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ABSTRACT 

 

The concept of resilience has emerged from various 

domains to address how systems, people and organizations can 

handle uncertainty. This paper presents a method to improve the 

resilience of an engineering system by maximizing the system 

economic lifecycle value, as measured by Net Present Value, 

under uncertainty. The method is applied to a Waste-to-Energy 

system based in Singapore and the impact of combining robust 

and flexible design strategies to improve resilience are discussed. 

Robust strategies involve optimizing the initial capacity of the 

system while Bayesian Networks are implemented to choose the 

flexible expansion strategy that should be deployed given the 

current observations of demand uncertainties. The Bayesian 

Network shows promise and should be considered further where 

decisions are more complex. Resilience is further assessed by 

varying the volatility of the stochastic demand in the simulation. 

Increasing volatility generally made the system perform worse 

since not all demand could be converted to revenue due to 

capacity constraints. Flexibility shows increased value compared 

to a fixed design. However, when the system is allowed to 

upgrade too often, the costs of implementation negates the 

revenue increase. The better design is to have a high initial 

capacity, such that there is less restriction on the demand with 

two or three expansions. 

 

Keywords: Resilience, Bayesian Networks, infrastructure 

systems, complex systems design 

 

1. INTRODUCTION 

Infrastructure systems such as telecommunications, power, 

waste disposal and transport networks form the backbone of 

most societies. Failure in these services can bring major 

disruption to a community and recovery can incur substantial 

time and cost. Furthermore, infrastructure systems 

characteristically have relatively long life cycles, typically more 

than 10 years, leading to a range of uncertainties and involving 

major investments. How these engineered systems are designed 

to accommodate this uncertainty is therefore paramount to 

ensure the success of such projects. 

The concept of “resilience” has emerged in literature and has 

been found to address these concepts in a number of fields. The 

term “resilience” was first popularized by Holling [1] within the 

field of ecology to assess the stability and resilience of 

interacting populations and the environment. In their work, the 

term is defined as the “persistence of relationships within a 

system and is a measure of the ability of these systems to absorb 

changes of state variables, driving variables, and parameters, and 

still persist”. This concept of a system’s interaction with the 

environment and surviving disturbances is similar to the 

foundations for resilience in many other fields including supply 

chain management [2], crisis management [3], psychology [4] 

and resilience engineering [5]. Thus, resilience has traditionally 

been associated with negative connotations: the ability to recover 

from adversity or trauma. However, there is now growing 

recognition, especially in management literature, that resilience 

not only allows for recovery from disruption, but also to allows 

for the ability to thrive and prosper despite difficult times [6]. 
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While there has been substantial literature describing the 

concept of resilience, there is comparatively less work on 

quantitatively assessing resilience. Here, resilience is taken to be 

the design of the system that maximizes the system’s lifecycle 

value, as measured by Net Present Value (NPV), under seen and 

unforeseen uncertainties. This paper presents the evaluation of a 

Waste-to-Energy (WTE) system in Singapore and the impact of 

robust and flexible design strategies on the NPV of the system. 

The effect of robustness is explored by optimizing the initial 

capacity of the system while flexibility allows the system to be 

upgraded through expansion. Bayesian Networks (BNs) are 

introduced to select the type of expansion, whether centralized 

or decentralized, as well as the sites for expansion. The resilience 

of the system is evaluated by varying the volatility of the demand 

on the system in order to assess the impact on the NPV and 

understand the merits of different infrastructure designs 

The remainder of this paper is structured as follows: Related 

work in resilience and BNs are presented in Section 2. The 

methodology of this work is shown in Section 3 and applied to 

the WTE system in Singapore in Section 4. The impact of 

varying volatility on NPV and therefore resilience is presented 

in Section 5.  

2. BACKGROUND 

2.1  Resilience in Engineering Systems 

Studies in a number of disciplines have emphasized the need 

for resilience to overcome disturbances and thrive despite 

difficult times. With respect to designing engineering systems, a 

recent literature study [7] spanning the fields of engineering, 

organizational/management, and ecological works has 

summarized three main characteristics for further consideration: 

absorbing disturbances, adapting for change, and thriving for the 

future. This was mapped to the corresponding engineering 

design ilities of robustness, adaptability and flexibility for the 

design of resilient engineering systems. It should be noted, 

however, that there is significant overlap in the definitions of 

adaptability and flexibility in literature. Here, these subtleties are 

briefly defined to give requirements for design of resilient 

engineering systems. 

2.1.1  Robustness 

The property of robustness stems from engineering 

literature and may be defined as the ability to be “insensitive 

towards changing environments” [8]. With robustness, the 

system is able to maintain the required performance, despite 

disturbances, through some redundancy or tolerance designed 

into the system [9]. In an infrastructure system, for example, 

bridges are designed to be robust so that it withstands extra 

loading from increased traffic or fluctuations in wind 

speed/direction. Robust designs may be more cost efficient when 

the disturbances are predictable, but may fail if there are 

substantial, unexpected influences on the system which push the 

system outside the design margins. As such, robustness may be 

better suited for systems where the uncertainties are more 

understood or where the demands of the system are unlikely to 

change throughout the system lifecycle. However, infrastructure 

systems in particular are usually complex and system lifecycles 

tend to span over 10 years making uncertainty difficult to predict. 

