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Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany, 4 Department of Experimental
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Abstract

Despite the potential benefits of sequential designs, studies evaluating treatments or

experimental manipulations in preclinical experimental biomedicine almost exclusively

use classical block designs. Our aim with this article is to bring the existing methodology

of group sequential designs to the attention of researchers in the preclinical field and to

clearly illustrate its potential utility. Group sequential designs can offer higher efficiency

than traditional methods and are increasingly used in clinical trials. Using simulation of

data, we demonstrate that group sequential designs have the potential to improve the effi-

ciency of experimental studies, even when sample sizes are very small, as is currently

prevalent in preclinical experimental biomedicine. When simulating data with a large effect

size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis con-

sumes in the long run only around 80% of the planned number of experimental units. In

larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of

resources of up to 30% compared to block designs. We argue that these savings should

be invested to increase sample sizes and hence power, since the currently underpowered

experiments in preclinical biomedicine are a major threat to the value and predictiveness

in this research domain.
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Background

Group sizes in preclinical research are seldom informed by statistical power considerations

but rather are chosen on practicability [1, 2]. Typical sample sizes are small, around n = 8 per

group (http://www.dcn.ed.ac.uk/camarades/), and are only sufficient to detect relatively large

sizes of effects. Consequently, true positives are often missed (false negatives), and many statis-

tically significant findings are due to chance (false positives). Such results lack reproducibility,

and the effect sizes are often substantially overestimated (“Winner’s curse”) [2–5]. Therefore,

various research bodies (e.g., National Institutes of Health, United Kingdom Academy of Med-

ical Sciences) have called for increased sample sizes [5, 6], as well as other design improve-

ments in preclinical research. Yet, such calls also potentially antagonize the goal of minimizing

burdens on animals. Here, we propose the use of sequential study designs to reduce the num-

ber of experimental animals required, as well as to increase the efficiency of current preclinical

biomedical research. Moreover, our aim with this article is to bring the existing methodology

of group sequential designs to the attention of researchers in the preclinical field and to clearly

illustrate its potential utility.

Sequential study designs

Conventional study designs in experimental preclinical biomedicine use nonsequential

approaches, in which group sizes are predetermined and fixed, and the decision to either

accept the (alternative) hypothesis or fail to reject the null hypothesis is made after spending

all experimental units in each group. In contrast, a group sequential design is a type of adaptive

design that allows for early stopping of an experiment because of efficacy or futility, based on

interim analyses before all experimental units are spent [7–9], thereby offering an increase in

efficiency.

However, interim analyses come at a statistical cost, and special analysis methods and care-

ful preplanning are required. Traditional frequentist statistics can be used to split the overall

probability of type I error (α–error) to account for multiple testing [10, 11], but Bayesian

methods are particularly suited, as they can incorporate information from earlier stages of the

study. Moreover, Bayesian analysis enables the researcher to use prestudy information as a

basis for the prior information about the measure of interest [8, 9]. As the prior is potentially

subjective and the gained posteriors highly dependent not only on the data but also on the cho-

sen prior, the practice of informed priors is hotly contested. Noninformative priors are an

option to circumvent this concern [12, 13].

Group sequential designs are increasingly used in clinical research [8, 14]. So far, however,

they are virtually nonexistent in preclinical experiments. We performed text-mining of the

complete PubMed Central Open Access subset (time frame: 2010–2014) and found only one

article explicitly describing an original study evaluating a treatment in rats or mice using a

sequential design [15] (S1 Text).

To explore the potential for group sequential designs to increase the efficiency of preclinical

studies, we simulated data for two-group comparisons of different effect sizes and compared

“costs,” measured by the number of animals required for different group sequential designs,

compared to a traditional nonsequential design (S1 Text).

Increase in efficiency

We simulated a mouse experiment in which 36 animals are allocated to two groups. Currently,

in most domains of preclinical medicine, group sizes of ten or less are prevalent, leading to

grossly underpowered studies [4]. A group size of 18 animals per group allows the detection of

a standardized effect size of d = 1, given traditional constraints of alpha = 0.05 and beta = 0.20.
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A block design typically used in this type of study needs to include all animals before data anal-

ysis. In a group sequential design, an interim analysis is conducted, and a predefined set of

rules determine whether the experiment should be continued or not (Fig 1).

