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Graphene’s high mobility and Fermi velocity, combined with its constant light absorption in the
visible to far-infrared range, make it an ideal material to fabricate high-speed and ultra-broadband
photodetectors. However, the precise mechanism of photodetection is still debated. Here, we re-
port wavelength and polarization dependent measurements of metal-graphene-metal photodetectors.
This allows us to quantify and control the relative contributions of both photo-thermo- and pho-
toelectric effects, both contributing to the overall photoresponse. This paves the way for a more
efficient photodetector design for ultra-fast operating speeds.

The unique optical and electronic properties
of graphene make it ideal for photonics and
optoelectronics[1]. A variety of prototype devices
have already been demonstrated, such as trans-
parent electrodes in displays[2] and photovoltaic
modules[3], optical modulators[4], plasmonic devices[4–
9], microcavities[10, 11] and ultra-fast lasers[12].
Amongst these, a significant effort has been devoted to
photodetectors[6, 10, 11, 13–25].

Various photodetection schemes and architectures have
been proposed to date. The simplest configuration is the
metal-graphene-metal (MGM) photodetector, in which
graphene is contacted with metal electrodes as source
and drain[13–18]. These detectors can be combined with
metal nanostructures enabling local surface plasmons and
increased absorption, realizing an enhancement in re-
sponsivity (i.e. the ratio of the light-generated electrical
current to the incident light power)[6, 26]. Microcav-
ity based photodetectors were also used, with increased
light absorption at the cavity resonance frequency, again
achieving an increase in responsivity[10, 11]. Another
scheme is the integration of graphene with a waveguide to
increase the effective interaction length with light[25, 27].
Hybrid approaches employ semiconducting nanodots as
light absorbing media[22]. In this case, light excites
electron-hole (e-h) pairs in the nanodots. The electrons
are trapped in the nanodot, while the holes are trans-
ferred to graphene, thus effectively gating it[22]. Un-
der applied drain-source bias this results in a shift in
the Dirac-point, thus a modulation of the drain-source
current[22]. Due to the long trapping time of the elec-
trons within the dot, the transferred holes can cycle many
times through the phototransistor before relaxation and
e-h recombination. This gives a photoconductive-gain,
i.e. one absorbed photon effectively results in an electri-
cal current of several electrons. Responsivities>107 A/W
were reported[22], but with a ms timescale, not suitable
for e.g. high-speed optical communications. Devices were

also fabricated for detection of THz light[28, 29]. In this
low energy range, Pauli-blocking forbids the direct ex-
citation of e-h pairs due to finite doping. Instead, an
antenna coupled to source and gate of the device excites
plasma waves within the channel. These are rectified,
leading to a detectable dc output voltage[28, 29]. Pho-
todetectors based on intrinsic graphene plasmons were
also demonstrated[23]. Graphene, structured into peri-
odic nanoribbons (GNRs), forms a plasmonic metamate-
rial enabling standing plasmons excitation by infrared
light. These lead to an increase of the electron and
phonon temperatures, which causes a detectable change
of the electrical conductivity of graphene[23].

MGM photodetectors play an important role because
they are easy to fabricate, not relying on nanoscale lithog-
raphy. They operate over a broad wavelength range
as the light-matter interaction is mostly determined by
graphene itself. Further, ultrahigh operating speeds can
be achieved[16], as no bandwidth limiting materials are
employed[22]. MGM photodetectors can be considered
as the fundamental building block for the other architec-
tures mentioned above. They consist of a graphene chan-
nel contacted by two electrodes, either of the same[13–
15, 17, 18, 21] or two different metals[16]. The difference
in workfunction between the metal pads and graphene
leads to charge transfer[30], with a consequent shift of
the graphene Fermi level in the region below the metal
pads[30]. The Fermi level gradually moves back to that of
the un-contacted graphene when crossing from the metal
covered region to the metal-free channel[14]. This re-
sults in a potential gradient extending∼100-200nm from
the end of the metal pad to the metal-free graphene
channel[14]. This inhomogenous doping profile creates
a junction along the graphene channel. This can in prin-
ciple be a pn-, nn- or pp-junction between the graphene
underneath the channel and within the channel, as the
channel Fermi-level can be controlled by the back gate.
Fig.1a shows a schematic of the doping profile induced
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FIG. 1. Overview of a) energy-band profile in MGM photode-
tectors and b) transistor-like graphene-based photodetector
employing a top gate.