Therefore, while the system still has to be robust, it is not a 

sufficient condition if the system is to be resilient and perform 

for significant periods where there may be unknowns. 

2.1.2  Adaptability 

Over the lifecycle of a system, there may be instances where 

the system has to change to accommodate influences on the 

system. The margins of the robust design may be exceeded and 

therefore the system has to change to maintain satisfactory 

performance. This may be considered through the properties of 

adaptability and flexibility. There is, however, a lack of 

consensus concerning these definitions in literature and these 

two terms are often used synonymously. Here, adaptability is 

used to denote where the system can change through an internal 

change agent [8, 10]. An internal change agent is where change 

is instigated within the system automatically without the need for 

external action and serves to move the system to a predefined 

performance level. This could be in the form of internal control 

systems and feedback loops where the system changes 

automatically to maintain system performance. For 

telecommunications infrastructure, this could be the automatic 

rerouting of network traffic based on the current demand. Since 

the changes occur automatically in the system, these changes 

must be planned and anticipated during the conceptual design 

stage so that the system continues to operate within the required 

boundaries. Indeed, some unforeseen event could still push the 

system outside these initial design boundaries which cannot be 

automatically rectified leading to failure. As such, a system 

upgrade, or flexible design discussed in section 2.1.3, may be 

more appropriate. An adaptable design is therefore useful where 

it is impractical to make the system excessively robust through 

large redundancies and instead allows the system to change 

automatically. This requires some foresight into the environment 

in which the system is deployed and therefore may be useful, as 

similarly for robust designs, where uncertainties are relatively 

more understood in the near future or where the demands on the 

system is unlikely to change throughout the lifecycle. 

2.1.3  Flexibility 

In the event a substantial change or upgrade is required for 

the system, a flexible design may be adopted. This allows the 

system to change for new opportunities or accommodate 

disturbances which the original system was not designed for. 

Flexibility therefore contrasts with robustness and adaptability in 

that it does not serve to maintain normal operations, but instead, 

it allows the system to change its performance boundaries. The 

concept of flexibility and adaptability may be distinguished by 

the location of the change agent. In the adaptable case, the 

change agent is located within the system leading to automatic 

change. On the other hand, the flexible system has the change 

agent external to the system and allows a decision maker to 
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change the requirements of the system [10]. A flexible system 

may therefore be designed so that it has a number of options for 

the decision maker and flexibility makes it easy to change or 

upgrade these options. This can be achieved through modularity, 

platform design or interface design [8]. The Ponte 25 de Abril 

suspension bridge over the Tagus River demonstrates flexible 

design in that it was built with the strength to accommodate a 

secondary railroad deck when demand was sufficient [11]. In 

essence, the bridge was designed so that it could be upgraded 

easily when needed. Flexibility is therefore important where the 

system requirements could change over their lifecycles, such as 

for infrastructure systems, and uncertainties are relatively harder 

to predict making it a necessary condition for resilience. 

2.2 Requirements for Resilient Engineering 
Infrastructure Systems 

The three properties for resilient engineering systems were 

briefly described in the previous sections. However, for some 

infrastructure systems, it may be impractical to keep physically 

switching between components as per the adaptable strategy. 

That is for road networks, power plants and, in this case, waste 

disposal systems, it can be difficult to change assets once 

installed. For infrastructure projects, the properties of robustness 

and flexibility are therefore more important. Essentially, the 

initial robustness or capacity of the system should be carefully 

designed and there should be due diligence in assessing how to 

upgrade the system through flexibility. By designing for 

robustness and flexibility, this ensures that the system can cope 

with immediate day-to-day pressures as well as giving options to 

accommodate for future uncertainties. Further design strategies 

for resilience therefore focuses on robustness and flexibility. 

Having defined the conceptual requirements for resilient 

engineering infrastructure systems in the previous section, 

existing models for quantitatively evaluating resilience is now 

discussed. For example, system dynamic models are used for 

modeling supply chains [2], mathematical models used for 

network analysis [12] and petrochemical supply chains [13]. 

BNs have been applied to inland water ports [14] and genetic 

algorithms have been used to model infrastructure restoration 

[15]. A more extensive review can be found from Hosseini et al 

[16].  In such cases, resilience is measured by the time or ability 

it takes for the system to return to normal or recover following 

some disturbance. Here, it is assumed that by designing robust 

systems, the system response is adequate to return to normal 

operations. There has further been growing recognition that 

systems do not just undergo disturbance in the negative sense, 

but also disruptive opportunities may be presented in the future. 

