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Entanglement is one of the pillars of quantum mechanics and quantum information

processing, and as a result the quantumness of non-entangled states has typically been
overlooked and unrecognised until the last decade. We give a robust definition for the

classicality versus quantumness of a single multipartite quantum state, a set of states,

and a protocol using quantum states. We show a variety of non-entangled (separable)
states that exhibit interesting quantum properties, and we explore the “zoo” of separable

states; several interesting subclasses are defined based on the diagonalizing bases of the
states, and their non-classical behavior is investigated.

1. Introduction

The topic of this paper is the quantumness of single party and multipartite quantum

states, ensembles of quantum states, and quantum protocols. The core (Secs. 1-6)

was written in 2007 and made available as a pre-print on the arXiv1 but remained

unpublished until now.

Consider an isolated discrete classical system with N distinguishable states. The

most general state of the classical system is a probabilistic distribution over these

distinguishable states. Now consider its counterpart, an isolated discrete quantum

system. Its most general state is a probabilistic mixture of pure states drawn from an

N -dimensional Hilbert space. Yet, in various special cases, the quantum state seems

to be identical to a classical probability distribution. Similarly, in various special

cases, a quantum protocol using a set of quantum states seems to be practically

identical to a classical protocol which is using a classical set of states. Our first goal

is to define such special quantum states that are equivalent to classical probability

distributions; we also define sets of classical states and classical protocols.
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Quantumness of states (for instance, their “quantum correlations”) is often

associated with their entanglement, and it is sometimes even assumed (explic-

itly or implicitly) that non-entangled states can be considered “classical”. We ar-

gue that this is not the case, because some (actually, most) non-entangled states

do exhibit non-classical features. Intuitively speaking, only quantum states that

correspond exactly to a classical probability distribution can potentially be con-

sidered classical; most non-entangled states can only be written as a probabil-

ity distribution over tensor-product quantum states, e.g., for bipartite systems

ρsep =
∑
i pi|φi〉A|ψi〉B〈φi|A〈ψi|B , hence do not usually resemble any conventional

distribution over classical states. While entanglement is extensively analyzed and

quantified (see,2,3 and references therein), the “quantumness” of non-entangled

(separable) states has often been overlooked until recently.4 Our second goal is to

present the quantumness exhibited by various separable states, and to explore the

“zoo of separable states”. Our last goal is to define (and make use of) measures of

quantumness Q(ρ) that vanish on any classical state ρclassical.

The structure of the rest of the article is as follows. In Sec. 2 we provide def-

initions of classical bases, states and protocols. Sec. 3 we give various examples

of separable states that do not fit our definition of classicality and emphasizes

quantum aspects of these states. In Sec. 4 we explore different types (a “zoo”) of

separable states using definitions from Sec. 2. In Sec. 5 we discuss convertibility

of states between classes under local operations without discarding subsystems. In

Sec. 6 we present some candidates for a measure of the quantumness of states. In

Sec. 7 we prove that the proposed measures are monotonic under certain class of

operations. Appendix A is our original 2007 summary, whereas Sec. 8 summarises

our results obtained shortly after the original article had become available as a

pre-print. Sec. 9 discusses work by other groups since 2007. Section 10 addresses

the question relative ‘quantumness’.

2. Classicality of Quantum States and Quantum Protocols

If a quantum state or a quantum protocol has an exact classical equivalent, it cannot

present any interesting non-classical properties nor any advantage over its analogous

classical counterpart. The state(s) of the quantum system can then potentially be

considered “classical”. For instance, if a single quantum system is prepared in one of

the orthogonal states |0〉, |1〉, |2〉, etc., and is then measured in this computational

basis, there is nothing genuinely quantum in that process. Tensor product states

of multipartite system can also be considered classical. Consider a set of states in

the computational basis, e.g., {|00〉; |01〉; |10〉; |11〉}; this set has a strict classical

analogue — the classical states {00; 01; 10; 11}. As long as no other quantum states

are added to the set (or appear in a protocol which is using these states), the analogy

is kept, so these quantum states can be considered classical. Tensor product states

such as |−〉|0〉|+〉 (where |±〉 = [|0〉 ± |1〉]/
√

2) can also be considered classical as

we soon explain.
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First, we define classical bases. We justify our claim that any such basis presents

no quantumness, and we justify (via many examples) why bases that do not follow

our “classicality” definition are “quantum”.

We start with a single system and then move to bipartite and multipartite

systems:

Definition 1. Let A be a quantum system. Any orthonormal basis {|i〉A} of A can

be considered as a classical basis of the system.