by the metal contact. The formation of this junction is
crucially important in the photodetection process, as it
results in an internal electric field, capable of separating
the light induced e-h pairs.
Another approach to create such junctions, is to ex-

ploit a dual-gate transistor structure (Fig.1b)[19, 20, 31].
The simultaneous electrostatic doping of the graphene
channel by means of a global bottom- and a local top-
gate allows formation of nnn, ppp, npn, or pnp junctions,
respectively. From an application point of view, the dual
gate structure requires more fabrication steps, as well as
more supply voltages for the gating, but allows control
of the doping levels on both sides of the junction. The
MGM photodetector requires fewer processing steps, but
has a fixed doping level underneath the contacts, thus
allowing fewer operational degrees of freedom. However,
it is more suited for applications, due to the simpler fab-
rication; the single back gate can be used to control the
potential gradient in the vicinity of the contacts.
Currently, two effects are thought to contribute to the

photoresponse in graphene-based photodetectors, both
requiring spatially in-homogenous doping profiles: photo-
thermoelectric[15, 19, 20, 23, 32] and photoelectric[13, 14,
16, 18, 33]. The photo-thermoelectric effect results from
local heating of, e.g., the pn-junction, due to the inci-
dent laser power. Non-equilibrium hot carriers are ex-
cited with an electron temperature (T) higher than that
of the lattice[32]. Different doping levels on both sides of
the junction give different Seebeck coefficients[32]. These
are a measure of the induced thermoelectric voltage due
to a T gradient, and depend on the Fermi-level according
to Mott’s formula[20, 21, 32, 34]:

S = −π
2k2BT

3q

1

σ

dσ

dµ
(1)

with kB the Boltzmann constant, σ the conductivity,
q electron charge, and µ the chemical potential. As a
consequence, a net electron flow results[20, 21, 32, 34],
producing a photo-thermoelectric voltage VPTE [20, 21,
32, 34]:

VPTE = (S1 − S2) ∆T (2)

with ∆T the T increase of the hot electrons within the
junction, and S1, S2 the Seebeck coefficients of the two
regions with different doping at the junction.
Due to the non-monotonous dependence of the differ-

ence of the Seebeck coefficients in the two differently
doped regions of the junction, the resulting VPTE ex-
hibits multiple sign reversals in dependence of the gate
voltage[20, 32]. This results in a six-fold pattern, due
to the non-monotonic S in a plot of the photovoltage in
dependence of the two doping levels on either side of the
junction, as theoretically proposed in Ref.[32] and exper-
imentally observed in Ref.[20].
Besides photo-thermoelectric effects, light induced

heating of one contact can also lead to a T gradient,
resulting in a photo-thermoelectric contribution to the
photovoltage, as that described in Refs.[35, 36], where
a T gradient was created employing a microfabricated
heater[35, 36].
The presence of the junction in the photo-

thermoelectric effect is as important as in the photoelec-
tric effect. The potential gradient within the junction
separates the light induced e-h pairs and leads to a cur-
rent flow as in a conventional photodiode[33, 37]. How-
ever, to the best of our knowledge, direct evidence and
quantification of the photoelectric effect contribution to
the photovoltage generation is still missing.
Here we investigate the wavelength and polarization

dependent responsivity of MGM photodetectors. The
measured light polarization dependent responsivity, com-
bined with the spatial origin of the photoresponse ob-
tained from photovoltage maps, allows us to determine
the photoresponse mechanisms and quantitatively at-
tribute it to photo-thermo- and photo-electric effects.
Our devices are fabricated as follows. Graphene is

produced by mechanical exfoliation of graphite (NGS
Naturgraphit GmbH) on top of Si+SiO2 (300nm)[38,
39] and its single layer nature confirmed by optical
microscopy[40] and Raman spectroscopy[41, 42]. E-beam
lithography is used to define the contacts, followed by
e-beam evaporation of the contact metal, consisting of
a 4nm Ti adhesion layer, and 80nm gold Au pads, us-
ing lift-off to ensure good mechanical adhesion as well
as good electrical contact. Fig.2 shows an optical micro-
graph of a representative device. The two metal contacts
with a width of 5µm face each other. The highly-doped
(ρ = 0.001−0.005 Ωcm) Si back gate allows us to control
the Fermi-level in the graphene channel.
Photovoltage mapping is performed at 457, 488, 514,

633, 785, and 1550nm (laser power P<1mW). The sam-
ples are bonded into a chip-carrier, and connected in a
two-terminal configuration to a Keithley Nanovoltmeter
2182A with an additional sourcemeter controlling the
gate voltage. The position dependent generated photo-
voltage is monitored while linearly polarized laser light
with diffraction limited spot size is scanned over the de-
vice. Light from the laser sources is focused through a



3

FIG. 2. Optical micrograph of device. Graphene is contacted
with two metal electrodes.

100x ultra-long working distance objective (NA=0.6) on
to the photodetectors. A Fresnel-Rhomb polarizer allows
us to rotate the light polarization. Polarization control
at 1550nm is achieved employing a λ

2 wavelength plate.
Raman measurements are carried out using a Renishaw
inVia spectrometer with P<1mW to avoid any possible
damage. This allows monitoring defects[42–45], as well
as local doping[6, 42, 46, 47].