As such, resilience should also incorporate the idea of being able 

to “survive and thrive” and is addressed through flexible 

strategies which allows the system to operate with new 

requirements. 

In this paper, the WTE system lifecycle value is modeled 

through NPV analysis such that designing a resilient system 

involves optimizing the robustness and flexibility of the system 

to maximize the NPV over a range of uncertainties. To the 

authors’ knowledge there has not been resilience analysis that 

incorporates the selection of flexible strategies through BNs such 

that both robustness and flexibility is considered in the design of 

resilient systems. Furthermore, this paper explores the impact of 

robustness and flexibility on the system by varying the 

uncertainty over time. 

3. METHODOLODY 

This work follows a five step framework guided by Cardin’s 

flexibility cycle [17] and builds upon work by Liu [18]. The 

framework comprises Baseline Design, Uncertainty 

Recognition, Concept Generation, Design Space Exploration 

and Resilience Analysis and are discussed generally in this 

section before being applied to the WTE system. The 

relationship between the five steps are shown in Figure 1. 

 

 
 

FIGURE 1 - RELATIONSHIP OF FIVE STEP FLEXIBILITY 
FRAMEWORK 

3.1 Baseline Performance 

This first step assesses the NPV of the system with no 

flexibility upgrade options to establish a benchmark for 

comparing to other infrastructure designs generated in latter 

steps. NPV models are developed under deterministic conditions 

based on deterministic forecasts for uncertainty factors. The 

initial robustness of the system can be optimized given these 

forecasts but there are no flexibility options.  

3.2  Uncertainty Modeling 

The system is subject to uncertainties which may affect 

future performance. This step identifies these sources of 

uncertainty through experts’ and designers’ experience which 

can be then modeled by collecting historic data and statistical 

analysis. For this study, the uncertainty will be modelled through 

Geometric Brownian Motion to simulate demand on the system. 

3.3  Concept Generation 

In order for a system to be resilient, the system may be 

designed to be robust, but may also have to change if the original 

demands are exceeded. In such a case, flexible strategies should 
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be considered which can include expanding capacity, deferring 

investment or switching product lines. This step involves 

understanding the flexible options available to the system 

through real options analysis [19] and a number of techniques 

have been developed to systematically generate these concepts 

[20, 21]. In particular, a BN approach has been used to study the 

high risk components in a system that should be considered for 

flexible strategies [22]. Once these strategies are conceptualized, 

decision rules can be put in place to embed flexibility into the 

design. 

This paper builds on this work by extending the use of BNs 

for decision rules. That is, once the potential strategies are 

identified, the BN is used to determine when to execute the 

strategy given the uncertainties observed on the system. Cardin 

& Hu [23] and Liu [18] have performed a flexibility study on 

WTE systems using IF statements as decision rules. By 

incorporating BNs into this the decision rules, a broader scope of 

uncertainties can be accounted for when deciding whether to 

pursue the flexible option compared to IF statements. 

Furthermore, BNs can include qualitative as well as quantitative 

data as well as giving the decision-maker an intuitive 

visualization of the system’s dependencies.  

3.4  Design Space Exploration 

The fourth step involves evaluating the Expected Net 

Present value (ENPV) of the system with the embedded 

flexibility. The search space for the system is generated through 

Monte Carlo simulation from Step 2 to give a distribution of 

performance outcomes for comparison. The optimal robustness 

can be investigated through simulated annealing to find the 

optimal initial capacity for the design. 

The different design options can then be compared with the 

Baseline Design in Step 1 where there is no flexibility. This 

allows the designers to discern whether the flexible strategy is 

worth the additional investment cost. The difference between the 

ENPV of the flexible design and the NPV of the fixed design in 

Step 1 is the value of flexibility.  

3.5  Resilience Analysis 

As discussed in Section 2, a resilient system should be both 

robust and flexible in order to operate in a range of uncertainties. 

For example, when upgrading system capacity, consideration 

should be given to how much to increase capacity each time and 

the system’s initial robustness boundaries should also be 

assessed. If the initial robust margins are sufficiently large, this 

may allow the investment of the flexible strategy in the future to 

be deferred in order to save on upgrade costs. On the other hand, 

if it is anticipated that requirements can often change, it may be 

better to save on initial investments and spend when there is 

necessary change. 

As such, resilience analysis examines the effect of changing 

the system uncertainties on the robust and flexibility 

requirements. This is achieved by varying volatility in the 

stochastic demand to evaluate impact on the ENPV. Through the 

results of these simulations, the system’s robustness and 

flexibility can then be optimized in order to design a resilient 

system which can accommodate uncertainties in the short and 

long term. The pipeline of the model can therefore be visualized 

as in Figure 2. 