Here, we demonstrate only some of many possible analysis approaches (frequentist

sequential with O’Brien–Fleming boundaries [11], with Pocock boundaries [16] [S1 Table],

Bayes Factor, and Bayes credible intervals, Table 1). See Box 1 for other approaches and

references.

The O’Brien–Fleming boundaries in the frequentist sequential approach keep the alpha

level for the final analysis (stage 3) approximately as high as for the classical block design.

Additionally, the same scenarios using Pocock boundaries can be found in S1 Table. It should

be noted that the frequentist approaches refer to null hypothesis significance testing, whereas

the Bayes Factor approach is basically a model comparison, and the other Bayesian approach

uses credible intervals for estimates. These are different methods that might answer different

research questions, as outlined by Morey et al. [27]. However, here, we used all methods for

deriving stopping criteria and decisions about efficacy or futility.

Our simulations showed that in an experimental setting typical for current experimental

biomedicine, if the effect exists, group sequential designs have lower costs because of early

stopping for futility or efficacy (Table 1). With a large true effect size (d = 1) and n = 18 per

group, sequential analyses that stop for significance reduce the costs up to 20%, while the

power of these analyses do not differ from the traditional block design. Underpowered studies

(d = 0.5 scenarios, Table 1) show only approximately 30% power for classical as well as sequen-

tial approaches, while the reduction in costs through sequential design is minor. This stresses

the need for sufficiently powered studies even with sequential analyses. As expected, average

effect sizes among successful experiments are overestimated in the traditional approach and

slightly more so in the sequential design. Larger experiments that can stop for both success

Fig 1. Study design and sequential analysis approach allowing two interim analyses. Stage 1: 33% of samples acquired, stage 2: 66% of

samples acquired, and stage 3: 100% of samples acquired. H0: null hypothesis, P: p-value, Credible interval: specific Bayesian interval of certainty

about an estimate, d: effect size Cohen’s d, αi: significance levels for each stage derived from [11] α1 = 0.0006, α2 = 0.0151, α 3 = 0.0471. Additionally,

we used a Bayes factor approach (Table 1) and Pocock boundaries for the frequentist approach (S1 Table). All sequential approaches used were

calibrated by using simulations to get a type I error of about 5%.

doi:10.1371/journal.pbio.2001307.g001
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and futility show a similar pattern: sequential analysis has similar power as the traditional

approach, while costs are reduced substantially.

Efficiency versus predictive ability in a real-world setting

The simulations above differ from the real-world setting where we, despite setting out to detect

an effect beyond a certain (biological) threshold, never know the true effect size a priori. In

another set of simulations, we therefore assumed a specific distribution of true effect sizes

within the universe of studies that can be performed. Such distributions may vary in different

fields of research. This is relevant because, as with different effect size distributions and the

chance of early stopping an experiment, the predictive probability of a “statistically significant”

signal, i.e., the probability that a significant result really reflects a true effect, is different. To

understand the ability to predict in a real-world setting, we simulated analyses with two

different distributions of effect estimates: one optimistic and one pessimistic (Fig 2, S1 Fig).

Through these simulations, we estimated the probabilities of obtaining an effect of any size

d> 0 or at least size d� 0.5 for both the traditional frequentist approach and group sequential

designs. Overall, there are no major differences in these probabilities between the traditional

and sequential approaches—despite the fact that the latter uses fewer animals. More impor-

tantly, this table shows that the main driver behind these probabilities is the a priori distribu-

tion of effect sizes (optimistic versus pessimistic).

Applications of sequential designs

To the best of our knowledge, there are no groups or programs currently implementing

sequential designs in preclinical experimental studies evaluating the efficacy of treatments or

interventions. However, we are aware that the practice of interim analyses is applied informally

when a statistically significant effect is desired but not found, and the analyses are rerun until

significance has been achieved (a practice known as “p-hacking”[28]). Clearly, this practice

inflates false-positive rates, as it violates the preset type I error (α–error) probability by not

accounting for multiple testing in these unplanned interim analyses [10].