The doping of the pn-junction can be determined by
measuring the back gate voltage dependence of the pho-
toresponse. Fig.3a compares the photovoltage in depen-
dence of back gate voltage Vg with the resistance, at
an incident light wavelength of 633nm. The photovolt-
age shows a sign reversal at -5V relative to the Dirac
point, VD. The photovoltage is zero at Vg − VD=-5V,
as the doping underneath the metal contact and in the
non-contacted graphene is equal, meaning that no junc-
tion is present, thus no photovoltage can be produced.
The point of vanishing photovoltage lies in the p-doped
branch of the resistance curve. From the carrier density
n = ǫǫ0

Vg−VD

e t , with t the oxide thickness, the Fermi-
level EF = ~vF

√
πn can be derived to be∼60meV[38, 39].

This p-doping underneath the metal contact is indepen-
dent of back gate voltage, due to Fermi-level pinning[30].
For photovoltage mapping, the back gate voltage is set
to Vg − VD=+10V to achieve n-doping∼100meV in the
non-contacted graphene, thus a pn-junction. The dop-
ing values are in good agreement with what can be es-
timated from the Raman spectrum in Fig.3b, measured
at Vg − VD=-5V. The spectrum shows no D peak, indi-
cating negligible defects[41–44]. The 2D peak is a sin-
gle sharp Lorentzian with full width at half maximum,
FWHM(2D)∼28cm−1, signature of single layer graphene
(SLG). The G peak position, Pos(G), and full width at
half maximum, FWHM(G), are∼1587cm−1 and∼9cm−1.
Pos(2D)∼2686cm−1, and the 2D to G intensity and area
ratios, I(2D)/I(G) and A(2D)/A(G), are 3.1 and 8.8 re-
spectively. This indicates p-doping<100meV[47], con-

FIG. 3. a) Photovoltage and resistance as a function of back
gate voltage. b) Raman spectrum measured at 514.5nm and
Vg −VD=-5V, corresponding to the voltage at which the pho-
tovoltage exhibits a sign reversal in a).

firming the electrical characterization. Further, while
pristine SLG absorbs 2.3% of the incident light[67], dop-
ing can significantly decrease the absorption by Pauli
blocking[48, 49]. However, the estimated low doping
level∼100meV derived from the electrical and Raman
measurements does not induce any absorption decrease
in the wavelength range used in this work.

After confirming that both contacts behave identically
by taking a full scan of the device, we will henceforth
consider only one of the metal contacts. Fig.4 shows the
influence of the excitation wavelength on photovoltage for
a pn-junction configuration (p-doping of graphene under-
neath the contact and n-doping in the graphene channel).
The photovoltage maps at short and long wavelengths are
very different. For 785nm excitation (Fig.4b) the pho-
tovoltage is mostly generated close to the contact edge
where the pn-junction is located, and vanishes where the
graphene flake ends underneath the contact, indicated
by the dotted line. At the corners of the metal contact
a hot spot of enhanced responsivity occurs, due to cur-
vature induced electric-field enhancement (lightning-rod
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FIG. 4. Photovoltage maps for a) 457nm and b) 785nm exci-
tations

effect)[50]. On the other hand, at 457nm (Fig.4a) the
whole contact area contributes to the photovoltage, with
maxima at the contact edges. Even far away from the
pn-junction located at the edge of the metal contact, a
photovoltage is produced. This persists in the metal con-
tact even when graphene is absent underneath, as such
extending beyond the indicated dotted line.

Fig.5 shows that at 633, 785, and 1550nm a single peak
at the contact edge is observed. Wavelengths of 457, 488,
514 nm lead to an additional decay of the photovoltage
into the metal contact, with increasing decay lengths for
shorter wavelengths.

We now consider the dependence of the responsivity,

FIG. 5. Spatial profile of photovoltage in the center of the
metal contact.

FIG. 6. a) Responsivity of MGM-photodetector and b) 1-
Reflectance of Au, as a function of excitation wavelength
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g, on excitation wavelength, Fig.6a. This shows an en-
hancement towards shorter wavelengths (2.5 times big-
ger at 457nm compared to 1550nm). We assign this to
an increased absorption of the incident light at shorter
wavelengths on the Au contact. This leads to a T rise
on the metal contact, thus heating the pn-junction at
the contact edge, producing a thermoelectric contribu-
tion to the photovoltage. This is consistent with the
photovoltage contribution of the metal contact far away
from the contact edge, as seen in Fig.4a, because no
light is incident directly on the junction. Considering
Au’s good (∼ 300 W

mK )[51] and graphene’s excellent (up

to∼ 5000 W
mK )[52] thermal conductivities, we assume that

heat is transported to the pn-junction from within the
metal contact, leading to a T gradient across the de-
vice and producing a thermoelectric contribution to the
photovoltage[35, 36]. Indeed, the trend in Fig.6a fol-
lows that of the heat energy Q [J] deposited into the
metal by the incident laser. This can be expressed as
Q ∝ Pabs = (1−R)Pinput[53], with Pabs[W ] the absorbed
power in the metal film, R the Au film reflectance and
Pinput, the incident laser power. Fig.6b plots the calcu-
lated dependence of 1-R as a function of wavelength. For
metals, the normal incidence R can be written as[54]:

