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Reconstruction of optical vector-fields with
applications in endoscopic imaging

Milana Gataric, George S. D. Gordon, Francesco Renna,
Alberto Gil C. P. Ramos, Maria P. Alcolea, and Sarah E. Bohndiek

Abstract—We introduce a framework for the reconstruction of
the amplitude, phase and polarisation of an optical vector-field
using measurements acquired by an imaging device characterised
by an integral transform with an unknown spatially-variant
kernel. By incorporating effective regularisation terms, this new
approach is able to recover an optical vector-field with respect
to an arbitrary representation system, which may be different
from the one used for device calibration. In particular, it
enables the recovery of an optical vector-field with respect to
a Fourier basis, which is shown to yield indicative features of
increased scattering associated with tissue abnormalities. We
demonstrate the effectiveness of our approach using synthetic
holographic images as well as biological tissue samples in an
experimental setting where measurements of an optical vector-
field are acquired by a multicore fibre (MCF) endoscope, and
observe that indeed the recovered Fourier coefficients are useful
in distinguishing healthy tissues from tumours in early stages of
oesophageal cancer.

Index Terms—Inverse problem, image reconstruction, calibra-
tion, Fourier features, optical phase and polarisation, endoscope.

I. INTRODUCTION

RECENTLY, there has been a significant interest in devel-
oping new types of optical fibre endoscopes for medical

imaging applications [18], [30], [45], [13], [9]. Typically, these
new endoscopes aim to be thinner, and therefore less invasive,
and/or use different properties of light than conventional white
light endoscopes making them more sensitive for detecting
diseases such as cancer [50]. When a tissue is illuminated by
light of high spatial and temporal coherence, a full optical
vector-field reflected from the tissue consists of amplitude,
phase and polarisation information [2], [41], [37], [36], [24].
Phase and polarisation have recently shown promise as di-
agnostic indicators, but are discarded by conventional white
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light endoscopes which record amplitude information only.
Phase is highly sensitive to surface scattering that arises due
to microstructural tissue changes in early cancer, creating
distorted reflected wavefronts [22], [46], [47], [7], [44]. This
effect has been utilised in phase contrast and quantitative
phase microscopy to predict recurrence of prostate cancer [43].
Similarly, polarisation information can indicate the formation
of dense collagen networks [8], and the concentration of other
polarisation-sensitive compounds, such as glucose, linked with
early cancer [29], [4]. This has found use in the diagnosis of
colon [33], [3] and gastric cancers [48]. Currently, there are
no commercial phase and polarisation endoscopes but many
prototype devices have been demonstrated [39], [18], [34],
[45], [49].

To achieve phase and polarisation imaging in fibre endo-
scopes, the underlying transformation of the optical fibre needs
to be characterised. In realistic clinical settings, this transfor-
mation changes frequently due to bending and temperature
fluctuations and it is therefore important that the characterisa-
tion is efficient and accurate. For the characterisation, typically
a set of known fields that form some kind of a basis are input
into one end of the fibre and the resulting outputs are recorded
at the other end, a procedure termed calibration. The task
then becomes to recover a representation of the optical field
reflected from a tissue given the calibration measurements and
the samples of the output field measured by an imaging sensor
outside of the fibre.

In this paper, we investigate the following questions: (i) is
there a particularly useful representation of the optical field
reflected from a tissue that can be used for detecting optical
aberrations associated with early cancer, and (ii) how can
such a representation be recovered by an efficient and reliable
algorithm from raw endoscopic measurements, i.e. from the
calibration measurements and the samples of the output field?

To address these questions, we show that a Fourier represen-
tation recovered directly from the raw measurements has the
statistical power to distinguish healthy tissues from tumours,
and we provide a general reconstruction framework that can
perform such recovery efficiently and stably.

More concretely, after reviewing related previous works
in Section I-A, in Section II we introduce a general recon-
struction framework for the recovery of a two-dimensional
complex vector-field, where different regularisation terms are
permitted and the bases used for image representation and
device calibration are allowed to be different and/or non-
orthogonal. In Section III we demonstrate that it is possible to
extract informative features for detecting cancer from images
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of simulated tissue samples by projecting them onto a Fourier
basis and observing the decay of their respective Fourier coef-
ficients. In Section IV, we apply our approach to experimental
data acquired using a custom-built fibre endoscope [25] and
recover synthetic holographic images as well as images of
mouse oesophageal tissue containing small tumours (lesions).
In particular, by recovering images of a biological tissue with
respect to a Fourier basis using `1-regularisation, we observe
that the corresponding Fourier coefficients are indicative of
differences between lesions and healthy tissues and demon-
strate their potential for medical diagnostic applications. We
conclude with a discussion of our results and directions for
future research in Section V.

A. Relation to previous work

In imaging through optical fibres or other scattering media,
typical recovery procedures use the same, finite-dimensional
basis for calibration and image representation in conjunction
with standard inversion techniques. They start by discretizing
the mathematical operator of the fibre as a mapping between
pixels at different ends of the fibre A : x ∈ Ck 7→ y ∈ Cn,
leading to a transmission matrix A ∈ Cn×k which is then
characterised through calibration. The calibration inputs are
collected in the columns of matrix Xcal ∈ Ck×m and the
corresponding outputs in the columns of matrix Ycal ∈ Cn×m.
Most existing systems use a full orthogonal basis of the
discretized input space as the calibration inputs, e.g. a set
of tilted plane waves (a Fourier basis) [16] or a Hadamard
basis generated using a phase-only spatial light modulator
[35]. The orthogonality of such bases ensures that Xcal is
unitary. Then, by assuming that A is also unitary, images
can be recovered using phase conjugation. In this approach a
(generalised) inverse of the transmission matrix is calculated
as XcalY

∗
cal, where ·∗ denotes the conjugate transpose, and

a representation of x with respect to the calibration inputs
is recovered as XcalY

∗
caly [35], [18], [17]. Although simple

and straightforward to compute, the unitary assumptions in this
approach are typically violated in practice [14]. In the context
of imaging through scattering media, the inversion of matrix A
was also performed through alternative approaches to phase-
conjugation such as least-squares or Tikhonov regularisation
[36], [37]. In particular, these applications do not explore `1-
regularisation, which becomes a natural choice when recon-
structing images with respect to a sparse basis. In this paper,
we aim to reconstruct the real-world tissue images which are
expected to be sparse in a basis such as Fourier, since these
images are relatively smooth without abrupt discontinuities.

When compared to these conventional techniques, we em-
phasise that our new framework can recover a representation
of the unknown optical field with respect to any particular
infinite-dimensional basis which is allowed to be different
from the one used for calibration, directly from the raw
measurements. If an image representation with respect to a
particular basis (such as Fourier) is desired, alternatively to
our new approach one could in principle use the conventional
techniques to recover an approximation to such a representa-
tion as we now describe. One could calibrate the fibre with

respect to a Fourier basis and use standard techniques to
reconstruct images with respect to the same basis. However, in
high resolution imaging, calibration with respect to a Fourier
basis may become prohibitively slow in practice and it may be
preferable to use different, more efficient systems for calibra-
tion, as we do in this paper. Another possible approach is to
first recover the image with respect to the calibration basis and
then approximate its Fourier coefficients in a post-processing
step. However, as a two-stage procedure, such approach is
inherently less efficient and suffers from greater error than
the approach proposed in this paper, which is able to recover
Fourier coefficients directly from the raw measurements.