 

 
 

FIGURE 2 - PIPELINE OF MODEL 

 

4. APPLICATION TO WASTE TO ENERGY SYSTEM 
The framework discussed in the previous section is now 

applied to a WTE system in Singapore building on work by Liu 

[18] and Cardin & Hu [23]. Singapore is divided into six sectors 

by public waste collector contractors which collect waste within 

each sector before transporting to the centralized processing 

plant. An alternative option exists for six smaller anaerobic 

digestion (AD) processing plants to be developed in each of the 

six sectors in a decentralized manner. In such a case, instead of 

transporting the waste to a main central site, the waste can be 

processed in each of the six sectors. This decentralized system 

could be a potential solution to combat increasing waste 

generation and providing a more sustainable processing method. 

The objective of this paper is to therefore assess the merits 

of moving to a decentralized system and evaluate how to design 

the system so that it is resilient to short term and long term 

fluctuations in demand. Following the framework, the baseline 

design deterministically models the centralized and 

decentralized system with no increases in capacity. In the 

uncertainty recognition step, the demand on the system is 

simulated for each sector through 15 year time periods. Based on 

the demand, the sectors for capacity expansion and 

decentralization are selected through the BN representation of 

the decision rules. The ENPV is then calculated and the volatility 

is varied to understand the impact of different design strategies. 

4.1  Step 1: Baseline Performance  

There are two main design concepts for the WTE system: 

centralized and decentralized development. Both of these are 

simulated with deterministic demands in the first instance with 

no increases in capacity to give a benchmark NPV for 

comparison in later stages. Further details, coefficient and data 

on the model can be obtained from [18, 23]. 

4.1.1  Model Development of Centralized Design 

To calculate the NPV of the centralized WTE system, the 

model is constructed by considering a planning horizon of 𝑇 =
15  time periods where demand is assumed to be known. The 

total capacity installed is denoted by 𝑥, and 𝑑𝑡 is the total 

capacity demand at time,  𝑡. The NPV may therefore be 
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maximized over the planning horizon by finding the capacity 𝑥, 

which fulfills demand, 𝑑 as follows 

 

𝑀𝑎𝑥 𝑁𝑃𝑉 =  −𝐶0(𝑥) +  ∑ (
1

1 +  𝜆
)

𝑇

𝑡=1

𝑡

[𝑅𝑡(𝑥, 𝑑𝑡) − 𝐶𝑡(𝑥, 𝑑𝑡)] 

 
𝑠. 𝑡   0 ≤ 𝑥 ≤  𝑥𝑚𝑎𝑥 

   𝑑𝑡  ≥ 0, ∀𝑡 (1) 
 

𝐶0(𝑥) is the initial cost of investing into the plant, 𝜆 is the 

discount rate, 𝑅𝑡(𝑥, 𝑑𝑡) is the revenue of the system, and 

𝐶𝑡(𝑥, 𝑑𝑡) is the cost function in time.  

The revenue of the WTE systems at year 𝑡 consists of the 

selling revenue from refuse derived fuel (𝑅𝑅𝐷𝐹
𝑡 ), metal (𝑅𝑀

𝑡 ), 

biogas (𝑅𝐵
𝑡 ), and water (𝑅𝑊

𝑡 ) as well as a tipping fee for 

collecting solid waste (𝑅𝑇𝑖𝑝
𝑡 ). This is given by the equation 

  
𝑅𝑡 = 𝑅𝑅𝐷𝐹

𝑡 + 𝑅𝑀
𝑡 +  𝑅𝐵

𝑡 +  𝑅𝑊
𝑡 +  𝑅𝑇𝑖𝑝

𝑡  (2) 

 

These are assumed to be proportional to the amount of waste 

treated in the plant. The costs involved with the centralized 

design include: transportation cost(𝐶𝑇𝑆
𝑡 ), disposal cost(𝐶𝐷

𝑡 ), land 

rental cost(𝐶𝐿𝐷
𝑡 ), operation and maintenance cost(𝐶𝑂𝑀

𝑡 ), resource 

consumption cost (𝐶𝑅𝐶
𝑡 ) and pollution cost(𝐶𝑃𝐿

𝑡 ). This is 

summarized in the below equation 

 

𝐶𝑡 =  𝐶𝑇𝑆
𝑡 +  𝐶𝐷

𝑡 + 𝐶𝐿𝐷
𝑡 + 𝐶𝑂𝑀

𝑡 + 𝐶𝑅𝐶
𝑡 + 𝐶𝑃𝐿

𝑡  (3) 
 

The transportation cost results from the fuel consumption for 

collecting the waste in each sector and transporting it to the 

central facility. There is a cost of disposal, 𝐶𝐷
𝑡 , incurred when 

there is unmet demand in the WTE plant and the untreated waste 

needs to be disposed at incineration plants or landfills. The land 

rental cost is proportional to the land needed for installed 

capacity, while the operational and maintenance cost is assumed 

to be proportional by some coefficient, 𝜋, to the initial cost. The 

WTE system consumes energy including electricity and natural 

gas and is assumed to be proportional to the amount of solid 

waste treated. The cost of pollution results from the cost of 

treating the CO2 emissions from the WTE system. 