R =
(n1 − n0)

2 + k21
(n1 + n0)2 + k21

(3)

where n0 is the refractive index of the entrance medium,
and n1 and k1 are the real and imaginary parts of the
complex index of refraction of the absorbing medium.
Taking Au’s complex index of refraction from Ref.[55]
and considering that the entrance medium is air with
n0 = 1, the factor 1-R, proportional to the absorbed
heat energy, is in good agreement with Fig6a. 1-R in-
creases a factor 20 from 1550 to 457nm and explains the
enhanced responsivity at shorter wavelengths as due to
pronounced thermoelectric effects resulting from the Au
contact heating. Even in the absence of graphene under-
neath the contact, a photoresponse is generated as the
Au film spreads the heat energy towards graphene.
To further investigate the influence of thermo- and

photoelectric effects on the overall photovoltage, we per-
form polarization dependent measurements. Photovolt-
age maps are acquired at different polarization angles of
the incident light, for a given location at the contact edge.
Fig.7 plots the photovoltage in dependence of polariza-
tion at 633, 785, and 1550nm excitations. An angle of 0◦

denotes a polarization perpendicular to the metal contact
edge. This shows two contributions: one polarization de-
pendent, and another polarization independent.
This behavior could be in principle due to plasmonic

effects[6, 7]. Polarization dependent excitation of plas-
mons at the metal edge could lead to near-field en-
hancement, thus a polarization dependent responsivity
enhancement. Raman spectroscopy is used to investi-
gate the influence of the metal electrode on a possible

FIG. 7. Dependence of photovoltage on incident polarization

FIG. 8. a) Linescan of I(G) approaching the contact edge. b)
Polarization dependence of I(G) at the edge relative to I(G)
away from the edge



6

FIG. 9. (Left) Honeycomb lattice of graphene and corre-
sponding real space pseudospin orientation of the two inter-
penetrating Bravais sublattices, denoted in red and blue, re-
spectively, and (Right) translation to momentum space.

plasmonic dependence on light polarization. Spectra are
first taken approaching the metal electrode from the bare
graphene in a line scan with 300nm steps. Fig.8a plots
I(G) as a function of position, for polarization perpendic-
ular to the metal edge (maximum photovoltage). I(G) de-
creases as the metal edge is approached and no enhance-
ment in the vicinity of the edge is observed. Instead, the
metal electrode shields the light, resulting in a I(G) re-
duction. Polarization dependent Raman measurements
are then carried out at the metal edge, Fig.8b. No trend
is observed for the angular dependence. Another possible
explanation could be surface plasmon polaritons (SPPs)
that propagate from within the metal contact towards
the junction at the edge of the contact[56]. However,
experiments in combination with theoretical calculations
demonstrate that SPPs cannot be excited on a flat metal
contact[56]. Thus, plasmonic effects cannot explain the
observed photovoltage angular dependence.

We thus assign the polarization dependent contribu-
tion to the photoelectric effect, as due to polarization
dependent interband optical excitations. Charge carri-
ers in graphene are the π-electrons moving on a honey-
comb lattice composed of two interpenetrating hexagonal
sublattices. The sublattice degree of freedom is com-
monly associated with the pseudospin[57], which relates
to the relative amplitude of the electron wave function
located on either sublattice. If all electrons were placed
on the “red” sublattice in Fig.9, the pseudospin would be
pointing upwards out of the SLG, whereas electrons on
the “blue” sublattice correspond to pseudospin pointing
downwards out of the SLG. Since both “red” and “blue”
lattice sites are occupied by the same carbon atoms, the
electron density is distributed equally between these sub-
lattices. Thus, the in-plane pseudospin orientation is de-
termined by the phase difference in the amplitudes on
the “red” and “blue” sites[57]. The resulting texture is

radial, as shown in Fig.9.

The pseudospin-locked carriers can be described by
the effective Hamiltonian[57]: H0 = vF~σ · p, where p is
the two-component momentum, ~σ is the pseudospin, and
vF ≈ 106ms−1 is the Fermi velocity. The pseudospin tex-
ture represents the expectation value of the pseudospin
operator ~σ with respect to the eigenstates of H0[57].