In the earlier work [25], an endoscope with a commercially
available multicore fibre (MCF) bundle was developed to
produce images of phase and polarisation for early cancer
detection. There, a set of calibration inputs was chosen to
greatly speed up experimental measurement time. Specifically,
a set of Gaussian-like spots translated in small steps was used
to enable parallelized calibration by exploiting the localised
confinement of light in the MCF structure. However, this input
basis is non-orthogonal so phase-conjugation cannot be naively
applied. Instead, a reconstruction algorithm which solves one
inverse problem per pixel was used to recover the images in a
pixel basis. In particular, representations with respect different
bases were not considered. While preserving the benefits of
efficient experimental calibration achieved with a system tai-
lored to the fibre structure, by using the framework presented
here, we are now able to reconstruct phase and polarisation
images with respect to diagnostically relevant representation
systems and produce features useful for cancer detection.
Moreover, our new approach decreases the reconstruction
time to only few seconds from several hours when compared
to the previously implemented technique [25], providing an
important advance towards real-time image reconstruction.

In the past decades, there has been a significant interest in
developing different imaging techniques that capture scattered
light directly in the Fourier domain, such as light scattering
angular spectroscopy [32], [28], [6], Fourier transform light
scattering [27], angle-resolved low-coherence interferometry
[38] and spatial-frequency domain imaging [31]. Some of
these techniques have been successfully applied for detection
of early cancer [51], providing further validation that Fourier
coefficients indeed yield informative features. We remark that
by our new approach, Fourier coefficients can be recovered
without need to take the measurements in the Fourier domain,
which is important because such measurements are not opti-
mally tailored to the imaging guide such as fibre.

Finally, we mention that changing representation systems
between image recovery and sampling has previously been
applied to inverse problems arising in various image and
signal processing applications (see [1], [23] and references
therein). There, it is assumed that the imaging device of
a known linear transformation provides image samples with
respect to a specified sampling system, while the aim is to
recover a representation of the image with respect to a different
system chosen so that a good approximation of the image is
obtained or the number of required samples is decreased. As
in our paper, different representation systems are modelled by
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Riesz bases or frames of infinite-dimensional function-spaces.
By contrast, the imaging device considered here produces
pixel samples of a transformed image where the underlying
transformation is unknown and is characterised through a
calibration procedure.

II. RECONSTRUCTION FRAMEWORK

In this section we introduce our reconstruction framework.
We start by presenting an infinite-dimensional imaging model
in Section II-A. We then consider a simplified scalar-valued
setting in Section II-B, where we derive a linear system and
its regularised solution while providing flexibility in choosing
different systems for calibration and image representation. We
then extend our framework to vector-fields in Section II-C.

A. Imaging model and reconstruction problem

In imaging through fibres or other scattering media, an
input optical vector-field F is related to its corresponding
output F̃ through an integral transformation with a spatially-
varying kernel G, also called Green’s function or point-spread
function. Specifically, such transformation can be written as

F̃(y) =

∫
S

G(y,x)F(x) dx, (1)

where F : S → C2 is a complex-valued vector-field repre-
senting the unknown optical field on the input plane S ⊆ R2,
F̃ : R2 → C2 is a complex-valued vector-field on the output
plane which can be sampled, and G : R2×R2 → C2×2 is some
unknown bounded matrix-valued function [40]. In general, the
kernel G is also time-dependent as it is affected by bending
of the fibre and temperature. In this paper, we account for
significant measurement noise but only consider imaging at a
single time point; c.f. Section V. In particular, we consider the
input field F to be an object with infinite resolution, and thus,
we model F as an element of an infinite-dimensional function-
space, such as the L2-space of square-integrable functions.

In our novel endoscopic imaging, we want to capture a full
optical field (i.e. amplitude, phase and polarisation) reflected
from a human tissue inside the body, which is also called a
wavefront, and which in this paper, we refer to as an image. In
this terminology, F is an image observed indirectly at the input
imaging plane S at the end of the fibre inside the body, which
is termed the distal facet of the fibre. The fibre then transports
light from the distal facet to the proximal facet outside the
body where the imaging sensor directly observes F̃ at the
output imaging plane. Then the question is how to recover the
unknown F from the acquired samples of F̃.

More concretely, given the pointwise measurements of the
output vector-field F̃ collected at the imaging sensor

F̃(yn), n = 1, . . . , N, (2)

where yn ∈ R2 and N ∈ N is the resolution of the imaging
sensor, the goal is to recover the unknown function F via equa-
tion (1). It is important to note that these measurements will
also contain noise introduced by the measurement procedure.

This linear inverse problem is especially challenging be-
cause both the spatially-varying kernel G as well as the eigen-
functions associated with the underlying integral transform (1)

are unknown. Such eigenfunctions are termed modes of the
fibre and their analytic form is available only for some limited
fibres such as parabolic graded index multimode fibres [42].

To recover F from finitely many samples of F̃ in scenarios
where neither G nor the eigenfunctions are known, one strat-
egy may be to employ a calibration procedure. Concretely, it is
possible to design calibration input fields Em, m = 1, . . . ,M ,
and to measure the corresponding output fields Ẽm, which
in line with the notation above are vector-valued functions
related through the infinite-dimensional model given in (1).
The advantage of calibration is that we now have access not
only to the data given in (2) but also to the calibration data

Em, Ẽm(yn), m = 1, . . . ,M, n = 1, . . . , N, (3)

which forms additional information with which to recover F.
It is noted that while the output fields Ẽm are sampled

at an output imaging sensor of resolution N , the calibration
input fields Em can be evaluated on a discretised grid whose
resolution does not depend on any physical limitation imposed
by the fibre or by the sensor collecting the transmitted image;
it only depends on the resolution of the sensors used for
calibration, which may be much larger than M . Therefore,
as for the input F, we model the inputs Em as elements of an
infinite-dimensional function-space. Thus, the representation
of F as well as the device calibration can be considered with
respect to a wide class of infinite-dimensional bases or over-
complete systems that may not be orthogonal.

B. Reconstruction of scalar-fields

We approach the general problem of recovering the complex
vector-field F by first solving a simplified problem, which
once solved will provide us with the methodology necessary
to tackle the problem in its full generality in Section II-C.
Specifically, we assume in this subsection that F, F̃ , Em, Ẽm
are scalar valued functions that take values in C rather than
C2, and accordingly G takes values in C rather than C2×2.
We highlight this difference by using non-bold symbols.

We consider all fields on the input imaging plane S as ele-
ments of the same function-space F , such as the L2-space of
square-integrable scalar-valued functions supported on S, with
inner product defined as 〈E,H〉 :=

∫
S
E(x)H∗(x) dx, for any

E,H ∈ F . We aim to recover F ∈ F at resolution K ∈ N in
terms of some desired representation system {Hk}Kk=1 in F ,
using only the available data (2) and (3). Specifically, we aim
to estimate the coefficients f =

[
f1, . . . , fK

]> ∈ CK of the
K-term approximation of F given as

FK(x) :=

K∑
k=1

fkHk(x), x ∈ S. (4)

Before turning to the computation of fk in (4), it is
insightful to work through special cases of S and {Hk}Kk=1

that are particularly useful in practice. For instance, if we
want to recover a Fourier representation of F and S :=
[−1/2, 1/2]2 ⊆ R2, then {Hk}Kk=1 is the K-dimensional
Fourier basis {e2πik·x}k∈IK where IK := {k = (k1, k2) ∈
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Z2 : k1, k2 = −d
√
K/2e, . . . , d

√
K/2e − 1}, k · x :=

k1x1 + k2x2, x := (x1, x2) ∈ S, and (4) specialises to

FK(x) :=
∑
k∈IK

fke
2πik·x, fk :=

∫
S

F (x)e−2πik·x dx. (5)

More generally, {Hk}Kk=1 may contain the first K elements of
a Riesz basis in F , such as B-spline wavelets for example, with
its corresponding biorthogonal sequence denoted by {H̆k}Kk=1,
in which case (4) becomes FK(x) =

∑K
k=1〈F, H̆k〉Hk. More-

over, as we do not require an explicit form of the coefficients
fk, the notion of basis can be further relaxed to over-complete
representation systems such as over-complete frames [15].