For example, the computational basis {|0〉; |1〉} of a single qubit is obviously

classical. The Hadamard basis {|+〉; |−〉} is also classical.

One may argue that our definition is too flexible and that Nature allows only

one basis to be classical a. For instance an alternative for Def. 1 is

Let A be a quantum system with a single preferred orthonormal basis {|i〉A}, in

the sense that measurements can only be performed in this basis. Only this

basis can be considered as a classical basis of the system.

While this narrower definition is valuable for some physical scenarios, there is

nothing in conventional quantum theory that favors one of the system’s bases over

any other. In relativistic quantum field theory it is commonly believed that Nature

generally provides a preferred basis, however, on time-scales that are sufficiently

short for performing quantum computation, all bases are equivalent. We therefore

adopt the more general Def. 1.

We now move to defining classical bases for bipartite and multipartite systems.

Definition 2. Let A and B be two single party quantum subsystems with orthonor-

mal bases {|i〉A} and {|j〉B} respectively. The tensor-product basis {|i〉A⊗ |j〉B} is

a classical basis of the bipartite system AB.

Definition 3. (recursive) Let A be a (bipartite or multipartite) quantum subsys-

tem with a classical basis {|i〉A}, and let B be a single party quantum subsystem

with an orthonormal basis {|j〉B}. The tensor-product basis {|i〉A⊗ |j〉B} is a clas-

sical basis of the composite AB system.

The redundancy in Defs. 2–3 is kept for readability.

Let us see a few examples. For two qubits, the computational basis is classical,

as well as the basis {| + +〉; | + −〉; | − +〉; | − −〉}. On the other hand, the Bell

basis {|Φ±〉; |Ψ±〉} is obviously non-classical, and more interestingly, even the basis

{|00〉; |01〉; |1+〉; |1−〉} is non-classical.

Having identified classical bases, we proceed to define a classical state and a set

of classical states.

aThis approach is essential for the theory of coherence which is currently attracting a lot of

interest.32
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Definition 4. A state ρ is a classical state, iff there exists a classical basis {|vi〉}
in which ρ is diagonal.

Following our definition, any single state ρ (either pure or mixed) of a single

system S can always be considered classical. A joint state of two or more quan-

tum systems can also either be pure or mixed. If it is pure it is either a tensor

product state or an entangled state. Following the classicality definitions, any such

tensor-product state is classical while any such entangled state is non-classical.

For mixed bipartite or multipartite states the situation is much more complicated:

Tensor-product mixed states are obviously still classical as each subsystem can be

diagonalized in a classical basis of its own. Entangled mixed states are obviously

non-classical. Between these two extremes we can find a zoo of separable—yet

quantum—states.

We made this definition independently of a similar definition in Refs. 5 and

6 (see Sec. 8); they use the name “(properly) classically correlated states” which is

more precise, yet longer, than our term “classical states”.

Prior to dealing with separable quantum states we provide two additional useful

definitions.

Definition 5. A set of states ρ1 . . . ρk is a classical set iff all ρi are diagonalizable

in a single classical basis.

If a quantum protocol (be it computational, cryptographic, or any other physical

process) is limited to a classical set of states, the process has an exact classical

equivalent, and cannot present any advantage over an analogous classical protocol.

More formally:

Definition 6. A protocol (in quantum information processing) is classical iff all

states involved in it belong to a single classical set of states.

One extremely simple example of a non-classical protocol is when Alice sends

Bob a single qubit in the computational basis, and Bob applies a Hadamard trans-

form and then measures the qubit in the computational basis. Another similar

example is when Alice sends to Bob a single qubit in the computational basis, and

Bob applies a Hadamard transform and then measures it in the Hadamard basis.

If a protocol involves two or more pure nonorthogonal states it cannot be con-

sidered classical (see Ref. 7 for a thorough analysis of the quantumness of protocols

involving only pure states). Yet following our definitions, even protocols involving

only pure orthogonal product-states might be highly quantum; and similarly, even

a single bipartite mixed separable state can be highly non-classical.

3. Non-classicality of Separable States: Examples

Let us prove the quantumness of several interesting separable states.
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3.1. Pseudo-pure states

A state of the form ε|ψ〉〈ψ| + 1−ε
N I with ε > 0 is called a pseudo-pure state (PPS)

as the part with the coefficient ε transforms as if the state was a pure state. PPSs

focus wide interest based on theoretical and experimental grounds. It has been

shown8 that there is a volume of separable PPSs around the totally-mixed state

I/N ; So every PPS (of a multipartite system) with low-enough ε is separable. This

fact was even used to argue that experiments which produce such low-ε states (as

in room temperature liquid state NMR) are not truly quantum. It was later argued,

however, that albeit being separable, these states do exhibit non-classical effects.9

Using our definitions we see that:

Proposition 1. A PPS ρε = ερ+ 1−ε
N I is quantum iff ρ is, for any ε > 0.

