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Genome-wide association studies (GWAS) have advanced our understanding of suscept-

ibility to B-cell precursor acute lymphoblastic leukemia (BCP-ALL); however, much of the

heritable risk remains unidentified. Here, we perform a GWAS and conduct a meta-analysis

with two existing GWAS, totaling 2442 cases and 14,609 controls. We identify risk loci for

BCP-ALL at 8q24.21 (rs28665337, P= 3.86 × 10−9, odds ratio (OR)= 1.34) and for ETV6-

RUNX1 fusion-positive BCP-ALL at 2q22.3 (rs17481869, P= 3.20 × 10−8, OR= 2.14). Our

findings provide further insights into genetic susceptibility to ALL and its biology.
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Acute lymphoblastic leukemia (ALL) is the most common
pediatric cancer in western countries, of which B-cell
precursor acute lymphoblastic leukemia (BCP-ALL)

accounts for approximately 80% of cases1. The etiology of ALL is
poorly understood and no specific environmental risk factor has
so far been identified aside from indirect evidence for an infective
origin2,3. Independent of concordance disease in monozygotic
twins, which has an in utero origin evidence, albeit indirect, for
inherited predisposition to ALL is provided by the elevated risk
seen in siblings of ALL cases4. Previous genome-wide association
studies (GWAS)5–9 have suggested susceptibility to ALL is
polygenic, identifying single-nucleotide polymorphisms (SNPs) in
eight loci influencing ALL risk at 7p12.2 (IKZF1), 9p21.3
(CDKN2A), 10p12.2 (PIP4K2A), 10q26.13 (LHPP), 12q23.1
(ELK3), 10p14 (GATA3), 10q21.2 (ARID5B), and 14q11.2
(CEBPE). ALL is biologically heterogeneous and subtype asso-
ciations have been identified for 10q21.2 (ARID5B) associated
with high-hyperdiploid BCP-ALL (i.e., >50 chromosomes) and
10p14 (GATA3) associated with Ph-like BCP-ALL6,10.

Statistical modeling of GWAS data indicates that much of the
heritable risk of ALL ascribable to common genetic variation
remains to be discovered5–9. To gain a more comprehensive
insight into predisposition to ALL we performed a meta-analysis
of two previously published GWAS and a new GWAS together
totaling 2442 cases and 14,609 controls. We report two previously
unidentified risk loci, providing further insights into the genetic
and biological basis of this disease.

Results
Association analysis. We analyzed data from three studies of
European ancestry: a new GWAS from the United Kingdom–UK
GWAS II, and two previously reported GWAS–UK GWAS I and
a German GWAS (Supplementary Figs. 1, 2 and Supplementary
Table 1). After imposing pre-determined (see “Methods”) quality
metrics to each of the three GWAS, the studies provided genotype
data on 2442 cases and 14,609 controls. To increase genomic
resolution, we imputed >10 million SNPs using whole-genome
reference genotype data from 1000 Genomes Project (n= 1092)11

and UK10K (n= 3781)12. Quantile-quantile plots of SNPs (minor
allele frequency (MAF) > 0.01) post-imputation showed no evi-
dence of substantive over-dispersion introduced by imputation
(genomic inflation13 λ for UK GWAS I, UK GWAS II, and
German GWAS were 1.02, 1.05, and 1.01, respectively; Supple-
mentary Fig. 3)6,7.

Pooling data from the three GWAS, we derived joint odds
ratios (ORs), 95% confidence intervals (CIs), and associated per

allele P-values under a fixed-effects model for each SNP with
MAF > 0.01. Given the biological heterogeneity of BCP-ALL,
overall and subtype-specific ORs were derived for BCP-ALL,
high-hyperdiploid ALL (i.e., >50 chromosomes), and ETV6-
RUNX1 fusion-positive BCP-ALL. This combined meta-analysis
further substantiated previously published risk SNPs (Fig. 1,
Supplementary Table 2). In addition to previously reported loci
we identified three risk loci for BCP-ALL at 8q24.21 (rs28665337,
hg19 chr8:g.130194104) and 5q21.3 (rs7449087, hg19 chr5:
g.107928071), and for ETV6-RUNX1-positive ALL at 2q22.3
(rs17481869, hg19 chr2:g.146124454) (Fig. 2, Tables 1 and 2,
Supplementary Table 3). rs17481869 was genotyped in UK
GWAS II and German GWAS, while rs28665337 was imputed
(info score > 0.97) in all three data sets, imputation fidelity was
confirmed through Sanger sequencing in a subset of samples (r2

= 0.98, Supplementary Table 4). The fidelity of imputation of
SNP rs7449087 was poor (r2= 0.81) with no correlated directly
typed SNP with P-value < 1 × 10−6, hence we did not consider
this represented a bona fide association (Supplementary Table 4).
Conditional analysis did not provide evidence for multiple
independent signals at either 8q24.21 or 2q22.3.