Returning to the key issue of approximating the coefficients
fk in (4) from the given measurements (2)–(3), we write each
Hk in terms of the calibration functions {Em}Mm=1 as

Hk(x) =

M∑
m=1

hm,kEm(x) + δk(x), x ∈ S, (6)

for some coefficients hm,k ∈ C, whose computation we
discuss below, and for some error term δk. Since (1) is a linear
transformation of F , by substituting F with FK + (F − FK)
in (1) and writing FK in terms of (4) and (6), we have

F̃ (·) =

K∑
k=1

M∑
m=1

fkhm,kẼm(·) +

K∑
k=1

fk

∫
S

G(·,x)δk(x) dx

+

∫
S

G(·,x)(F (x)− FK(x)) dx. (7)

By evaluating equation (7) at the measurement points
{yn}Nn=1, we obtain the following linear system

g = EHf + ε, (8)

where g := [F̃ (y1), . . . , F̃ (yN )]> ∈ CN , E ∈ CN×M is the
matrix with its (n,m)-th entry equal to Ẽm(yn), H ∈ CM×K
is the matrix with its (m, k)-th entry equal to hm,k and ε ∈
CN is an error term containing the last two terms in the right-
hand-side of (7). In addition, the error term ε ∈ CN can be
seen also as encapsulating measurement error incurred when
measuring F̃ (yn) and Ẽm(yn) in (2) and (3), respectively. We
then opt to define the solution of (8) as

f̄ := argmin
f∈CK

{‖g −EHf‖2 + λR(f)} , (9)

where ‖ · ‖2 denotes the Euclidean norm on CN , while the
regularisation term R and its parameter λ ≥ 0 are described
below. Once the coefficients f̄ =

[
f̄1, . . . , f̄K

]> ∈ CK are
computed through (9), then in line with (4) we define the
reconstruction of F as the approximation given by

F̄K(x) :=

K∑
k=1

f̄kHk(x), x ∈ S. (10)

To obtain the explicit solution defined in (10), it remains
to describe the procedure for computing the coefficients of
matrix H and to define the regularisation term R.

First, observe that if the same system is used for cali-
bration and reconstruction, then H = I. Otherwise, we can
estimate H as follows. Using (6), we write 〈Hk, Em′〉 =

∑M
m=1 hm,k〈Em, Em′〉+〈δk, Em′〉, m′ = 1, . . . ,M , and thus,

provided 〈δk, Em′〉 ≈ 0, we can approximate H by 〈E1, E1〉 . . . 〈EM , E1〉
...

...
〈E1, EM 〉 . . . 〈EM , EM 〉


−1 〈H1, E1〉 . . . 〈HK , E1〉

...
...

〈H1, EM 〉 . . . 〈HK , EM 〉

.
The first matrix above is known as the Gram matrix, which
is equal to the identity if {Em}Mm=1 are orthonormal. We
note that the accuracy of such estimation of matrix H and
its condition number depend on the gap between the function-
spaces spanned by {Hk}Kk=1 and {Em}Mm=1 as well as on the
conditioning of the Gram matrix. In general, it is required that
{Em}Mm=1 form a good approximation for {Hk}Kk=1.

Turning to the choice of the regularisation term R in
(9), in case it is absent, i.e. if λ = 0, then the solu-
tion to (9) is equivalent to the least-squares solution f̄ :=
((EH)∗EH)−1(EH)∗g. If the regularisation term is given by
R(f) := ‖f‖2, then (9) is known as Tikhonov regularisation
and its solution is given by f̄ := ((EH)∗EH+λI)−1(EH)∗g.
However, if EH is badly conditioned, ε 6= 0 and it is known
a priori that only a few elements of {Hk}Kk=1 are sufficient
to represent F well, then R(f) := ‖f‖0 is an appropriate
choice of the regularisation term. This is known as the `0-
regularisation, where the `0-norm ‖f‖0 is defined as the num-
ber of non-zero entries in f . The `0-regularisation bypasses
the ill-conditioning by imposing sparsity in the solution F̄K
with respect to {Hk}Kk=1. In practice, solving the minimisation
problem with such a non-convex `0-term is computationally
difficult, so typically an `1-relaxation is considered instead.
The corresponding relaxed minimisation problem can then be
solved by fast iterative algorithms [11], [10]. In addition, the
parameter λ, which controls the strength of the regularisation,
can be chosen by cross-validation techniques [20].

We conclude this subsection with a discussion on the
accuracy and robustness of the solution defined in (10).

The reconstruction error can be quantified by the magnitude
of F − F̄K = (F − FK) + (FK − F̄K). The magnitude of
F − FK depends of how well F can be represented by its
K-term approximation with respect to {Hk}Kk=1, and thus it
is expected to decrease with increasing K. On the other hand,
the magnitude of FK−F̄K depends on the conditioning of EH
and the error term ε in (8), and thus, it is expected to increase
with increasing K and M,N fixed. If the resolution K at
which we reconstruct is increased, we also need to increase M
and N . However, it may be possible to attain higher resolutions
if some form of regularisation is used when solving (8).

As previously noted, the error term ε contains the measure-
ment error as well as the last two terms in (7), which can be
disregarded provided F−FK and δk are small or they lie in the
span of the eigenfunctions corresponding to a small singular
value. Thus, small ε requires that {Hk}Kk=1 and {Em}Mm=1

form a good approximation for F or for the eigenfunctions
with large singular values. However, if the singular values
of the underlying integral operator accumulate at zero, the
conditioning of the matrix E may become worse if the span of
{Em}Mm=1 includes too many eigenfunctions including those
corresponding to a small singular value. Loosely speaking,
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{Em}Mm=1 should form a good representation for the span
of the eigenfunctions, excluding those corresponding to small
singular values if they exist. However, as we do not have
access to the true eigenfunctions, we do not have control over
the ill-conditioning introduced by using a particular choice
of {Em}Mm=1. Thus, the use of regularisation in solving (8)
becomes crucial in order to obtain a robust solution.

C. Reconstruction of vector-fields

We now extend the scalar-field reconstruction framework
developed in Section II-B to the more general vector-field
problem presented in Section II-A. To begin with, let F :=[
Fh, F v

]> (1)7→ F̃ :=
[
F̃h, F̃ v

]>
be the complex-vector-valued

functions related as in equation (1), where the superscripts h
and v correspond to the horizontal and vertical polarisations
of the optical field, respectively. The goal is to recover both
polarisations Fh and F v , which are scalar-valued functions,
by using data (2)–(3). Since each F̃h and F̃ v depends on
both Fh and F v , instead of reconstructing each polarisation
independently, we consider their joint reconstruction. As we
will see in Section IV-A, the reconstruction of each individual
polarisation can be improved if they are reconstructed jointly.
Nevertheless, as it will be demonstrated below, we can still
use the framework introduced in Section II-B, as long as the
calibration inputs can form a representation system for vector-
valued functions such as F. To ensure this is the case, rather
than straightforwardly sampling the vector-valued calibration
inputs in (3), we sample the following two related forms

Am:=

[
Ehm
Evm

]
(1)7→Ãm:=

[
Ãhm
Ãvm

]
, Bm:=

[
Ehm
bEvm

]
(1)7→B̃m:=

[
B̃hm
B̃vm

]
, (11)

where m = 1, . . . ,M , b := eβi for a fixed β ∈ (0, 2π) and
Ehm, E

v
m, Ã

h
m, Ã

v
m, B̃

h
m, B̃

v
m are some scalar-valued functions.