Proof. Any diagonalizing basis of ρε also diagonalizes ρ, independently of ε. Since

ρ is quantum, it is not diagonalizable in a classical basis, and so is ρε.

This is true for any system dimension. As a special case for N = 4, a separable

Werner state10 χ = ε|Ψ−〉〈Ψ−| + 1−ε
4 I is non-classical for any 0 < ε ≤ 1

3 (see

also Ref. 11 for a different demonstration of non-classicality of the Werner states).

Note that the Werner state is also separable and non-classical for any − 1
3 ≤ ε < 0.

3.2. States used for quantum key distribution

The original quantum key distribution protocol, BB84 involves qubits in four

different states: |0〉, |1〉, |+〉, and |−〉, sent from Alice to Bob. The protocol

may also be described in a less conventional manner,12 where Alice sends in

two steps either the state ρ0(BB84)
= 1

2 [|00〉〈00|+ |1+〉〈1 + |] to represent ‘0’ or

ρ1(BB84)
= 1

2 [|01〉〈01|+ |1−〉〈1− |] to represent ‘1’; the right-hand-qubit is sent first

and the left-hand-qubit is sent later on in order to reveal the basis of the first qubit.

Proposition 2. Neither ρ0(BB84)
nor ρ1(BB84)

is ‘classical’.

Proof. Any diagonalizing product basis of ρ0(BB84)
includes |0〉A ⊗ |0〉B and

|1〉A ⊗ |+〉B . That basis cannot be classical, as Bob’s parts, |0〉B and |+〉B , are

not orthogonal and hence cannot be members of a single classical basis. The same

reasoning applies to ρ1(BB84)
, too.

Thus, although all the four states involved in the protocol |00〉, |1+〉, etc. are

mutually orthogonal tensor-product states, the protocol is highly “quantum”.

3.3. States that present nonlocality without entanglement

Various sets of states proposed in Refs. 13, 14 define processes that exhibit non-

local quantum behavior although none of the participating states is entangled. In
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particular, spatially separated parties cannot reliably distinguish between differ-

ent members of the set (albeit comprising of mutually orthogonal direct product

states!) without assistance of entanglement. For instance, the set {|01+〉; |1+0〉; |+
01〉; | − −−〉} is non-classical.

3.4. The Bernstein-Vazirani Algorithm

The Bernstein-Vazirani algorithm15 generates no entanglement (see Ref. 16). How-

ever, it is clearly a quantum algorithm, with no classical equivalent. It makes use of

states from the computational and Hadamard bases, which are not simultaneously

diagonalizable in a single classical basis.

4. A Zoo of Separable States

Within the set of all separable states we identify some interesting subsets based on

their diagonalizing bases.

First let us consider the classical states:

Definition 7. Classic is the set of the states diagonalized in a classical basis: A

bipartite state (this argument easily extends to multipartite states) is classical if,

and only if, Alice and Bob can perform a measurement in its (classical) diagonalizing

basis via local orthogonal measurements, without exchanging any message (classical

or quantum), and such a measurement can be performed without disturbing the

state.

The notion of diagonalizing basis is now used to define more subsets of the

separable states. Ref. 14 defines a complete product basis (CPB) as follows: A CPB

is a complete orthonormal basis of a multipartite Hilbert space, where each basis

element is a (tensor) product state. We define the set of CPB-states as follows:

Definition 8. A state ρ is a CPB-state iff it is diagonalizable in a CPB.

Clearly, all classical states are CPB-states; but not vice versa. Thus, in a mul-

tipartite finite-dimensional Hilbert space Classic ⊂ CPB ⊂ Sep ⊂ Htotal. For ex-

ample, ρ0(BB84)
and ρ1(BB84)

are non-classical CPB-states diagonalized in the CPB

{ρ00; ρ01; ρ1+; ρ1−}. For additional examples of CPB sets of states see Sec. 5.

Let V be an orthonormal basis of a subspace of a multipartite Hilbert space H,

where each basis element is a (tensor) product state. Ref. 14 defines that V is an

unextendible product basis (UPB) if the subspace H−span{V } contains no product

state. We define the set of UPB-states as follows:

Definition 9. A separable state ρ is a UPB-state if it can be diagonalized in a

UPB and its kernel is spanned by a basis that contains no product states.