The 8q24.21 variant rs28665337 maps 35 kb 3′ of the long
intergenic non-coding RNA 977 (LINC00977, Fig. 2). The
8q24.21 region harbors variants associated with multiple cancers,
including colorectal, prostate, bladder cancer also B-cell malig-
nancies such as diffuse large B-cell lymphoma, Hodgkin
lymphoma, and chronic lymphocytic leukemia (Supplementary
Table 5). The linkage disequilibrium (LD) blocks delineating
these cancer risk loci are distinct from the 8q24.21 BCP-ALL
association signal suggesting this risk locus is unique to BCP-ALL
(pairwise LD metrics r2 < 0.2; Supplementary Table 5).
rs17481869 maps to an intergenic region at 2q22.3 with no
candidate gene nearby (Fig. 2).

Relationship between SNP genotype and patient outcome. We
examined the relationship between SNP genotype and patient
outcome using data from UK GWAS II and German GWAS.
Neither rs28665337 or rs17481869 showed a consistent associa-
tion with either event-free survival (EFS) or risk of relapse, even
when stratified by ETV6-RUNX1 status (Supplementary Table 6).

Functional annotation of risk loci. To gain insight into the
biological basis underlying the association signals at these as well
as previously identified risk loci, we examined the epigenetic
landscape of BCP-ALL risk loci genome wide. For each risk locus
we evaluated profiles of three histone marks of active chromatin
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Fig. 1 Manhattan plot of association. y-axis shows genome-wide P-values (two-sided, calculated using SNPTEST v2.5.2 assuming an additive model) of >6
million successfully imputed autosomal SNPs in 2442 cases and 14,609 controls. The x-axis shows the chromosome number. The red horizontal line
represents the genome-wide significance threshold of P= 5.0 × 10−8
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(H3K27ac, H3K4me1, and H3k4me3) using ChIP-seq data of 14
cell types from ENCODE, including lymphoblastoid cell line
(GM12878), and multiple ALL and acute myeloid leukemia
(AML) samples from the Blue-Print Epigenome database (Sup-
plementary Fig. 4, Supplementary Table 7)15,16. Since the stron-
gest associated GWAS SNP may not represent the causal variant,
we examined signals across an interval spanning all variants in
LD with the most strongly associated SNP at each risk loci (r2 >
0.8 and D′ > 0.8 based on the 1000 Genomes EUR reference
panel). The analysis across all risk loci combined revealed that
risk SNPs are enriched for markers of open chromatin and that
enrichment is highest in ALL cells (Supplementary Fig. 4, Sup-
plementary Table 7). Analysis using HaploReg17 revealed a sig-
nificant enrichment of SNPs within enhancers in primary
hematopoietic stem cells (binomial test for enrichment, P=
0.0034; Supplementary Data 1). Collectively these data support a
model of disease etiology where risk loci influence BCP-ALL risk
through cis regulatory effects on transcription.

We used summary-level Mendelian randomization (SMR)
analysis to test for concordance between GWAS and cis-eQTL-
associated SNPs with all correlated SNPs (r2 > 0.8) within 1Mb of
the lead SNP at each locus (Supplementary Tables 8 and 9)
deriving bXY statistics, which estimate the effect of gene
expression on childhood ALL risk. This analysis showed variation
in the expression of CDKN2B, FAM53B, FIGNL1, and PIP5K2A
were associated with risk loci (Supplementary Fig. 5, Supplemen-
tary Tables 8 and 9). Eight gene probes exceeded the PSMR

threshold of 1.3 × 10−4, of which two genes passed the HEIDI test
for heterogeneity (PHEIDI > 0.05). In whole blood-derived tissue,
the 10q26.13 locus was associated with FAM53B expression and

the 10p12.2 locus was associated with PIP4K2A (alias PIP5K2A)
expression (PSMR= 2.09 × 10−4, bxy=−0.99, and PSMR= 7.48 ×
10−8, bxy= 0.32, respectively; Supplementary Fig. 5, Supplemen-
tary Table 9). Following from SMR analysis we also investigated
whether the most strongly associated SNP at each risk locus,
individually, was associated with the expression of genes within a
2MB window to ensure capture of long range interactions. This
provided evidence for a relationship between the 8q24.21 risk
allele (rs28665337) and increased expression of MYC (t-test, P=
7.20 × 10−4; Supplementary Fig. 6, Supplementary Table 10), and
the 2q22.3 risk allele (rs17481869) with decreased GTDC1
expression (t-test, P= 0.037; Supplementary Fig. 6, Supplemen-
tary Table 10). Since chromatin looping interactions are
fundamental for regulation of gene expression, we interrogated
physical interactions at respective genomic regions defined by
rs28665337 and rs17481869 in GM12878 lymphoblastoid and H1
human embryonic stem (ES) cells using Hi-C data. Acknowl-
edging limitations that these cell types may not fully reflect ALL
biology, the regions containing rs28665337 and rs17481869 show
significant chromatin looping interactions with the promotor
regions of MYC in ES cells and GTDC1 in GM12878, respectively
(Fit-Hi-C test18, Supplementary Figs. 7, 8).