4.1.2  Model Development of Decentralized Design 

The calculations for the decentralized design are similar but 

instead of having all the waste transported to one central site, the 

waste is transported to six smaller scale plants in each of the six 

sectors. The total demand, 𝑑𝑡, is assumed to be distributed 

among the six sectors according to population density. The total 

capacity,  𝑥, is therefore the sum of the capacity in each sector. 

The total revenue is updated accordingly by summing over the 

six sectors.  

The NPV model for the decentralized design is therefore 
   

𝑀𝑎𝑥 𝑁𝑃𝑉 =  − ∑ 𝐶0(𝑥𝑖)

6

𝑖=1

+ ∑  ∑ (
1

1 +  𝜆
)

6

𝑖=1

𝑡

(𝑅𝑡 −  𝐶𝑡)

𝑇

𝑡=1

 (4) 

 

With the models for the centralized and decentralized 

models defined, the NPVs for both designs are calculated for a 

15 year horizon with the demand deterministically projected 

based historical data from the National Environmental Agency 

(NEA) annual report [24]. For the centralized model, given 

growth rate 𝜇, the waste is given by the equation 

 

𝑆𝑡 =  𝑆𝑡−1(1 + 𝜇) (5) 

 

where 𝑆𝑡 is the waste generated at year 𝑡. For the decentralized 

case, the amount of waste in each sector is estimated from the 

population density in each sector, 𝑖 from  

 

𝑆𝑖
𝑡 =  𝑝𝑑 ∗ 𝑆𝑡    (6) 

 

To make the design capacity more practical, the capacity is 

assumed to be in multiples of 50 tonnes per day (tpd). A 

simulated annealing optimization was conducted to find the 

optimal configuration of initial capacity in each sectors to 

maximize the NPV. For the centralized design, an initial capacity 

of 5200 tpd gave a NPV of S$243 million. The initial capacities 

and NPV for the decentralized design is summarized in Table 1. 

 
TABLE 1 - NPV OF FIXED DECENTRALIZED DESIGN 

UNDER DETERMINISTIC ANALYSIS 
NPV 

(S$ 

Million) 

Initial Capacity Total 

Capacity 

(tpd) 
Sector 

1 

Sector 

2 

Sector 

3 

Sector 

4 

Sector 

5 

Sector 

6 

251 1450 900 850 800 550 500 5050 

 

 For these results, the decentralized design is shown to 

surpass the centralized design in terms of NPV. This is due to the 

savings in the transportation cost in the decentralized design. 

4.2  Step 2: Uncertainty Modeling 

The previous step used a projection for demand on the 

system based on a fixed growth rate. In reality, this is seldom the 

case and uncertainty is now introduced into the model in this step 

by modeling waste generation in each site with Geometric 

Brownian Motion. This is formulated in the following equation 

 

𝑑𝑆𝑖
𝑡 = 𝜇𝑆𝑖

𝑡𝑑𝑡 + 𝜎𝑖𝑆𝑖
𝑡𝑑𝑊𝑡 (7) 

 

where 𝑆𝑖
𝑡 is the waste collected in sector 𝑖, 𝜇 denotes the trend or 

growth rate, 𝜎𝑖 is the volatility and 𝑊𝑡 is the Wiener process. The 

growth rate and volatility are estimated to be 1.71% and 2.03% 

respectively based on historical data. A Monte Carlo Simulation 

is ran 2000 times and the ENPV for the centralized model can be 

obtained from 
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𝑀𝑎𝑥 𝐸𝑁𝑃𝑉 =  ∑ 𝑝𝑙 {−𝐶0(𝑥) +  ∑ (
1

1 +  𝜆
)

𝑇

𝑡=1

𝑡

(𝑅𝑙
𝑡 −  𝐶𝑙

𝑡)}

𝐿

𝑙

 (8) 

 

where 𝑝𝑙 is the probability associated with scenario 𝑙 and 𝐿 is the total 

number of simulations ran. The decentralized model is similarly 

 

𝑀𝑎𝑥 𝐸𝑁𝑃𝑉 =  ∑ 𝑝𝑙 {− ∑ 𝐶0(𝑥𝑖)

6

𝑖=1

𝐿

𝑙

+ ∑  ∑ (
1

1 +  𝜆
)

6

𝑖=1

𝑡

(𝑅𝑙
𝑡 −  𝐶𝑙

𝑡)

𝑇

𝑡=1

}  

 

(9) 

Running the simulations with uncertain waste generation, 

the optimal initial capacity for the centralized design is 5200 tpd 

giving an ENPV of S$242 million. The decentralized case is 

summarized in Table 2. 