Note that a UPB-state (built from UPB elements suggested in Ref. 14) such as

ρεUPB = (1−6ε)ρ01−+ερ1−0 +2ερ−01 +3ερ−−− (when ε 6= 0 and ε 6= 1/6), demon-

strates that there are UPB-states that are not in CPB. The reason is that it has a



January 17, 2018 14:46 WSPC/INSTRUCTION FILE BGKMv2Dec02

“Quantumness” versus “Classicality” of Quantum States and Quantum Protocols 7

unique diagonalization in that relevant subspace. (Note also that with ε → 0, this

state is infinitesimally close to a classical state.) In fact, the corollary of definitions

8 and 9 is that UPB and CPB are disjoint sets. A CPB-state cannot be a UPB-state

and vice versa. As an example consider states built from a probability distribution

over the eight CPB states13 {|01±〉; |1±0〉; |±01〉; |000〉; |111〉}. A CPB-state does

no have to span the entire CPB, i.e. a state formed from {|01−〉; |1−0〉; |−01〉} is a

CPB-state, but not a UPB-state.

We identified another class of UPB-states that can be proven to be non-classical:

Proposition 3. The uniform mixture of UPB elements ρUPB = (ρ01+ + ρ1+0 +

ρ+01 + ρ−−−)/4 is non-classical.

Proof. Assume that ρUPB is classical. The same classical basis that diagonalizes

it, also diagonalizes the state I/4 − ρUPB. However, this contradicts the fact that

it is bound-entangled14 and therefore quantum.

More generally, we argue that since UPB and CPB are disjoint, all UPB states

are non-classical.

The last set we define is the set of states with an entangled basis which we call

EB:

Definition 10. A state ρ is a EB state if it cannot be diagonalized in any product

basis.

As we had already seen, many separable states belong to this EB set, e.g.,

various PPS and Werner states. Obviously, all non-separable states also belong to

this set.

5. Convertibility into a Classical State

Classification of multipartite quantum states is usually made in the framework of

allowed types of communication between the parties. The traditional local opera-

tions and classical communication (LOCC) is relevant for distinguishing the class of

entangled states from separable states because entanglement is a LOCC monotone,

i.e. LOCC cannot map states from the Sep subset to the entangled subset - the

amount of entanglement in a state can be only reduced by LOCC. However, LOCC

is a too broad class of operations to be useful for classification inside Sep, because

general unrestricted LOCC can generate any state inside Sep.

Classical messages exchanged between the parties and/or classical results of

local measurements can be interpreted as kept in some classical registers - either

systems with classical degrees of freedom or encoded in classical sets of states of

quantum systems. If these registers are allowed to be discarded, i.e. corresponding

degrees of freedom traced out, then the information encoded in them will be lost.

The ability to discard subsystems is the core ingredient of LOCC, that allows it to

generate any state in Sep.
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Note that local operations and unidirectional classical communication, but even

without adding the ability to discard subsystems, are sufficient for converting the

BB84 states into classical states. A slightly more complicated (qubit plus qutrit)

state, ρ = 1
3 [|00〉〈00|+ |1+〉〈1 + |+ |+ 2〉〈+2|] requires local operations (again,

without discarding subsystems) and bidirectional classical communication in order

for it to be converted into a classical state. We call these two types of CPB-states

“unidirectional CPB-states” and “multi-directional CPB-states” respectively.

Interestingly, there are CPB-states that belong to neither subset: con-

sider a state built from a probability distribution over all the eight states13

{|01±〉; |1±0〉; |±01〉; |000〉; |111〉}; although it is a CPB-state, such a state cannot

be converted into a classical states unless quantum communication is allowed. Thus,

we specify also a third subset of the CPB states — “Q-convertible CPB-states”.

6. Measures of quantumness:

A measure of non-classicality (quantumness), Q(ρ), of a state ρ has to satisfy two

conditions; (a) Q(ρ) = 0 iff ρ is classical, (b) Q(ρ) is invariant under local unitary

operations. One might also expect a third condition; (c) Q(ρ) is monotonic under

local operations (without classical communication) b; Yet, condition (c) is not al-

ways satisfied by quantum states: The classical state 1
2 |00〉〈00|+ 1

2 |13〉〈13| of a 2×4

system can be converted to the non-classical CPB-state ρ0(BB84)
just by discarding

a subsystem—Bob redefines his qu-quadrit as two qubits with |0〉quad = |00〉 and

|3〉quad = |1+〉, and discards his first qubit. Thus, quantumness is not a LO (local

operation) monotone. It is natural to conjecture that quantumness is a monotone

under LO (without CC) without the ability to discard subsystems (see Sec. 7 for

discussion of this conjecture).