To excite an electron from the valence to the conduc-
tion band it is necessary to flip the pseudospin, as it is
seen from Fig.9. The interaction Hamiltonian between
the charge carriers in graphene and an electromagnetic
wave is characterized by the electric E = − 1

c
∂A
∂t and

magnetic B = ∇×A fields, with A the vector potential.
This can be derived formH0 by substituting p → p− e

cA:
Hint =

evF
c ~σ ·A. Assuming a linearly polarized electro-

magnetic wave withA = A0 cos(ωt−kz), the correspond-
ing electric field is E = E0 sin(ωt− kz), with E0 = ωA0

c ,
ω = 2πc/λ the radiation frequency, and k the normal
component of the wave vector. Considering the commu-
tator [Hint, ~σ], we get that these two operators commute
with each other if and only if A (or E) is along ~σ. The
pseudospin is then conserved and interband transitions
are forbidden, as for Figs.10a,b. In contrast, the com-
mutator [Hint, ~σ] is maximum for E ⊥ ~σ, resulting in
an interband transition rate maximum, Figs.10a,b. Note
that ~σ ‖ p because of the pseudospin-momentum lock-
ing, Figs.10a,b. As consequence, the photovoltage V ph

measured on the irradiated junction depends on the rel-
ative orientation between the polarization plane of the
incident light and the junction.

The relaxation of photoexcited carriers to equilibrium
in graphene consists of three processes with three char-
acteristic time scales[12, 58–63]: In the first step, pho-
toexcited carriers lose energy through e-e scattering on
a∼10fs time-scale[58, 63]. Subsequently, this distribu-
tion thermalizes through electron-phonon (e-ph) scatter-
ing towards a hot Fermi-Dirac distribution[12, 58–65],
with time-scale in the range of hundreds of fs (τ1)[12, 58–
65]. Finally, the hot Fermi-Dirac distribution relaxes to
equilibrium by e-h recombination, which can lead to plas-
mon emission, phonon emission and Auger scattering on
a ps timescale (τ2)[12, 58–63].

The optical fluence Φ applied to our devices is low
compared to that used in most pump-probe measure-
ments, such as those in Refs.[58–60, 66]. It is instructive
to translate the fluence to the photoelectron concentra-

tion nph = πe2

~c
Φ
~ω with πe2

~c = 0.023 the SLG optical

absorption[67], or, equivalently, nph = πe2

~c
wiτ2
~ω , where

wi = c|E0|2
8π is the incident radiation power per square.

The majority of pump-probe measurements were done
for nph ∼ 1013 cm−2[58–60, 66]. In our case of continu-
ous wave radiation with laser powers∼few hundred µW
and µm laser spot diameters, we have nph ∼ 1010 cm−2,
for a typical total recombination time τ2 ∼ ps. The
anisotropic distribution function for the photoexcited
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FIG. 10. a,b) Linearly polarized light incident on a potential
step U(x) in graphene and pseudospin-dependent selection
rule for interband optical excitations for a) θpol = 0◦ and b)
θpol = 90◦. The polarization is characterized by the elec-
tric field E. The photocarrier generation rate is anisotropic

and proportional to sin2(Ê,p), where p is the electron mo-
mentum. The driving term of the Boltzmann equation acting
on a function of p/p is maximal when the force −∇U(x) is
perpendicular to the direction of motion, maximizing the pho-
toresponse at θpol = 0◦, see the main text.

carriers relaxes to an hot Fermi-Dirac distribution at a
T which could be much higher than room temperature,
Troom[58, 61, 62, 66]. In our case, however, the light
induced photocarrier concentration is much lower than
the always present intrinsic background electron concen-
tration, even at zero chemical potential. The intrinsic
e concentration n at Troom can be calculated as n =

4
∫

d2k
4π2 f

(0)
+ (k, Troom) =

πT 2
room

6~2v2
F
, with f

(0)
+ (k, Troom) the e-

Fermi-Dirac distribution, and the multiplier 4 due to the
spin and valley degeneracy. This gives n ∼ 1011 cm−2,
higher than nph ∼ 1010 cm−2 at the fluence used in our
experiments. The same is true for the corresponding hole
concentrations p and pph. The major contribution to the
total carrier concentration thus originates from the in-
trinsic carriers, described by the Fermi-Dirac distribu-
tion at Troom. In what follows, we therefore assume the
characteristic e temperature to be Troom.
Note that the role of carrier-carrier interactions in the

relaxation of the photocarrier distribution is reduced sub-
stantially since the lower carrier concentration results in
less frequent carrier-carrier collisions. As consequence,
the ultrafast relaxation time scale∼ 10 fs[58] at high flu-
ence is not considered here. We assume the relaxation
of the anisotropic photocarrier distribution governed by
scattering with optical phonons, rather than by e-e scat-
tering, and characterized by the slower intraband relax-
ation rate τ1. This was measured∼ 150− 170 fs[58].
The interaction between the electromagnetic wave and

charge carriers can be quantified using Fermi’s golden-
rule, considering Hint as a perturbation. The steady
state distribution function is obtained by balancing the
golden-rule e-h generation and relaxation rates. Since
we are interested in the anisotropic part of the distribu-
tion function, the relevant relaxation time is τ1 = 150 fs
discussed above, rather than τ2 > 1 ps associated with
e-cooling and e-h recombination. The generation rate is
proportional to sin2(θ − θpol), where θ is the direction
of e motion with px = p cos θ, py = p sin θ, and θpol the
polarization angle, see Methods.
The standard tool for photovoltage calculations is the

drift-diffusion equation[73], which considers e and h con-
centrations, rather than their distribution functions. The
angular dependence of the distribution function is lost
when the Boltzmann equation is integrated in momen-
tum space to obtain the drift-diffusion relation[73]. To
retain the angular dependence we have to take one step
back and start from the Boltzmann equation:

F · ∇pf± + v · ∇rf± = gph± − ∆f±
τ1

, (4)

where F is the electrostatic force, with Fx = F cosφ,
Fy = F sinφ, v is the electron velocity, gph± is the photo-

generation rate, and ∆f± = f± − f
(0)
± is the deviation of

the distribution function from the hot Fermi-Dirac distri-
bution f

(0)
± with “±” being the conduction/valence band

index. The solution of this equation can be found in
Methods. Having f± at hand we calculate the current

density jx = 4
∑

±
∫

dk2

4π2 vxf±, then set jx(V ) to zero
(open circuit) and extract the voltage V , which resem-
bles the photovoltage V ph in the absence of bias.
It is important to emphasize that the photovoltage

maximum occurs for the perpendicular orientation of the
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light polarization plane with respect to the potential bar-
rier when the majority of photoexcited electrons are mov-
ing parallel to the junction. This is due to the driving
operator in the kinetic equation (Eq.4) which acts on the
θ-dependent steady state distribution function in a non-
trivial way. The θ-dependent part of the driving operator
can be written as:

(F · ∇p)θ = (−Fxpy + Fypx)
1

p2
∂

∂θ

= sin (φ− θ)
F

p

∂

∂θ
, (5)

where the relations ∂θ
∂px

= −py/p2 and ∂θ
∂py

= px/p
2 have

been utilized. Thus, the driving operator acting on the
function of θ is maximum when the force and direction
of particle motion are perpendicular, i. e. φ − θ = π/2.
Thus, the major contribution to ∆f± comes from e mov-
ing parallel to the barrier, photogenerated by the polar-
ized light with θpol = 0◦, as shown in Figs.10a,b. The
maximum photovoltage occurs therefore at θpol = 0◦, not
at θpol = 90◦, as one might expect. A similar 90◦ off-set
was found in the photocurrent calculations of Ref.[33].

We distinguish two cases of n-n and p-n graphene junc-
tions. The former is simpler and the resulting cos2 θpol-
dependent photovoltage term reads:

−qV ph
osc(θpol) = cos2 θpol

τ1λ
2v2F

2πc2
Wa

πd2/4

× ln

(

µ0 − U
(

x+ d
2

)

µ0 − U
(

x− d
2

)

)

. (6)

Here, λ is the light wavelength, µ0 is the chemical poten-
tial in graphene in the absence of top metallic contacts,
U(x) is the built-in potential profile due to the metal-
lic contacts, and the laser spot diameter is d = 1.5µm.
To simplify the expression, we assume µ0 − U(x) ≫ T
for any x, with x the laser spot position. The absorbed
radiation energy is characterized by the absorbed power

Wa = πe2

~c Wi, which depends on the incident radiation

power Wi, and SLG optical absorption πe2

~c = 0.023. If
the laser beam is focused on the middle of the n-n junc-
tion at x = 0 and its size is larger than the junction
region, then ∆U = U

(

d
2

)

−U
(

− d
2

)

is the built-in poten-
tial step forming the junction. The photovoltage depends
weakly on ∆U and the logarithmic multiplier is smaller
than 1 for potential steps ∆U of a few 10s-100smeV, sat-
isfying the µ0 −U(x) ≫ T criterion. This is different for
the p-n junctions shown in Fig.1, where µ0 − U(x) ≪ T
in the middle of the junction.

In what follows we assume µ0 = 0 and the electro-
chemical potential characterized by U(x) alone. Eq. (6)

FIG. 11. Experimental and theoretical polarization depen-
dent photovoltage amplitude ∆V ph

osc for our graphene p-n
junction as a function of incident light wavelength. To fit
the data, Eq. (8) is used with the following parameters:
τ1 = 150 fs, vF = 106ms−1, d = 1.5µm, U

(
−

d

2

)
= −100meV,

U
(
+ d

2

)
= 50meV, T = 25meV.

is then rewritten as:

−qV ph
osc(θpol) = cos2 θpol

τ1λ
2v2F

2πc2
Wa

πd2/4

×

U(x+ d
2 )

2T
∫

U(x− d
2 )

2T

dξ

ln (2coshξ)
. (7)