To make clear the motivation to sample according to (11),
observe that if {Ehm}Mm=1 and {Evm}Mm=1 are representation
systems for Fh and F v respectively, then {Am−Bm}Mm=1 and
{Am − b∗Bm}Mm=1 are representation systems for

[
0, F v

]>
and

[
Fh, 0

]>
, respectively. In other words,{

Am −Bm, Am − b∗Bm : m = 1, . . . ,M
}

(12)

can be used to represent the complex vector-valued F.
Mimicking the reasoning of the previous subsection,

we proceed by approximating Fh and F v with re-
spect to some desired representation systems {Hh

k }Kk=1

and {Hv
k}Kk=1. Namely, we aim to recover FhK(x) :=∑K

k=1 f
h
kH

h
k (x) and F vK(x) :=

∑K
k=1 f

v
kH

v
k (x), where we

first write these representations in terms of the calibra-
tion inputs, i.e. Hh

k (x) =
∑M
m=1 h

h
m,kE

h
m(x) + δhk (x) and

Hv
k (x) =

∑M
m=1 h

v
m,kE

v
m(x) + δvk(x), for some coefficients

fhk , f
v
k , h

h
m, h

v
m ∈ C and error terms δhk , δ

v
k . It follows that

F(x)=

K∑
k=1

M∑
m=1

fhk h
h
m,k

[
Ehm(x)

0

]
+

K∑
k=1

M∑
m=1

fvkh
v
m,k

[
0

Evm(x)

]

+

K∑
k=1

[
fhk δ

h
k (x)

fvk δ
v
k(x)

]
+

[
Fh(x)−FhK(x)
F v(x)−F vK(x)

]
. (13)

Since
[
Ehm(x), 0

]>
= (1 − b∗)−1 (Am(x)− b∗Bm(x)) and[

0, Evm(x)
]>

= (1− b)−1 (Am(x)−Bm(x)) , we obtain

F̃(·) ≈ 1

1− b∗
K∑
k=1

M∑
m=1

fhk h
h
m,k

(
Ãm(·)− b∗B̃m(·)

)
+

1

1− b

K∑
k=1

M∑
m=1

fvkh
v
m,k

(
Ãm(·)− B̃m(·)

)
,

by applying (1) to (13), provided the two last terms in (13)
are small or they become small after applying (1). By using
the pointwise measurements from (2) and (11), this leads to

g = EHf + ε, E :=
[
a∗ (A− b∗B) a (A−B)

]
, (14)

where g :=
[
F̃h(y1), F̃ v(y1), . . . , F̃h(yN ), F̃ v(yN )

]>∈C2N ,
f :=

[
fh1 , . . . , f

h
K , f

v
1 , . . . , f

v
K

]>∈ C2K , ε ∈ C2N is the error
term, a := 1/(1− b) ∈ C, A,B ∈ C2N×M are defined as

A:=


Ãh1 (y1) . . . ÃhM (y1)

Ãv1(y1) . . . ÃvM (y1)
. . .

Ãh1 (yN ) . . . ÃhM (yN )

Ãv1(yN ) . . . ÃvM (yN )

,B:=


B̃h1 (y1) . . . B̃hM (y1)

B̃v1 (y1) . . . B̃vM (y1)
. . .

B̃h1 (yN ) . . . B̃hM (yN )

B̃v1 (yN ) . . . B̃vM (yN )

,

and H ∈ C2M×2K is a block-diagonal matrix diag(Hh,Hv),
where Hh ∈ CM×K is such that its (m, k)-th entry is hhm,k
and Hv ∈ CM×K is such that its (m, k)-th entry is hvm,k.
We propose to solve the linear system (14) in a similar
manner to that used in (9). Finally, once (14) is solved for
the coefficients f̄ =

[
f̄h1 , . . . , f̄

h
K , f̄

v
1 , . . . , f̄

v
K

]> ∈ C2K , we
can define the reconstructions of Fh and F v as F̄hK(·) :=∑K
m=1 f̄

h
kH

h
k (·) and F̄ vK(·) :=

∑K
m=1 f̄

v
kH

v
k (·). Observe that

using `1-regularisation in this case imposes sparsity in the
reconstructions F̄hK and F̄ vK with respect to {Hh

k }Kk=1 and
{Hv

k}Kk=1, respectively. Also similarly as before, we note that
matrices Hh and Hv are identities when the reconstruction
functions Hh

k , H
v
k and the calibration functions Ehm, E

v
m are

the same, otherwise they can be computed approximately
from the equations 〈Hh

k , E
h
m′〉 ≈

∑M
m=1 h

h
m,k〈Ehm, Ehm′〉 and

〈Hv
k , E

v
m′〉 ≈

∑M
m=1 h

v
m,k〈Evm, Evm′〉, m′ = 1, . . . ,M .

Finally, we note that in order to reduce the impact of noise it
may be possible to include measurements of additional phase-
shifts of the calibration functions. In addition to the calibration
inputs Am and Bm in (11), it may also be possible to measure
Cm :=

[
Ehm, cE

v
m

]> (1)7→ C̃m :=
[
C̃hm, C̃

v
m

]>
, where c is such

that c 6= b and b+ c 6= 2. Thus, rather than using (12), we can
use
{
a∗
(
Am− b∗

2 Bm− c∗

2 Cm

)
, a
(
Am− 1

2Bm− 1
2Cm

)
: m =

1, . . . ,M
}

, where a := 1/ (1− b/2− c/2) is finite given that
b+ c 6= 2. We then proceed as above but in place of (14) get

g=EHf+ε, E :=
[
a∗
(
A− b∗

2 B−
c∗

2 C
)
a
(
A− 1

2B−
1
2C
)]
,

(15)

where E now includes C ∈ C2N×M containing the outputs
C̃m. As we will see in Section IV, augmenting the calibration
data in such a way is indeed an effective manner to decrease
the influence of the measurement noise on the reconstruction.
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Fig. 1. Higher phase oscillations (larger τ ) results in a slower decay of the Fourier coefficients (larger σ).

III. FOURIER COEFFICIENTS AS INFORMATIVE FEATURES

Since inhomogeneities on a cellular scale caused by cancer
result in increased scattering of an optical field reflected from
a tumourous tissue [21], it is expected that they also result in
higher spatial frequencies of the corresponding optical field.
Hence, we propose that by representing such optical fields
in a Fourier basis and by inspecting the associated Fourier
coefficients it is possible to detect the increased scattering and
thereby gain insight into the disease status of the tissue.

In this section, we focus on the merits of the Fourier
coefficients as indicative features of increased phase scattering.
By using simulated data, we show how increased changes in
phase result in a slower decay of the corresponding Fourier
coefficients and how this effect can be quantified. In the next
section, we confirm these findings on real biological data,
where we use the framework developed in Section II to recover
tissue images directly in a Fourier basis and demonstrate that
the Fourier coefficients are indeed useful for detecting cancer.