A class of measures of quantumness of ρ is defined as

QD(ρ) = min
ρc

D(ρ, ρc) (1)

where D is any measure of distance between two states such that the conditions

(a)-(b) are satisfied, and the minimum is taken over all classical states ρc. One of

the natural candidates for D is the relative entropy S(ρ‖ρc) = tr ρ log ρ− tr ρ log ρc,

in which case we refer to it as Qrel(ρ) — the relative entropy of quantumness.

The benefit of using the relative entropy as a measure is that it was extensively

studied for measuring entanglement2 (relative to the closest separable state). Thus,

we can adopt and make use of some known results, and we can also monitor the

connection between the quantumness of states and their entanglement. There are

other measures (and their variants) that can potentially be very useful for study-

ing quantumness, such as the fidelity of quantumness and Von Neumann mutual

information.

bThese conditions resemble the line of thought used in searching for the measure of entanglement.2
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For bipartite pure states, the relative entropy of quantumness equals its entropy

of entanglement. In other words, a pure state is as quantum as it is entangled. Any

bipartite entangled state |Ψ〉 can be written in a Schmidt decomposition |Ψ〉 =∑d
i=1 ci|ii〉AB , where ci ≥ 0 and d = min[dA, dB ], dA, dB are dimensions of local

Hilbert spaces. If we use the relative entropy of entanglement then the closest

separable state2 is

σcl =

d∑
i=1

(ci)
2|ii〉〈ii|AB . (2)

This state happens to be also classical, and thus the relative entropy of quan-

tumness (which is equal to its relative entropy of entanglement) is Qrel(Ψ) =

−
∑
i(ci)

2 log[(ci)
2]. [The classical state σcl lies on entangled-separable boundary.]

Note that the quantumness of a maximally entangled state is Qrel(ΨME) = log d.

Let us present some mixed states for which their quantumness can easily be cal-

culated: According to [2, Th. 4], σcl is the separable state that minimizes S(ρp‖σcl)
for any state of the form ρp = p |Ψ〉〈Ψ| + (1 − p)σcl, too. Therefore, the relative

entropy of entanglement of ρp equals to its relative entropy of quantumness.

Given any bipartite state ρAB , let its Schmidt basis be the (classical) basis

diagonalizing trBρAB ⊗ trAρAB . Let ρSch be produced from ρAB by writing it in

its Schmidt basis and having all off-diagonal elements zeroed. The state ρAB and

its Schmidt state yield identical classical correlations if measured in the Schmidt

basis.

The Schmidt state can be found very useful for defining quantumness for any

state ρAB , as ρc is usually unknown; instead of using Eq. (1) as a measure, one can

directly refer to the distance between a state ρAB and its corresponding Schmidt

state:

QD(ρ) = D(ρAB , ρSch) (3)

as a measure of quantumness of a state. If we now use the relative entropy, the

resulting measure satisfies conditions (a) and (b).

We saw above, that for a pure bipartite state the Schmidt state ρSch = σcl
is the closest classical state. One might conjecture that for any bipartite state

ρ, the closest classical state (using relative entropy measure) is its Schmidt-state

ρSch. This however, is not true. For instance, we checked the CPB-state ρ0(BB84)

which is useful in quantum key distribution; it is interesting to note that either

the classical state 1
2ρ00 + 1

4ρ10 + 1
4ρ11 or the classical state 1

4ρ0+ + 1
4ρ0− + 1

2ρ1+,

are actually closer to ρ0(BB84)
than its Schmidt state — a state diagonal in the

classical basis (known as the Breidbart basis) {ρ0b0 ; ρ0b1 ; ρ1b0 ; ρ1b1} (where |b0〉 =

cos π8 |0〉 − sin π
8 |1〉,|b1〉 = sin π

8 |0〉 + cos π8 |1〉). We verified numerically that the

above two states are the closest ones (among all classical states) to ρ0(BB84)
, hence

can be used for calculating its relative entropy of quantumness. The entropy of

quantumness relative to the Schmidt state is different in this case of course.
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7. The monotonicity of Qrel

In Sec. 6 we conjectured that our measure of quantumness is monotonic under local

operations without discarding subsystems. Here we formalize that statement and

prove it for the case of Qrel and other possible measures where the distance D has

the following additional properties.

