrecting Duckling: Security Is-
sues in Ad-Hoc Wireless Networks”. In B. Christianson et al. (ed.), “Proc. Se-
curity Protocols Workshop 1999”, vol. 1796 of LNCS, pp. 172–182. Springer,
Apr 1999. ISBN 3-540-67381-4. http://www.cl.cam.ac.uk/~fms27/papers/
1999-StajanoAnd-duckling.pdf.

http://www.cl.cam.ac.uk/~fms27/papers/2011-Stajano-pico.pdf
http://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
http://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf

	Am I in good company?A privacy-protecting protocolfor cooperating ubiquitous computing devices