 
TABLE 2 - ENPV OF FIXED DECENTRALIZED DESIGN 

UNDER UNCERTAINTY 
ENPV 

(S$ 

Million) 

Initial Capacity Total 

Capacity 

(tpd) 
Sector 

1 

Sector 

2 

Sector 

3 

Sector 

4 

Sector 

5 

Sector 

6 

250 1600 900 850 800 550 500 5200 

 

The ENPV for both cases are, as expected, less than the NVP 

as calculated in the previous step due to the uncertainty added 

into the system. Again, the decentralized case performs better 

than the centralized case. 

4.3  Step 3: Concept Generation & Selection 

The previous two steps incorporated an optimization to find 

the initial robust margins for initial capacity. This steps 

incorporates flexibility into the analysis in order to understand 

how the system can change for future needs. The flexible 

strategy to expand the capacity of the WTE plants after 

installation is simulated since the demand fluctuation is the 

major uncertainty. This allows for the WTE plant to expand 

modularly given an increase in demand, but also mitigates risk 

in having too large a site if the forecast demand is not met. 

Decision rules are established to determine when to enable 

the flexible strategies. The decision rules for expanding capacity 

in the decentralized case is therefore: (1) Determine if there is 

unmet capacity and whether the total capacity is less than the 

maximum capacity after expansion. (2) Determine whether the 

main site or non-main sites should be expanded. (3) Determine 

which of the six sectors should be expanded if in a decentralized 

manner. This is summarized in Figure 3.  

Here, BNs are presented to capture these decision rules. BNs 

are chosen in particular for the ability to capture a range of 

uncertainties, both qualitative and quantitative, the power of 

using network inference for causal reasoning as well as 

providing an intuitive interface for the decision maker to 

visualize interdependencies.  

 

 
 

FIGURE 3 - FLOW CHART OF DECISION-MAKING 
PROCEDURES FOR DECENTRALIZED DESIGN 

 

BNs are directed acyclic graphical models which are used to 

represent a set of variables and their interdependencies. The 

variables are shown as nodes and the interdependencies, input 

via conditional probability tables, are represented as edges in the 

graph. Observed variables, say whether there is unmet demand 

in year 𝑡, can be input into the network and the probabilities of 

the other variables can be updated through inference in the 

network. Mathematically, inference is applied using Bayes’ Rule 

as below. Further information on mathematical details and 

implementation can be obtained from Pearl or Nielson & Jensen 

[25, 26]. 
 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 (10) 

 

The BN in this study is setup to assess whether the 

decentralized design needs to be upgraded and, in the case that 

an expansion is necessary, the sector that should be upgraded is 

indicated. Figure 4 shows a screenshot from BN software, Netica 

[27], for illustration of the BN.  

 

 
 

FIGURE 4 - BAYESIAN NETWORK DECISION RULES 

Each box, or node represents a variable and the black bars show 

the prior and posterior probabilities of the states. The Boolean 

decisions, whether to expand or not etc., are represented as yes 
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or no states in the nodes. The nodes S2 – S3 holds information 

on whether the non-main sector capacity thresholds have been 

breached. If all the non-main sector thresholds are exceeded, the 

“Sector Threshold Passed?” node updates to yes. The “Design 

Type” node indicates whether this  should be centralized or 

decentralized expansion, if any, and depends on observations 

given in the nodes “Expand?” and “Sector Threshold Passed?”. 

The “Sector” node then classifies which sector should be 

expanded, if any, with S1 representing the main sector and S2-

S6 being the non-main sectors. The “Max Travel” node indicates 

the sector which incurs the maximum travel cost. The 

conditional probability tables for each node were based on the 

logic in Figure 3.  

One major advantage of network inference from an 

uncertainty point of view, is that not all variables have to be 

observed for the probabilities to be updated. This allows a 

decision maker to understand the impact of what-if scenarios on 

the system with limited information and decide whether the 

system should be changed or in this case, expanded. For 

example, the following figure shows the BN with observations 

in the greyed-out nodes: “Expand?” = yes, “Sector Threshold 

Passed?” = yes and “Max Travel” = S5. The rest of the network 

updates through inference and indicates that the expansion must 

be decentralized. This is due to the observation that the sector 

capacity thresholds have been passed. Had the thresholds not 

have been exceeded, centralized expansion would have been 

recommended. The sector to be expanded, as shown in the 

“Sector” node is S5, which follows from the “Max Travel” 

observation which indicates the sector with the highest travel 

cost to offset unmet demand. The network also indicates that all 

sectors, nodes “S2:S6” are likely to have exceeded the threshold.  

 

 
 
FIGURE 5 - BAYESIAN NETWORK DECISION RULES WITH 

OBSERVATIONS 
 

A powerful property of the BN is that inference can be used 

to understand both cause-to-effect, as above, as well as be used 

to investigate effect-to-cause. That is, in the above example, 

observations were entered to understand in which sector to 

expand. Going the other way, the decision maker may want to 

investigate what conditions are necessary for a centralized 

design. This is illustrated in the following figure where 

centralized in the “Design Type” node has been observed.  