Despite the benefits suggested by our simulations, sequential approaches have properties

that may limit their application in preclinical experimental biomedicine. The clearest disad-

vantage of group sequential designs is that each next stage can only be started after the out-

come of the preceding stage is fully assessed and analyzed. Sequential analysis may require

additional resources to set up, regulate, and monitor the independence of interim analyses, as

well as additional statistical expertise. Another consideration is that a step-by-step design

might increase the impact of batch and learning effects. However, the largest obstacle might be

lack of familiarity with these methods in the field and amongst animal ethics committees, edi-

torial boards, and peers. With this paper, we aim to spur the discussion and stimulate others to

consider using sequential designs to increase the efficiency of their studies. Moreover, if in

vivo researchers are to get ethical approval for this approach from their various committees,

this article might help persuade those committees.

We posit that a substantial number of experiments in preclinical biomedicine can be

planned and executed with batch sizes and sufficiently short intervals between treatments and

outcome assessments to render them amenable to group sequential design–based methods

(for an example, see S2 Text). Sequential designs can lead to a substantial reduction in animal

resource. When these savings are invested in increased sample sizes (which, paradoxically,

may not be higher than the current ones), sequential designs have the potential to increase the

predictive ability of preclinical biomedical experiments and to reduce the current unacceptable

levels of waste due to underpowered studies.
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Fig 2. Predictive capabilities of sequential designs compared to traditional nonsequential design for

two different scenarios of potential effect size distributions. Upper left: “optimistic” scenario with more

large effect sizes. Upper right: “pessimistic” scenario with mostly effect sizes of 0. Bottom: Probability of

getting a significant test result reflecting a true effect of d 6¼ 0 or d� 0.5, respectively, for the two different

scenarios of effect size distributions. First, the probabilities P(significant) for getting any significant study

results are given, then the corresponding positive predictive values, and, finally, the product of both giving the

corresponding overall probability of getting a significant study result that truly represents an effect of d 6¼ 0 or

d� 0.5 (Pdetect true effect). Stopping rules that allowed early stopping for futility or success as given in Table 1.

doi:10.1371/journal.pbio.2001307.g002

Box 1. Points to consider when planning a group sequential design
study

Planning a study design as a group sequential design requires considerations before

starting the study (see [17]; [18]):
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Type of adaptive design

• Group sequential design is one simple type of adaptive design, in which the sample

size is adapted during the study.

• Other types of adaptive design, such as designs with sample size reestimation, adaptive

dose-response designs, treatment selection designs, or adaptive randomization

designs, should be considered as well.

Feasibility

Is it feasible for the planned study:

• to plan larger sample sizes than for fixed designs with the same power (even if the

expected sample size in case of an effect might be lower than for fixed designs)?

• to include additional time for the interim analysis? How many interim steps, and at

which points, are feasible?

Preplanning

This includes:

• clearly specified hypotheses (adaptation should not be done with regard to generating

hypotheses in confirmatory studies),

• decisions about reasons for early stopping: because of efficacy, futility, or both (stop-

ping for futility is more important for larger studies),

• decisions about stopping criteria to reject the null hypothesis/or stop because of futility

at each stage (related to power, type I error, frequentist or Bayesian kind of analysis,

number of stages, sample size at each stage), and

• sample size estimation (depending on kind of statistical test, power, type I error,

assumed effect size, number of stages, stopping criteria).

Type I error (frequentist approach) [19]

• Because of multiple testing, type I error is inflated, but different methods of alpha-

adjustment ensure an overall type I error rate of 0.05:

• Pocock [16]: same significance level at each stage (e.g., three stages (two interim analy-

ses): α = 0.0221 at each stage) (disadvantage: low level at the final stage, which makes it

more difficult to get a significant result).

• O’Brien–Fleming [11]: significance level is very conservative at early stages and almost

0.05 at the final stage (e.g., three stages: α1 = 0.0006, α2 = 0.0151, α3 = 0.0471) (advan-

tage: almost 0.05 at the final stage).

• Haybittle–Peto [20,21]: at all interim stages αi = 0.001, at the final stage: αfinal = 0.05

(advantage: easy to implement and understand and 0.05 level at the final stage, disad-

vantage: hard to stop early).

• Other more flexible approaches with regard to sample size at stages are also possible

(using alpha-spending functions [22]).

Bayesian approaches [23]

• Points of consideration with regard to type of design, feasibility, and preplanning are

similar to designs with frequentist approaches.

• Type I error normally is not of importance in Bayesian frameworks.
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