A. Fourier coefficients of a one-dimensional example

We first consider a simple 1D example to illustrate the effect
of increased phase oscillations on the decay of the correspond-
ing Fourier coefficients. We compute the Fourier coefficients
of eight different functions F (j)(x) = R(x) exp(iP (j)(x)),
j = 1, . . . , 8, with the same amplitude R but different
phase P (j) defined on the interval x ∈ I := [−1/2, 1/2].
For illustration purposes we take R(x) := exp(−x2) and
P (j)(x) := τ (j) sin(20x), where 0 < τ (1) < · · · < τ (8) < 2π,
so that different phase functions exhibit different degrees of
oscillations. These phase functions are shown in the first panel
of Fig. 1. Since the Fourier basis on I is given by {e2πikx}k∈Z,
for each F (j) we compute its first 20 Fourier coefficients as

f
(j)
k :=

∫
I

F (j)(x)e−2πikx dx,

where k = −10, . . . , 9, and approximate its Fourier trans-
form by the classical Whittaker–Shannon interpolation formula∑
k f

(j)
k sinc(w − k), w ∈ R. The absolute value of the

approximated Fourier transform for each j is shown in the
second panel of Fig. 1. Finally, we quantify the decay of
the Fourier coefficients by the standard deviation σ(j) of a
Gaussian function a(j) exp(−(w − c(j))2/(2(σ(j))2)) fitted
to the amplitude of the approximated Fourier transform on
interval w ∈ [−10, 10). The fitted Gaussian functions are

shown in the third panel of Fig. 1. From the fourth panel of
Fig. 1, we observe that an increased magnitude of the phase
oscillations τ (j) results in an increased standard deviation σ(j).
It is important to note that although in this example the zeros
of the different phase functions coincide, the same effect is
observed even if this is not the case. Also, if the frequency
of the phase oscillation is increased while their magnitude is
kept constant, then σ(j) would increase as well.

The takeaway message from this simple example is that rep-
resenting a signal with respect to a Fourier basis is especially
useful to identify variations in oscillating phase, and that the
decay of the corresponding Fourier coefficients is sensitive to
phase scattering in a manner that can be easily identified. As
we will see in the remainder of the paper, these observations
remain true also in higher dimensional practical examples.

B. Fourier coefficients of simulated tissue images

We now generalise our observations to 2D functions. For
this purpose, we create a model mimicking tissue samples with
a different level of phase oscillations, which we then use to
generate images and compute their Fourier coefficients.

In our model, we use randomness to achieve certain vari-
ability across different samples and two different parameters
to control the degree of phase oscillations. In particular, our
model corresponds to a function F (x) := R(x) exp(iP (x)),
x ∈ S, where the original space-domain S := [−1/2, 1/2]2 is
discretized into a 700× 700 grid, while R and P are chosen
randomly as we now describe. The phase function P := P (τ,ρ)

depends on two given parameters τ and ρ, controlling the
amplitude and the frequency of phase oscillations, respectively.
To produce P , first 800 × 800 pixel-values are chosen uni-
formly at random from [−1, 1], which are then filtered by
using MATLAB’s function ‘imgaussfilt’ with the smoothing
parameter ρ. Following this step, only 700 × 700 pixels are
kept by removing 50 pixels from each boundary and such
image is then rescaled so that all phase values are between
[−τ, τ ], τ ∈ [0, π]. The amplitude R is selected as the sum of
exp(−50‖x‖22)/1000 and five additional Gaussian functions
exp(−‖x− c‖22/d)/2000 with randomly chosen c and d.

In Fig. 2 we demonstrate how changing phase param-
eters τ and ρ while keeping amplitude fixed changes the
decay of Fourier coefficients. Specifically, we use six values
(ρ(j), τ (j)), j = 1, . . . , 6 to create six functions F (j), where
0 < τ (1) < · · · < τ (6) ≤ π and 0.025 < (ρ(1))−1 < · · · <
(ρ(6))−1 ≤ 0.125 are increasing logarithmically. Similarly to
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Fig. 2. Six simulated images with the same amplitude but different phase, which are generated
from our model with increasing τ (j)/ρ(j), j = 1, . . . , 6, so that larger τ (j)/ρ(j) characterises
larger phase oscillations. In the scatter plot, we report the logarithm of the sum of parameters
σ
(j)
1 and σ(j)

2 of the Gaussian fitted to the amplitude of the Fourier transform abs(FT), revealing
that increased τ (j)/ρ(j) correlates with larger σ(j)

1 + σ
(j)
2 .

the 1D example of Fig. 1, the decay of corresponding Fourier
coefficients is measured by standard deviation of a Gaussian
function a exp(−(x1 − c1)2/(2σ2

1)− (x2 − c2)2/(2σ2
2)) fitted

to the absolute value of the Fourier transform approximated
from the first 20×20 Fourier coefficients, which are computed
using the formula in (5). In Fig. 2, for each F (j) we report
the sum of the standard deviations σ(j)

1 + σ
(j)
2 of the fitted

Gaussian, thereby observing that increased phase oscillations,
i.e. increased τ (j)/ρ(j), results in slower decay of the corre-
sponding Fourier coefficients, i.e. larger σ(j)

1 + σ
(j)
2 .

Next, in Fig. 3, for each (ρ(j), τ (j)), j = 1, . . . , 6, chosen
as in Fig. 2, we generate 100 images using our model (with
each image having a different phase and a different amplitude)
and we report the value σ(j)

1 +σ
(j)
2 of the fitted Gaussian. We

observe the same trend in the decay of the Fourier coefficients
in Fig. 3 as in Fig. 2, but now across 600 different images.

Fig. 3. For each of the six cate-
gories, we generate 100 images
with different phase and ampli-
tude from our tissue model with
fixed parameters τ (j) and ρ(j),
j = 1, . . . , 6, and compute cor-
responding σ(j)

1 + σ
(j)
2 .
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We note that the features extracted from Fourier coefficients
as we described above have three additional useful properties.
First, since the amplitude of the Fourier transform is invariant
to the shifts of the corresponding complex function in its
space-domain, the features that we extract are invariant to

the shifts of the tissue images in their space-domain. Second,
the quality of the recovered phase in the space-domain is
dependent on a phase unwrapping procedure and is thus highly
sensitive to noise, which means that phase may bear more
information in the Fourier-domain than in the space-domain.
Third, once the Fourier coefficients are recovered, each image
can easily be represented in both the Fourier and the space-
domain, allowing for additional flexibility.

IV. EXPERIMENTAL RESULTS

Having established the utility of Fourier coefficients in
quantifying phase scattering in Section III, we now apply the
reconstruction framework developed in Section II to measure-
ments obtained experimentally by a fibre endoscope, which is
described in the supplementary material available at the end of
this file. In Section IV-A, we first demonstrate the recovery of
a synthetic holographic image with a known ground-truth that
can be used for validation. Next, in Section IV-B, we apply
our method to biological images of tissue samples taken from
mice and demonstrate that reconstruction with respect to a
Fourier basis can be used as a diagnostic indicator of early
tumorigenesis.

A. Reconstruction of a synthetic holographic image

To demonstrate our reconstruction algorithm on experimen-
tal data we first reconstruct a synthetic holographic image,
which was generated experimentally as explained in the sup-
plementary material, Section 1.C. Since in this case we have
access to the ground-truth image, we can visually assess the
quality of our proposed imaging methodology. Specifically,
using the raw output of the holographic image shown in
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Input at the distal end Raw output at the proximal end
(a) abs(Fh) phase(Fh) abs(F̃h) phase(F̃h)

100um

(b) abs(Eh
m) phase(Eh

m) abs(Ãh
m) phase(Ãh

m)

100um

Fig. 4. (a): Amplitude and
phase of the horizontal polari-
sation of the ground-truth syn-
thetic holographic image at the
distal end and the correspond-
ing raw output at the proximal
end. Due to space limitation, the
vertical polarisation is presented
in the supplementary material
as Fig. 13.
(b): Amplitude and phase of
the horizontal polarisation of
one calibration input (Am of
Eq. (11)) at the distal end and
at the proximal end. More infor-
mation about the calibration in-
puts can be found in the supple-
mentary material, Section 1.B.

Fig. 4(a), we test our general reconstruction framework in
combination with different representation systems as well as
different regularisation terms.