 
 

FIGURE 6 - BACKWARDS INFERENCE WITH BAYESIAN 
NETWORK 

 

The necessary conditions for centralized design are 

therefore: the system has to have unmet demand, maximum 

capacity has to have been reached and the decentralized sectors 

have not passed the capacity thresholds. Furthermore, the sector 

recommended for expansion is S1 which represents the central 

site. The BN was tested against previous work [18, 23] to ensure 

similar results and functioning. The simulation can now be ran 

similarly to Step 1 and Step 2 but with the revenues and costs 

reflecting whether the sectors have been upgraded as decided by 

the BN. 

4.4  Step 4: Design Space Evaluation 

With the model and decision rules defined, the full design 

space can be evaluated to find the optimal designs with flexible 

strategies. The model, BN and decision rules were executed in 

MATLAB with the design space explored using a Monte Carlo 

approach and simulated annealing for optimization. Similar to 

Step 1, the initial capacity was optimized to understand the initial 

robust margins of the system. However, the system can now also 

execute decision rules decided by the BN for expansion as 

defined in Step 3. The optimal design is summarized in the 

following table. 

 
TABLE 3 - ENPV OF FLEXIBLE DECENTRALIZED DESIGN 

UNDER UNCERTAINTY 
ENPV 

(S$ 

Million) 

Initial Capacity Total 

Capacity 

(tpd) 
Sector 

1 

Sector 

2 

Sector 

3 

Sector 

4 

Sector 

5 

Sector 

6 

254 1400 900 850 800 550 500 5000 

 

It can be seen that the ENPV of the flexible decentralized design 

is higher than the fixed decentralized design of S$250 million 

and fixed centralized design of S$251 million. The total initial 

capacity of the flexible design is lower than the fixed design 

which may indicate that it is better to defer initial capacity 

investment to allow for later expansion. The value of flexibility 

is calculated by 

 

𝑉𝑂𝐹 =  𝐸𝑁𝑃𝑉𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒 − 𝐸𝑁𝑃𝑉𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘  
 

= 254 − 250 = 𝑆$4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

(11) 
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4.5  Step 5: Resilience Analysis 

The key study of this paper is to understand how robust and 

flexible strategies can be used in order to maximize the system 

lifecycle value and thus make the system resilient to future 

uncertainties. This step varies the volatility of the stochastic 

demand in order to assess the effects on the ENPV of the system. 

Figure 7 illustrates the effect of varying the volatility on the total 

domestic solid waste projection. It is shown that there is a wider 

“spread” of demands with increased volatility. 
 

 
 

FIGURE 7 - TOTAL DOMESTIC SOLID WASTE 
PROJECTIONS 

 

The following analyses were based on the WTE system with 

optimized configurations as found in Step 4 unless stated 

otherwise. 

4.5.1  Effect of Volatility  

When varying the volatility through the simulations, it can 

be seen that, although the total number of upgrades in the sectors 

are similar, the distribution of sectors that are upgraded are 

different. This is shown in Figure 8. Sector 1, the centralized site, 

has the most number of expansions over 2000 simulations due to 

the lowest transportation cost in that sector. The distribution over 

the other five sectors follow the distribution of transportation 

costs similarly. With increasing volatility, the system allocates 

more upgrades to S1 which is the centralized site. This is due to 

the condition in the BN that all decentralized sectors need to 

exceed the threshold before decentralized expansion takes place. 

With increased volatility, there are large fluctuations in demand 

which causes the BN to select an expansion but not every 

decentralized sector may simultaneously have the sufficient 

spike in demand to warrant decentralized expansion. In the 

simulations with lower volatility, the demand increases steadily 

such that the condition that all the sector exceeds the threshold 

happen at similar times. 

 

 
 

FIGURE 8 - SECTOR UPGRADES 
 

The increased volatility also slightly reduces the total 

number of expansions and therefore the average number of 

expansions is also reduced with increasing volatility as shown in 

Table 4. This further means that the average number of years 

between expansions is longer due to the reduced number of 

expansions. This may be explained by noting that in the 

simulations, only volatility was varied and drift, the upwards 

trend, was held constant which means that spikes of increased 

demand could also be followed by a dip in demand. Without a 

steady increase in demand, fewer simulations reached the 

expansion threshold and therefore a lower number of expansions 

occurred.  
 

TABLE 4 - EFFECT OF VOLATILITY 
 

Volatility Average No. 

Expansions 

Average No. Years 

between Expansions 

1% 2 1 

2% 2 1.0055 

5% 1.9935 1.1680 

 

The years in which there were expansions are shown in 

Figure 9. The set of solid lines indicate a volatility of 1%, the 

square markers have a volatility of 2% and empty circles have a 

volatility of 5%. 
 