• D is invariant under unitary operations: D(ρ, τ) = D(UρU†, UτU†)

• D is additive: D(ρ⊗ %, τ ⊗ σ) = D(ρ, τ) +D(%, σ)

We now consider measures of quantumness Q that use a distance measure D

which satisfies the conditions above, e.g Qrel. Note that these types of quantities

are not monogamous.30

Let L be the class of completely positive trace preserving (CPTP) maps (i.e.

quantum operations) that can be decomposed into adding a subsystem locally and

applying a local unitary. From the conditions on D it is invariant under all L ∈ L,

i.e D(ρ, τ) = D[L(ρ), L(τ)].

Proposition 4. If D(ρ, τ) is invariant under unitary operations and additive then

Q(ρ) is non-increasing under L.

Proof. We start with a few simple observations.

(1) ρ is classical in a basis b if and only if it is a fixed point of the dephasing

operation in the basis b.

(2) If ρ is classical, so is UρU† - this follows from 1 above.

(3) Q(ρ) = Q(UρU†) for all unitary operations - This is a simple consequence of 2

above and the fact that D is invariant under unitary operations.

(4) Q(ρ) ≥ Q(ρ ⊗ τ) for all local states τ - From 1 above we see that this is true

for ρ ∈ Classic. From the fact that D is invariant under the addition of a

local subsystem we have some classical state ρc such that Q(ρ) = D(ρ, ρc) =

D(ρ⊗ τ, ρc ⊗ τ) ≥ Q(ρ⊗ τ).

Since Q is invariant under unitary operations and it is non-increasing under the

addition of local subsystems then it is non-increasing under any composition of

these two operations.

However we note that it is unclear if Q is really monotonically decreasing or

simply invariant under L. We do, however know that there are quantum CPB-

states that cannot be converted to Classic under L. Consider for example ρ0(BB84)
.

Transforming it to a Classic using L will allow unambiguous discrimination between

the non-orthogonal states |0〉 and |+〉. Furthermore when D(ρ, τ) is a difference of

mutual information it is already known that Q(ρ) is invariant under any reversible

local operation.28
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8. Comparison with previous work

In this section we compare our results with previous works on quantumness and

classicality of states which predate our original publication.1 Our Definition 4 of

a classical state is equivalent to classically correlated states defined in [5, Eq. (7)].

Our classical states are also equivalent to locally diagonalizable states in [17, exercise

15.6, p. 413]. In Ref. 5 the work deficit was introduced and it was proposed to be a

suitable measure of quantumness of correlations in a multipartite state. The work

deficit indeed nullifies on classical states, however it fails to fulfill our requirements

from a measure of quantumness, as it can be zero also for some non-classical CPB-

states, e.g. ρBB84. Thus, the work deficit does not distinguish between classical and

non-classical states as we define them here. The main motivation of Ref. 5 was to an-

swer the question of how much physical work can be drawn from given multipartite

quantum state under restricted class of operations, LOCC. The main motivation

of our current work is to sub-classify separable states according to their algebraic

description and then support this classification using operational reasoning.

Ref. 11 defines the quantum discord δ(A : B){ΠB
j } between one part of a bi-

partite system to the other. It is a discrepancy between mutual information(s)

calculated according to two different, but classically equivalent, expressions. When

its minimum (taken over the measurement basis of B) is nonzero, it means that B

cannot recover locally all the correlation within the bipartite state. We suggest a

symmetrized version of the (minimal) quantum discord

δ(A,B) = min
{ΠA

i },{ΠB
j }

(
δ(B : A){ΠA

i } + δ(A : B){ΠB
j }

)
.

When δ(A,B) = 0, each subsystem can locally recover the correlation between the

parts. In such case, the joint state is classical according to our definition, where its

classical diagonalizing basis is that defined by A and B’s optimal projection opera-

tors. Conversely, a bipartite classical state has δ(A,B) = 0. Therefore, δ(A,B) = 0

is equivalent to the classicality of ρAB . However, δ(A,B) is limited to bipartite

states, while our definition easily extends to multipartite systems.