T appears in Eq.7 since the condition U(x) ≫ T utilized
before cannot apply in the middle of the p-n junction,
where U = 0, Fig.1. At x = 0 (i.e. laser spot in the mid-

dle of the junction) and U(±d/2)
2T = 1 (i.e. a potential step

of 100meV), the integral is∼1. At the radiation power of
300µW and λ = 633 nm, the amplitude of cos2 θpol oscil-
lations is a few µV. The photovoltage amplitude ∆V ph

osc

at x = 0 is then given by:

∆V ph
osc(θpol) =

τ1λ
2v2F

2π|q|c2
Wa

πd2/4

U(+ d
2 )

2T
∫

U(− d
2 )

2T

dξ

ln (2coshξ)
. (8)

This is our main theoretical outcome, and is computed
for our device as a function of λ in Fig.11.
Note that the photovoltage is higher for longer wave-

lengths. This is because light with longer wavelength,
but same radiation power, can excite more e into the
conduction band, resulting in a stronger photoresponse.
V ph also contains a polarization-independent term of the
same order as V ph

osc . It is however not possible to separate
this term from the thermoelectric contributions, which
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are isotropic and independent of the incoming light po-
larization, due to the isotropy of graphene and the Au
film. The oscillating, incident light polarization depen-
dent part of Fig.7 is thus a direct proof of a photoelectric
contribution to the overall generated photovoltage. The
magnitude of these oscillations with respect to the over-
all photoresponse allows us to estimate the relative pho-
toelectric contribution Ppe to the overall photoresponse.
Fig.7 shows that Ppe is at least 21, 25, and 53 % for
633, 785, 1550nm. The experimentally and theoretically
determined amplitude of the photoelectric polarization
dependent part ∆V ph

osc is shown in Fig.11, which demon-
strates an increase of photoelectric contributions towards
longer wavelengths.
In conclusion, we demonstrated the influence of the

orientation of the lateral pn-junction in graphene-based
photodetectors with respect to the polarization of inci-
dent linearly polarized light. The angular dependence
is in good agreement with theory and a proof that both
photo-thermoelectric and photoelectric effects contribute
to the photoresponse in MGM-photodetectors, with pho-
toelectric effects becoming more pronounced at longer
wavelengths. Further, we demonstrated that the light
generated anisotropic distribution of carriers in momen-
tum space can be observed in electrical measurements de-
spite their relaxation on ultra-fast time scales (τ1). This
might open the possibility for graphene-based photode-
tectors that can detect incident light and its polarization
on ultra-fast time scales, overcoming the thus-far speed
limiting time constant τ2.
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METHODS

Kinetic equation for optically excited carriers in

graphene with a built-in potential U(x)

The Boltzmann kinetic equation (4) introduced above

for ∆f± = f± − f
(0)
± can be written as:

−q ∂V
∂x

∂f±
∂px

− ∂U

∂x

∂f±
∂px

+v±
∂f±
∂x

= gph± − f± − f
(0)
±

τ1
, (9)

where px = ~kx, v± = ±vFkx/k, q = −|q| is the elec-
tron charge, and U(x) is the built-in potential. The bias

voltage is assumed to be small enough to justify the lin-
ear response in terms of ∂V

∂x . In the absence of bias and
photogeneration, the system is in the equilibrium state

described by the Fermi-Dirac distribution function f
(0)
± :

f
(0)
± =

1

1 + exp
(

±~vF k+U(x)−µ0

T

) . (10)

“±” stands for the conduction and valence band. The
photogeneration rate gph± can be derived from Fermi’s
golden rule using the unperturbed eigenstates of H0,

ψ±k(x, y) = 1√
2
eikxx+ikyy

(

1,±eiθ
)T

, where tan θ =

ky/kx. For a given spin/valley channel we get:

gph± =
2π

~

(

~qvFE0

2~ω

)2

sin2 (θpol − θ)

×δ(~ω − 2~vFk)(f
(0)
∓ − f

(0)
± ), (11)

where θpol is the polarization angle, and E0 is the electric
field amplitude of the electromagnetic wave, which can
be related to the incident radiation power per unit square

as wi =
c
4π 〈[E×B]z〉t = cE2

0

8π [W/cm2]. The fluence can
be estimated as Φ = wi∆t. The integral radiation power

is Wi = wi
πd2

4 , where d is the laser spot diameter.

We look for the solution of Eq.9 in the form f± = f
(0)
± +

fph
± + f

(1)
± , where fph

± = τ1g
ph
± , and f

(1)
± is determined

from the following equation obtained by the substitution
of f± in Eq.9:

−q ∂V
∂x

∂f
(0)
±

∂px
− ∂U

∂x

∂f
(0)
±

∂px
+ v±

∂f
(0)
±
∂x

(12)

−q ∂V
∂x

∂fph
±

∂px
− ∂U

∂x

∂fph
±

∂px
+ v±

∂fph
±
∂x

= −f
(1)
±
τ1

.