 
 

FIGURE 9 - DECENTRALIZED EXPANSION CAPACITY OVER 
TIME 
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It is seen that for low volatility, expansion occurs early on 

with a smaller spread of years in which expansion took place. As 

the volatility increases, the distribution of years in which 

expansion took place also increases. This is shown by the empty 

circle marker in more points of expansion. 

4.5.2  Effect of Decentralization 

The model also incorporated a decentralization threshold 

which controls whether the expansion will occur in a 

decentralized or centralized manner. By setting this threshold 

high, the expansion only happens in a centralized manner. The 

effect of volatility and decentralization are shown in Figure 10. 

It can be seen that for both volatility plots, the lowest ENPV is 

with centralized expansion (left-most line) and the ENPV 

improves with decentralization. The effect of volatility decreases 

the gradient of the cumulative probability plot due to the 

increased spread of demand projections and thus ENPVs. By 

comparing these results, it is shown to be beneficial in adopting 

the decentralized design  

 

 
 

FIGURE 10 - ENPV VS VOLATILITY 

4.5.3  Effect of Robust and Flexible Strategies 

The simulation is now ran for a range of initial capacities 

and average number of expansions to investigate the effect of 

robustness and flexibility. The maximum capacity of the system 

was increased to give a larger range of ENPVs and results. The 

average number of expansions over 2000 simulations is taken as 

a proxy for flexibility and varied by changing the number of 

simultaneous unit expansions at a time. That is, the larger the 

step increase in the capacity during each upgrade, the fewer total 

upgrades are implemented and hence the lower average number 

of expansions. The result of this with volatility = 1% is shown in 

Figure 11. It is shown that by having a low initial capacity and 

meeting the demand on the system through a high number of 

expansions yields a low ENPV. This is due to each expansion 

incurring a cost which negates the benefit in allowing for the 

flexibility. Similarly, the value of flexibility is also negated 

where there is a high initial capacity and a high average number 

of expansions. In this system, the highest ENPVs are obtained 

with a large initial capacity and fewer number of expansions. 

This could be due to having all demand captured, thus generating 

more revenue, with no limitations on capacity. However, 

consistent with earlier experiments, having some flexibility is 

better than none, as shown by the slight peak where there are two 

or three expansions. The simulations with no increase in capacity 

over time are unable to take advantage of increased demand over 

time and therefore gives a lower ENPV. 

 

 
 
FIGURE 11 - EFFECT OF ROBUSTNESS AND FLEXIBILITY 

ON ENPV (VOL = 1%) 
 

For this WTE system, it may be seen that the best strategy 

is where there is a high initial capacity, such that the maximum 

capacity takes some time to be reached, and two or three 

expansions. The possible configurations are summarized in 

Figure 12.  
 

 
FIGURE 12 - SUMMARY OF ROBUST AND FLEXIBLE 

STRATEGIES 

 

The effects of volatility on these parameters are also 

considered. The variation of initial capacity and volatility are 

show in Figure 13. Although for all volatilities, there is 
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increasing ENPV with increasing initial capacity, as the volatility 

increases, the ENPV decreases. This is due to the higher initial 

capacities being able to capture demand without being restricted. 

The higher volatilities, however, may be more prone to 

exceeding the maximum capacities, resulting in reduced ENPV. 

 

 
 

FIGURE 13 - VARIATION OF INITIAL CAPACITY WITH 
VOLATILITY 

 

The average number of expansions can also be seen to 

follow a similar trend in Figure 14 where the higher volatility 

results in a lower ENPV. The peak showing the optimum number 

of expansions is clearly shown here and occurs around three 

expansions regardless of volatility. 

 

 
FIGURE 14 - VARIATION OF AVERAGE NO. OF 

EXPANSIONS WITH VOLATILITY 

 

5. CONCLUSION AND FURTHER WORK 
This study presents a framework to design resilient 

engineering infrastructure systems through robust and flexible 

strategies such that the system lifecycle value, as measured by 

NPV, is maximized. This was applied to a WTE system in 

Singapore where the robust strategy involved optimizing for 

initial capacity and flexibility was implemented through the use 

of Bayesian Networks to select and execute decentralized 

expansion sites. The Bayesian Network shows promise, giving 

similar results to previous studies, and should be considered 

further where decisions need to be more complex, perhaps 

involving qualitative and quantitative data. The results show that 

a decentralized design performed better than a centralized design 

and increasing volatility generally made the system perform 

worse since not all demand could be converted to revenue. 

Flexibility shows increased value compared to a fixed design. 

However, when the system is allowed to upgrade too often, the 

costs of implementation negates the revenue increase. The better 

design is to have a high initial capacity, such that there is less 

restriction on the demand with two or three expansions. 

Future work could include making the Bayesian Network 

more complex to capture more types of uncertainty in the 

decision making process. Shocks can also be introduced into the 

system. Currently the demand is assumed to be of a constant 

volatility and drift. However, this is rarely the case over a 

prolonged timespan and sudden changes in demand could be 

simulated.  
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