The MCF system is calibrated using input and output pairs
as exemplified in Fig. 4(b). Given the localised confinement of
light in MCF, for efficient calibration, several input and output
calibration functions are evaluated in parallel. However, for the
reconstruction, individual calibration functions are separated
from the rest by evaluating each of them only over a circular
region around the centre of the corresponding Gaussian-like
spot. In particular, the calibration inputs in Fig. 4(b) are
evaluated on a 1200 × 1200 grid and translated to M = 936
different locations across the input imaging plane. Each output
is evaluated at N = 34973 pixels at the output imaging plane.
Thus, considering the two polarisation states, the dimension
of the system matrix in (15) is 1872× 69946.

In Fig. 5, we recover the amplitude and the phase of the
horizontal and vertical polarisations of the holographic image
from raw endoscopic measurements using different inversion
techniques while reconstructing with respect to the calibration
coefficients. In particular, we solve (15) where Hh = Hv = I,
by inverting the linear system in four different ways:

1. the naive inversion f̄ := E∗g, which corresponds to the
principle of phase conjugation as it assumes E∗E = I,

2. the least-squares approach f̄ := (E∗E)−1E∗g,
3. the `2-regularisation f̄ := (E∗E + λI)−1E∗g, and,
4. the `1-regularisation f̄ := argminf∈C2M ‖g − Ef‖2 +
λ‖f‖1, using the iterative solver [12].

Fig. 5 shows that `1-regularisation performs well when com-
pared to the other approaches. In fact, since this image is
sparse with respect to the calibration inputs, `1 successfully
removes significant noise while preserving the image details.

Next, we compare the proposed approach to its naive
version, which reconstructs each polarisation separately and
thereby excludes the interaction between different polarisa-
tions. Specifically, in the upper panels of Fig. 6, the horizon-
tal polarisation Fh is reconstructed by solving a variant of
eq. (15) for the unknown vector [fh1 , . . . , f

h
K ]>, where only

the samples of the horizontal polarisation F̃h are considered

and the corresponding calibration measurements are Ehm 7→
a∗(Ãm − b∗

2 B̃m −
c∗

2 C̃m). Similarly, the vertical polarisation
F v is reconstructed by solving another linear system, which
accounts for the vertical polarisation only. By comparing these
reconstructions to those in the lower panels of Fig. 6, we see
that by reconstructing different polarisations jointly via (15),
we improve the reconstruction of each individual polarisation.

Finally, in Fig. 7, we reconstruct the holographic image with
respect to different representation systems, namely we solve
(15) where both Hh and Hv correspond to a Fourier or a
wavelet basis with cardinality K = 1024. Specifically, we
choose both {Hh

k }Kk=1 and {Hv
k}Kk=1 to be

(i) in the Fourier case, {exp(2πi(k1x1 + k2x2)) : k1, k2 =
−
√
K/2, . . . ,

√
K/2− 1}, x = (x1, x2) ∈ [−1/2, 1/2]2,

(ii) in the wavelet case, tensor-products of
√
K 1D boundary-

corrected Daubechies wavelets with four vanishing mo-
ments (DB4) from [19].

Fig. 7 shows that least-squares fails to give a useful estimate,
conveying that it is crucial to use regularisation. Although
least-squares could still be used when K � M , small K
does not necessarily lead to a good approximation of the
image, and so to achieve the desired resolution one would
need to increase the number of calibration measurements M ,
which is undesirable as it would incur additional experimental
time. Given that our holographic image is sparse with respect
to compactly-supported wavelets, `1-regularisation performs
quite well in combination with DB4 even though K > M .

B. Reconstruction and analysis of biological images

We now apply the methodology from Sections II–III to re-
construct and analyse images of biological tissues. We imaged
ex vivo samples of mouse oesophagus from healthy controls
and carcinogen treated animals with induced oesophageal
tumours using the model presented in [5]. We used 3 control
mice (6 healthy areas) and 6 mice with tumours (6 distinct
lesions). Each sample was segmented into areas of healthy
and lesion tissue using the technique of DAPI fluorescence
imaging, which was validated in [5]. For more details on
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Fig. 5. Reconstructed ampli-
tude and phase (horizontal po-
larisation) of the holographic
image from Fig. 4(a) with re-
spect to the calibration func-
tions such as those in Fig. 4(b),
using naive, least-squares, `2
and `1 approaches. The regular-
isation parameter in the `2 and
`1-regularisation is λ = 0.3
and λ = 0.267, respectively.
The vertical polarisation is pre-
sented in the supplementary
material, Fig. 14. The recon-
struction time1 is under 1s for
the naive inversion and the `1-
regularisation, while it is around
4s for the least-squares and the
`2-regularisation.

Horizontal polarisation Vertical polarisation
Amplitude Phase Amplitude Phase
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Fig. 6. Top row: each po-
larisation is reconstructed sep-
arately by solving a variant
of eq. (15), where only one
polarisation is considered at
the time. Bottom row: the
two polarisations are recon-
structed jointly at the same time
via (15). All linear systems
are solved via `1-regularisation,
while the corresponding recon-
structions via least squares are
shown in the supplementary
material, Fig. 15. The scale bar
is the same as in Fig. 5.

preparation of tissue samples, we refer to the supplementary
material, Section 1.D.

For clarity, we index different areas by n = 1, . . . , 12, where
the first six are healthy and the rest are lesions. Due to the
limited field of view of the endoscope (∼ 200µm) relative to
the sample size (∼ 2mm), each of the 12 areas produce 6–20
individual images corresponding to different parts of the same
sample that may overlay by up to 15%. We thus also introduce
index i to denote individual sub-images within a larger area
on a given sample, so that each individual sample has index
(n, i), n = 1, . . . , 12, i = 1, . . . , In, for In in the range 6–20.

Fig. 8 shows the reconstruction of the horizontal polarisation
of one healthy image indexed as (1, 1) and one lesion image
indexed as (7, 1), in both the space-domain and the Fourier-
domain. Specifically, we reconstruct K = 400 Fourier coeffi-
cients per polarisation by solving (15) with `1-regularisation.
We then expand these coefficients with respect to Fourier-
exponentials to get images in the space-domain, and, with
respect to sinc-functions to obtain images in the Fourier-
domain. In the space-domain, we show the amplitude and the
unwrapped phase of the reconstructed image, where for the
unwrapping we used the efficient algorithm from [26]. In the

Fourier domain, we show the amplitude of the reconstructed
Fourier transform and the corresponding Gaussian fit, where
we used the procedure explained in Section III. While the
difference between the healthy and the lesion sample is not so
apparent from the amplitude and phase in the space-domain, it
becomes more pronounced in the Fourier domain; specifically,
we observe that the Fourier coefficients decay slower in the
lesion than in the healthy tissue, where the decay is quantified
by the standard deviation of the fitted Gaussian. For reference,
in Fig. 10 we also include the microscopic images of the same
healthy and lesion regions as those shown in Fig. 8. Additional
images across the data set can be found in the supplementary
material, Fig. 17–18.