In Ref. 18, the quantumness of correlations of an ensemble of states was charac-

terized by the minimal entropy produced when measured in LOCC-distinguishable

basis. An orthonormal basis that is distinguishable under LOCC, is not necessarily

classical in the sense of Def. 5. For example, some non-classical complete product

basis (CPB) can be distinguished under LOCC and an ensemble made of corre-

sponding CPB-states, e.g. {ρ0(BB84)
, ρ1(BB84)

}, has zero minimum entropy produc-

tion, though it is non-classical according to our definition. Although the authors

do suggest the possibility of generalizing their approach to any set of allowed op-

erations (denoted by Λ), the arguments of the paper are based on LOCC. When

considering an “ensemble” of a single (mixed) state, it seems that their measure of

quantum correlation QΛ({ρ}) coincides with our Qrel(ρ) if only Λ is the set of local

operations.

Ref. 6 extensively uses the quantum information deficit measure of quantumness,
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and the relative entropy of quantumness (which we use independently). Sec. 5 in

Ref. 6 provides very interesting subclasses — yet, different from ours — of the

separable states. Their “pseudo-classically correlated states” seem to be identical

to our uni- and multidirectional CPB-states and their class of “informationally

nonlocal” states seems to be identical to our two subclasses — the UPB-states and

the Q-convertible CPB-states.

As we already mentioned in Introduction, the main difference between our ap-

proach and those described above is that they start from defining certain operational

aspect of quantumness and then test different states on how they fit into that aspect.

We go in the opposite direction: we look at the mathematical structure of a state,

define different classes accordingly and only then check the practical/operational

implications of our classification.

9. Developments since 2007

Many of the ideas presented in our original work were independently reported and

developed further in the years since Ref. 1, mostly in the context of quantum

discord11 (for a review including applications quantum information protocols see

Ref. 4). Modi et al.19 adopted and further developed a method similar to the one

suggested in sec 6, motivated by the relation of quantum correlations to the relative

entropy of entanglement.2 Their set of classical states corresponds to CPB states.

This was taken a step further in Ref. 20 for correlation measures based on more

general ‘distance’ functions. However in that work the set of classical states emerges

from a set of local measurements, i.e the approach is more ‘operational’. The fidelity

of quantumness first suggested in Ref. 1 (here Sec. 6) is related to the geometric

discord ,20,21 while the Von Neumann mutual information is related to symmetric

discord introduced in Ref. 19.

The measures of quantumness based on the Schmidt basis (see Eq. 3) were ex-

plored in Ref. 22 where they were given the name measurement induced disturbance

(although they were considered even earlier in Ref. 23). This was further devel-

oped in the context of relative entropy19 and later in a more general framework in

Ref. 20 where it was shown that they are not continuous. The one sided version

was introduced in the context of discord in Ref. 26, and more recently explored in

much detail in Refs. 34,35. The all the entropic versions of the quantities presented

have been related to thermodynamics in Refs. 20,26,31.

Work related to quantum ensembles (Def. 5) was reported in Ref. 24 where the

quantumness of ensembles was related to data hiding. A different approach was used

by Ref. 25 where an ensemble {ρ1...ρk} was defined to be classical when the state
1
k |i〉〈i|⊗ρi is classical (with {|i〉} representing orthogonal states). Further examples

of quantum ensembles and their relations to quantum states were given in Refs. 26,

27, however these did not include a formal definition for quantum ensembles.

To the best of our knowledge there have been no definitions of classical protocols

in the spirit of Def. 6, although much work has been done in this direction Ref. 4[Sec.
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5-6]. Similarly definitions of subclasses of quantum states similar to 8 and 9 and

the associated Hierarchy of states have not been reported elsewhere.

Proposition 1 was recently used in Ref. 29 to prove general results about quan-

tum correlations in certain types of physical systems related to quantum computing.

10. Relative quantumness

Resource theories33 are currently attracting a lot of attention as useful tools for

understanding the interrelation between states and operations. Roughly speaking

the theories define a set of free operations and a corresponding set of free states that

remains invarient under these operations. That is, the set of free operations converts

free states to free states. Resource states are those that do not belong to the set of

free states and one can use similar ideas to those presented above to quantify the

amount of resources using a function which is monotonically decreasing under free

operations.

There is no canonical way to define a resource theory for ‘quantumness’. Re-

cently Baumgratz et al.32 constructed a resource theory for coherence (roughly

corresponding to fixing the basis in our definition 1), but such a resource theory

does not work in the case where the basis is not fixed. In principle one could develop

a resouce theory for quantumness based on the operations L presented in Sec. 7

above, but it remain unclear if the resource states could be ‘used up’ in the theory,

i.e if Q(ρ) can decrease under a subset of the free operations L. A different approach

is to see quantumness as an ‘obstacle’ rather than a resource,28 or to work within

a theory for resource destruction.35 Our results above lead to a different way to

view the problem. We identify the relative quantumness of a state with respect to a

protocol and/or and ensemble by using the the framework of restricted distributed

gates.27,28

Definition 11. Let S be a set of bipartite states and G be some quantum operation

(e.g a quantum gate) and let GS be the set of quantum channels that take each

ρ ∈ S to G(ρ). We say that S is classical with respect to G if GS contains a channel

that can be implemented using LOCC.