But, −∂U
∂x

∂f
(0)
±

∂px
+ v±

∂f
(0)
±

∂x = 0. Moreover, −q ∂V
∂x

∂fph
±

∂px
≪

−q ∂V
∂x

∂f
(0)
±

∂px
, since nph ≪ n, as discussed in the main text.

Taking into account the θ dependence of fph
± , f

(1)
± can be

written as:

f
(1)
±
τ1

= q
∂V

∂x

∂f
(0)
±

∂px
+
∂U

∂x

πτ1vF
2~

(

qE0

2~ω

)2

(f
(0)
∓ − f

(0)
± )

×
{

cos θ [1− cos (2θpol − 2θ)]

[

∂

∂k
δ

(

k − ω

2vF

)]

+2 sin θ sin (2θpol − 2θ)
1

k
δ

(

k − ω

2vF

)}

. (13)

Note the graphene specific contribution proportional to
∂ sin2(θ−θpol)

∂kx
= sin(2θpol − 2θ) sin θ

k . To calculate the cur-
rent density we multiply Eq. (13) by v± and integrate it

over k and θ. We assume that f
(0)
+ (k = ω

2vF
) = 0 and

f
(0)
− (k = ω

2vF
) = 1, as reasonable for any T, electrochem-

ical doping and wavelength we consider in this paper. In
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order to find the photovoltage for the open circuit we em-
ploy in our measurements, the total current density and
external bias are set to zero. In this case, V in Eq. (13)
is the photovoltage V ph.

Photoresponse of graphene n-n junction

Here we assume that µ0 − U(x) ≫ T , so that Eq.13
can be integrated:

q
∂V ph

∂x
(µ0−U(x))+(2+cos 2θpol)

∂U

∂x

πτ1
2~

(

qvFE0

2ω

)2

= 0.

(14)
To obtain V ph we integrate Eq.14 over x within the laser
spot:

−qV ph = (2 + cos 2θpol)
πτ1
2~

(

qvFE0

2ω

)2

×
x+ d

2
∫

x− d
2

dx
1

µ0 − U(x)

∂U

∂x
. (15)

The E0-dependent multiplier in Eq.15 can be expressed

in terms of the absorbed radiation power Wa = πe2

~c Wi

(or absorbed radiation power per square wa = πe2

~c wi).
Extracting the θpol dependent part out of Eq.15, we ar-
rive at the final result of Eq.6.

Photoresponse of graphene p-n junction

Here the electrochemical potential can be smaller than
the junction region T, and we cannot assume µ0−U(x) ≫
T . To simplify, we set µ0 = 0, so that the electrochemical
potential is determined by U(x) alone. Note that Eq.14
is now T dependent:

q
∂V ph

∂x
2T ln

(

2cosh
U(x)

2T

)

+(2 + cos 2θpol)
∂U

∂x

πτ1
2~

(

qvFE0

2ω

)2

= 0.

(16)

and the photovoltage becomes:

−qV ph = (2 + cos 2θpol)
πτ1
2~

(

qvFE0

2ω

)2

×
x+d/2
∫

x−d/2

dx

2T

1

ln
(

2coshU(x)
2T

)

∂U

∂x
. (17)

One can exclude T from the integrand. The final formula
for V ph reads:

−eV ph = (2 + cos 2θpol)
πτ1
2~

(

evFE0

2ω

)2

×

U(x+d/2)
2T
∫

−U(x−d/2)
2T

dξ

ln (2coshξ)
. (18)

Extracting the θpol dependent part from Eq.18, we get
Eq.7.

Thermoelectric contribution in the total

photoresponse

An irradiated sample experiences heating, therefore
the electrons are subject to a T gradient ∂T

∂x , which ap-

pears in Eq.9, when v±
∂f±
∂x is written explicitly. Fol-

lowing the same procedure as above, we arrive at Eq.12,

where −∂U
∂x

∂f
(0)
±

∂px
+v±

∂f
(0)
±

∂x is not zero, and gives the lead-

ing contribution in terms of ∂T
∂x . This cannot depend on

light polarization in any circumstance.
For Eq.14, the thermoelectric term can be estimated

as π2

3 T (x)
∂T
∂x , which results in the photothermoelectric

term given by Eq.2. Thus, the thermoelectric contribu-
tion, being proportional T, gets larger for hot electrons,
and becomes dominant in this case. Most importantly,
the thermoelectric response mainly depends on the ra-
diation power converted to heat, and is not sensitive to
any particular light polarization. In contrast, the photo-
electric response (Eq.15) does depend on the polarization
angle θpol, which makes it possible to separate these two
effects in the total response measured. Note, however,
that the photovoltage (Eq.15) also contains a θpol inde-
pendent contribution, which is not possible to distinguish
from the thermoelectric response. Nevertheless, the am-
plitude of cos 2θpol oscillations gives indication of how
large the photoelectric response is.
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