Finally, in Fig. 9 we perform a statistical test using all sam-
ples in the data set, which confirms that the standard deviation
of the fitted Gaussians is an informative feature to distinguish
between healthy and lesion tissues. In particular, for each
individual sample (n, i) we compute σ(n,i)

1 +σ
(n,i)
2 of the fitted

1The reconstruction time is time needed to solve the corresponding linear
system and produce amplitude and phase images for two polarisations and
is computed as an average over 10 runs using Matlab on Intel(R) Core(TM)
i5-4670 CPU @ 3.40GHz [4 CPUs] 3401 Mhz.
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Fig. 7. Reconstructed images (horizontal polarisation) with respect to the different bases using two inversion
approaches. We used 32× 32 Fourier exponentials / DB4 wavelets. In the `1-regularisation λ = 0.25 and the
reconstruction time1 is around 30s.
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Fig. 8. Reconstructed images (horizontal polarisation) of healthy and lesion tissue with respect to K = 400
Fourier coefficients by solving the linear system (15) with `1-regularisation and λ = 0.25. The reconstruction
time1 is around 15s, while the time of the subsequent phase unwrapping and Gaussian-fitting is under 1s.
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Fig. 9. Standard deviation σ(n)
1 + σ

(n)
2 , n =

1, . . . , 12, of a Gaussian fitted to the amplitude
of the Fourier transform of 6 healthy and 6
lesion mouse samples. In the bottom box-plot,
prior to the t-test, a 2D feature corresponding
to two different polarisations is rescaled by the
mean and standard deviation of the total of 12
samples.

Gaussian. Then, for each tissue sample n = 1, . . . , 12, we
compute the average σ(n)

1 +σ
(n)
2 := I−1n

∑In
i=1(σ

(n,i)
1 +σ

(n,i)
2 )

and group them in a box-plot according to their class label
‘healthy’ or ‘lesion’, for each polarisation and for both polar-
isations combined. We also compute the p-value of Welch’s
t-test [52], showing the significant difference in the decay of
Fourier coefficients between healthy and lesion samples.

We conclude that the degree to which the recovered Fourier
coefficients decay, quantified by the standard deviation of the
fitted Gaussian, is a feature with a discriminative power, which
in the future, in conjunction with a larger data set, could be
used to build an automated classifier to distinguish between
healthy and lesion samples.

V. DISCUSSION AND FUTURE RESEARCH

The main contributions of this paper are two-fold. Firstly,
we showed that a Fourier representation of the optical field
reflected from a tissue yields a promising diagnostic indica-
tor, using both simulated and experimental real-world data.
Secondly, we provided a general reconstruction algorithm that
through regularisation can stably recover such representation
directly from the calibration measurements and the samples of
the output field transmitted through a fibre, where the system
used for calibration is allowed to be different and thus more
efficient than a Fourier basis.

Nevertheless several open problems remain. One such prob-
lem relates to learning an ‘optimal’ dictionary (alternative



11

Fluorescence Phase contrast Brightfield
H

E
A

LT
H

Y

100um

L
E

SI
O

N

100um

Fig. 10. Images obtained by three different microscope modalities: flu-
orescence, phase contrast and brightfield imaging. The central parts (∼
200 × 200µm2) of the healthy and lesion regions correspond to the images
reconstructed via the proposed method in Fig. 8. Fluorescence images with
DAPI stain were used to determine the lesion vs. healthy regions. The phase
contrast images show that phase information encodes scattering information
in lesion areas, while the brightfield images show that under normal ’white
light’ used in the conventional endoscopes, features linked with lesions cannot
easily be distinguished from healthy tissue.

to Fourier) as a means to minimise the classification error
between healthy and lesion tissues, which would require a
significantly larger number of biological samples to be tested.
More importantly, further work is required to enable real-
time imaging through fibre endoscopes operating in reflection
in realistic clinical settings. Specifically, future research is
needed to lift the time-independence assumption present in
the kernel of the linear model (1), which in everyday clinical
use varies across time with bending and temperature. In
practice, the time-independence assumption means that the
calibration measurements need to be taken often and under
similar bending and temperature conditions as when sampling
the output optical field, which is difficult to achieve in re-
alistic clinical deployments unless using a rigid endoscope.
The development of a clinically-feasible recovery procedure
that accounts for significant fibre changes thus remains an
important open problem.

VI. ACKNOWLEDGEMENTS

M. Gataric and S. E. Bohndiek were supported by an
EPSRC grant EP/N014588/1 for the centre for Mathemati-
cal and Statistical Analysis of Multimodal Clinical Imaging.
G. S. D. Gordon and S. E. Bohndiek received funding from
CRUK (C47594/A16267, C14303/A17197, C47594/A21102)
and a pump-priming award from the Cancer Research UK
Cambridge Centre Early Detection Programme (A20976). The
work of F. Renna was funded in part by the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 655282 and in
part by the FCT grant SFRH/BPD/118714/2016.

REFERENCES

[1] B. Adcock, A. C. Hansen, B. Roman, and G. Teschke, “Chapter Four
- Generalized Sampling: Stable Reconstructions, Inverse Problems and

Compressed Sensing over the Continuum,” Advances in Imaging and
Electron Physics, 182, 187–279, 2014.

[2] H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery
through scattering media,” Sci. Adv., vol. 3, no. 9, 2017.

[3] I. Ahmad, M. Ahmad, K. Khan, S. Ashraf, S. Ahmad, and M. Ikram,
“Ex vivo characterization of normal and adenocarcinoma colon samples
by Mueller matrix polarimetry,” J Biomed Opt, 20(5), 056012, 2015.

[4] S. Alali, and I. A. Vitkin, “Polarized light imaging in biomedicine:
emerging Mueller matrix methodologies for bulk tissue assessment,” J
Biomed Opt, 20(6), 20209, 2015.

[5] M. P. Alcolea, P. Greulich, A. Wabik, J. Frede, B. D. Simons, and
P. H. Jones, “Differentiation imbalance in single oesophageal progenitor
cells causes clonal immortalization and field change,” Nat Cell Biol, 16(6),
615–22, 2014.

[6] S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, ”Spatially resolved
Fourier holographic light scattering angular spectroscopy,” Opt Lett,
vol. 30, no. 24, pp. 3305-3307, 2005.

[7] R. Anaparthy, P. Sharma, “Progression of Barrett oesophagus: role of
endoscopic and histological predictors,” Nat Rev Gastroenterol Hepatol
vol. 11, pp. 525–534, 2014.

[8] D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light
scattering from collagen fibre networks: micro-optical properties of nor-
mal and neoplastic stroma,” Biophys J, 92, 3260–74, 2007.

[9] C. Ba, M. Palmiere, J. Ritt, and J. Mertz, “Dual-modality endomicroscopy
with co-registered fluorescence and phase contrast,” Biomed Opt Express,
7(9), pp. 3403–3411, 2016.

[10] S. Becker, J. Bobin, and E. J. Candès, “NESTA: a fast and accurate
first-order method for sparse recovery,” SIAM J Imaging Sci, 4(1), 1–39,
2011.

[11] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for
basis pursuit solutions,” SIAM J Sci Comput, 31(2), 890–912, 2008.

[12] E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale
sparse reconstruction,” http://www.cs.ubc.ca/labs/scl/spgl1, 2007.

[13] J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient
imaging through multimode fibre,” in CLEO: 2014,

[14] J. Carpenter, B. Eggleton, and J. Schröder, “110x110 optical mode
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[17] T. Čižmár and K. Dholakia, “Shaping the light transmission through a
multimode optical fibre: complex transformation analysis and applications
in biophotonics,” Opt Express, 19(20), 18871–18884, 2011.
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I. EXPERIMENTAL SET-UP

Experimental measurements were obtained using the system
shown in Fig. 11, which was introduced in [25]. The system
uses two spatial light modulators (SLM) (PLUTO-NIR-015,
Holoeye) combined with polarisation-diverse optics. SLM1
enables projection of holographically generated patterns to
create the fibre calibration basis and sample illumination
in arbitrary polarisation states. SLM2 enables imaging of
amplitude, phase and polarisation state.