A quantum operation in GS can be seen as a version of G restricted to the

elements in S. What is rather surprising is that it is possible to find examples

where S is classical with respect to G, but adding a single separable state ρ such

that G(ρ) is also separable, is sufficient to make S ′ = S ∪ {ρ} non classical with

respect to G.27 A two quibt example is as follows:

Let G be the CNOT gate and S be set of states {|00〉, |11〉}. The corresponding

GS includes a multitude of operations including the CNOT but also the following

LOCC operation: Alice (first qubit) measures in the computational basis and sends

the result to Bob (second qubit). Bob then applies σx if necessary.

Now consider a new set of states S ′ which includes all states in S and one

additional state |+ +〉. The CNOT takes |+ +〉 to itself, Yet, it is possible to show
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that there is no LOCC channels in GS′ .

Assume that there is some LOCC channel Φ ∈ GS′ . First note that Φ requires

some communication since Bob’s final state depends on Alice’s initial state. Second

note that whatever operation Bob performs must depend on the information he

collects and the messages he receives from Alice. This operation must fall into one

of two distinct catagories. Either it leaves |0〉 invariant (up to a phase) or it takes

|0〉 to |1〉. If Bob takes |0〉 to |1〉 he can rule out the fact that the initial state was

|00〉, similarly if Bob leaves |0〉 as is, he can rule out the initial state |10〉. Since

Alice can act with a σx locally and switch between |00〉 and |10〉 while leaving |++〉
invariant, they can use many repetitions of an LOCC Φ to distinguish between the

three non-orthogonal states deterministically and unambiguously. But that should

be impossible, ruling out possibility of an LOCC channel Φ ∈ GS′ .

The fact that GS′ cannot be used to distinguish between non-orthogonal states

is useful in a cryptographic setting. Using the example above, consider a situation

where Alice wants Bob to implement G only on computational basis states, but does

not want him to know what she is sending. By extending the set of input states to

include |+ +〉, Alice can be assured that Bob does not look at her state, moreover,

she can verify that Bob is making the correct transformation deterministically using

single qubit measurements.

11. Conclusions

This work provides definitions of classical bases, states, ensembles and protocols

in the context of quantum information processing. These definitions were used to

sub-classify the domain of separable states into a “zoo of separable states”. This

classification was supported by operational reasoning using examples of different

types of separable states and their significance. We demonstrated that our definition

of classicality is robust in the sense that those separable states that do not fit

our definition of classicality, necessarily exhibit quantum properties within some

context. Finally we discussed the concept of relative quantumness in the context of

quantum ensembles.

The work we presented in the 2007 arXiv version of this manuscript has been

used in a number of contexts related to quantum information processing and ther-

modynamics. However many open questions remain, in particular with regards to

understanding what makes a particular process quantum and what is the source

of the quantum advantage. This question is central to current quantum informa-

tion research, and we hope that the tools provided here can help progress in that

direction.
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Appendix A. The original summary (2007)

The results presented in Secs. 2-6 of this paper were originally reported on arXiv.1

This paper contains some subsequent modifications which have been done around

that time, mainly the addition of Sec. 8 and clarification on the conversion of states

from any state in Sep to Classic (now collected into a Section 5). For completeness

we include the original summary of the work which appeared in 2007 below.

Summary

This paper gives definitions for classical states and protocols in quantum informa-

tion processing. We explored the “zoo” of separable states, we gave a good number of

examples and we defined some useful measures for the quantumness of non-classical

states. Our measures and our analysis are mainly based on the notions of “diag-

onalizing basis” and the “Schmidt basis” (which are identical in the case of pure

entangled states). Other measures of quantumness have been defined and used pre-

viously: Ref.11 defines the quantum discord between the parts of a bipartite state.

Ref.6 extensively uses the quantum information deficit measure of quantumness,

and the relative entropy of quantumness (which we use independently). Section 5

in6 provides very interesting subclasses — yet, different from ours — of the sepa-

rable states. Their class of “informationally nonlocal” states seems to be identical

to our two subclasses — the UPB-states and the unconvertible CPB-states.
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