A. Imaging fibre

It is important to note that the reconstruction framework
proposed in this paper makes no assumptions on the type of
fibre used. However, the fibre used in the experimental set-up
is a multicore fibre (MCF) bundle (FIGH-06-350G, Fujikura)
with 6000 cores, diameter ∼ 350µm, length ∼ 2m and core
spacing ∼ 3.5µm. Given this, there is a significant coupling
between cores along the length of the fibre [57], which has
the effect of ’blurring’ that is characterized by a spatially
variant point-spread function. Typically, fibre endoscopes use
one of two broad categories of fibre: (i) multimode fibres
(MMF), and (ii) multicore fibres (MCF). MMF is tinner
(∼ 125µm) and offers a significantly higher information
density (∼ 10) than MCF meaning higher resolution per unit
area [56]. Though MCF is clearly wider than MMF, in absolute
terms the multicore fibre is still very narrow in comparison to
standard white light endoscopes that can be ∼ 10mm. Even if
only imaging channels are considered, the smallest available
cameras (NanEye) are 1mm×1mm, significantly larger than
the fibre used here. An important aspect of MCF is that it
confines light in the transverse plane allowing some degree
of uncorrected amplitude imaging. For this reason, MCF
is widely used in commercial devices and many types are
approved for clinical use, unlike MMF (e.g. the PolyScope
from PolyDiagnost [58], [53]). Both types of fibre scramble
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phase and polarisation information in a manner sensitive to
environmental changes and thus need to be calibrated to
reconstruct these quantities.

B. Calibration basis

The calibration basis is typically chosen based on two
factors: ability to be experimentally realised, and orthogonality
so that simple phase conjugation can be used. In our case,
the MCF system was calibrated using inputs designed in the
previous work [25], which comprise an array of broad, phase-
flat, 2D Gaussian-like functions with compact support and are
designed to enable highly parallelised calibration of an MCF
system. Intuitively, the use of an array exploits the transverse
optical power confinement of MCF (i.e. adjacent ‘spots’ will
not interfere at the output facet) to enable parallelised calibra-
tion. This enables a significant speed-up over single-spot or
plane-wave (Fourier) calibration bases. However, the complete
basis set required for high resolution imaging consists of the
array of spots translated in increments of the order of the
fibrelet spacing (4.5µm) over the whole fibre facet (1.5mm).
To be orthogonal, the translated Gaussian spots would require
full-width half-maximum (FWHM) � 4.5µm. To generate
such small spots a high numerical aperture lens is required but
this limits the scanning range in which distortions are avoided
and the so-called paraxial approximation holds. As a result,
the calibration inputs used are non-orthogonal as the spots of
FWHM 10µm are translated in 4.5µm steps.

C. Synthesis of holographic image

To produce the ground truth holographic image used in Sec-
tion 4.A. of the paper, a phase-only hologram was generated
using a simulated annealing algorithm such that the 2D Fourier
transform of this hologram matched the desired letter pattern
“CRUK” [54]. This was then displayed on SLM1. A lens was
placed one focal length away from SLM1 and the imaging
fibre at one focal length from the lens, ensuring that the 2D
Fourier transform of the phase-only hologram was recreated on
the fibre (according to the principles of Fraunhofer diffraction).
Additional steps were taken to correct aberrations introduced
by misalignments and non-flatness of the SLM to ensure
highly accurate reproduction [55]. However, as a remaining
artifact of the 2D Fourier transform, there is background noise
with spatial frequency of the order of the diffraction limit of
the lens (∼ 4µm).
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Fig. 11. Experimental fibre
endscope set-up. PBS - polaris-
ing beam splitter, SLM - spa-
tial light modulator, λ/2 - half-
waveplate, CCD - image sensor.

D. Preparation and imaging of tissue samples

The tissue imaging is done ex vivo using the transmission
mode set-up shown in Fig. 11. The tissue was prepared by
peeling off a few cells thick (∼ 100µm) epithelial layer from
a mouse oesophagus, fixing the tissue and then mounting it
flat on a glass slide. The tissue measurements were obtained
by moving the tissue while keeping the fibre fixed so that the
calibration measurements stay valid during the imaging of one
tissue area. In Fig. 12, we show images of one healthy and one
lesion tissue area (∼ 2mm) with marked regions imaged by
the fiber endoscope (∼ 200µm). In particular, Fig. 12 shows
images obtained by fluorescence microscopy with a DAPI
stain used to label the data. This method highlights areas of
increased density of cell nuclei and has been validated as a
model for identifying pre-cancerous lesions [5].

HEALTHY LESION

Fig. 12. DAPI florescence images of one healthy (left) and one lesion tissue
area (right), with crossed spots corresponding to the regions imaged by the
endoscope. The particular tissue area on the left is enumerated as n = 5 in
our data set, and on the right as n = 11, leading to I5 = 20 and I11 = 11
individual healthy and lesion endoscopic images, respectively.

II. ADDITIONAL EXPERIMENTAL RESULTS

A. Vertical polarisation of a synthetic holographic image

To complement Fig. 4(a) and Fig. 5 of the paper, which
show the horizontal polarisation only, here we also show the
vertical polarisation. Namely, in Fig. 13 we show the vertical
polarisation of the ground-truth of the synthetic holographic
image and its corresponding raw output at the proximal end,
and in Fig. 14 we show the reconstruction of the vertical
polarisation using four different inversion techniques.

B. Separate vs. joint reconstruction of different polarisations

Fig. 6 of the paper compares joint against independent re-
construction of different polarisations, using `1-regularisation
for the inversion of associated linear systems. In Fig. 15 we
include the corresponding reconstructions via least-squares.

C. Reconstruction with respect to different bases

To complement Fig. 7 of the paper, which shows the
reconstruction of the synthetic holographic image with respect
to different bases using least-squares and `1-regularisation, we
present Fig. 16 where the naive approach and `2-regularisation
are also used for such reconstruction.

D. Additional biological images

To complement Fig. 8 of the paper, which shows discrimina-
tive behaviour of the standard deviation of the fitted Gaussian
between one particular pair of healthy and lesion sample,
in Fig. 17 we demonstrate that this holds more generally
throughout the data set. In particular, for the reconstructed
image (n, i), n = 1, . . . , 12, we show the amplitude of the
Fourier transform in Fig. 17(a) and the associated Gaussian fit
in Fig. 17(b). In Fig. 18, we also include the corresponding
images obtained by three different microscopic modalities. The
full data set used in our analysis is shown in the Supplementary
Material of the reference [25] of the paper.
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Fig. 13. Amplitude and phase
of the vertical polarisation of
the ground-truth synthetic holo-
graphic image at the distal end
and the corresponding raw out-
put at the proximal end.
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Fig. 14. Reconstructed ampli-
tude and phase (vertical polari-
sation) of the holographic im-
age with respect to the cali-
bration functions, using naive,
least-squares, `2 and `1 ap-
proaches. The regularisation pa-
rameter in the `2 and `1-
regularisation is λ = 0.3 and
λ = 0.267, respectively.
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Fig. 15. Same as Fig. 6 of
the paper, but the corresponding
linear systems are solved via
least-squares.
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Fig. 16. Reconstructed images
(horizontal polarisation) with
respect to the different bases
using two inversion approaches.
In particular, we used 32 ×
32 Fourier exponentials / DB4
wavelets. Regularisation param-
eter in the `2-regularisation is
λ = 10 and its reconstruction
time is around 1.5 min.
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Fig. 17. (a): Amplitude of the Fourier transform of different healthy and lesion tissues, computed from the Fourier coefficients of the horizontal polarisation.
(b): Gaussian function fitted to the amplitude of the Fourier transforms shown in (a). The scale bar is the same as in Fig. 7.
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Fig. 18. (a) Fluorescence, (b) phase contrast and (c) brightfield images corresponding to those shown in Fig. 17. The scale bar is the same as in Fig. 10.