HLA alleles and risk. A relationship between variation within the
major histocompatibility complex (MHC) region and risk of ALL
has long been speculated19–26. However, most studies have failed
to address the complex LD patterns within the MHC or issues
relating to population stratification. In view of the inconsistencies
and limitations of published studies we conducted a more rigorous
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analysis. Specifically, we investigated a possible relationship
between BCP-ALL risk and HLA alleles by imputing the 6p21
region using the Type I Diabetes Genetics Consortium (T1DGC)
as reference27–29. The strongest association from a combined
analysis of all three GWAS was provided by SNP rs9469021,
which maps 167 Kb centromeric to HLA-B (combined P= 3.5 ×
10−3; frequentist test of association using SNPTEST); this asso-
ciation was, however, not significant after correcting for multiple
testing.

Impact on heritable risk. Using genome-wide complex trait
analysis (GCTA)30–32 the heritability of BCP-ALL accounted for
by common variants was estimated to be 0.16 (±standard error (S.
E.) 0.03, REML analysis Pmeta= 4.25 × 10−8) with little evidence
for subtype difference (0.18 ± S.E. 0.05 and 0.20 ± S.E. 0.08 for
hyperdiploid and ETV6-RUNX1-positive BCP-ALL, respectively).
The 11 known susceptibility variants account for 34% of the
familial risk (Supplementary Table 11). The impact of BCP-ALL
SNPs are among the strongest GWAS associations of any
malignancy, raising the possibility of clinical utility for risk pre-
diction. To examine this, we generated polygenic risk scores
(PRS) based on the composite effect of all risk SNPs assuming a
log-normal relative risk distribution. Using this approach for all
risk SNPs, individuals in the top 1% of genetic risk had a 7.5-fold
relative risk of BCP-ALL (Supplementary Fig. 9). The individual
risk discrimination provided by the variants is shown in the
receiver–operator characteristic (ROC) curves with the area
under the curve (AUC) being 0.73 (Supplementary Fig. 10).

Discussion
The evidence for the two risk loci we report has been based on a
meta-analysis of three independent GWAS data sets. While the
combined association P-values for each risk locus is genome-wide
significant with each series providing support for association we
acknowledge that we did not provide additional replication. For
rare cancers such as childhood ALL, ascertaining case series
which are appropriately ethnically matched and are sufficiently
powered to provide independent replication is inherently pro-
blematic. Moreover as exemplified by the 10q21 and 10p14 risk

loci, associations can be highly subtype-specific which adds to the
difficulty in obtaining appropriate replication series. Accepting
such caveats our analysis provides evidence for the existence of
two additional risk loci for childhood BCP-ALL at 2q22.3 and
8q24.21.

We did not observe an association between risk SNPs at either
2q22.3 and 8q24.21 with patient survival. This is consistent with
the impact of risk variants operating at an early stage of ALL
evolution rather than disease progression per se. We acknowledge
this analysis only has power to demonstrate a 10% difference in
patient outcome. To robustly determine the relationship between
genotype and outcome requires larger patient cohorts.

Given the existence of different subtypes of BCP-ALL, pre-
sumably reflecting the different etiology and evolutionary tra-
jectories, it is perhaps not surprising that some SNPs display
subtype-specific effects. Notable in this respect are the 10q21.2
and 10p14 variants that specifically influence high-hyperdiploid
BCP-ALL33 and Ph-like ALL10, respectively. As with 7p12.2,
9p21.3, 10p12.2, 14q11.2, and the currently identified 8q24.21
locus has generic effects on the risk of BCP-ALL. In contrast the
2q22.3 association was highly specific for ETV6-RUNX1-positive
BCP-ALL.

Deregulation of MYC has been reported in ALL, in some
instances as a consequence of chromosomal rearrangement34.
Studies in other cancers have shown that disease-specific risk loci
at 8q24.21 lie within tissue-specific enhancers interacting with
MYC or PVT1 promotors. Furthermore, recent Hi-C analysis of
this region has demonstrated a complicated 3D structure impli-
cating various lncRNAs in mediating risk35. Hence, it is plausible
that the susceptibility to ALL has a similar mechanistic basis,
brought about through involvement of the lincRNA 00977.

Risk conferred by rs17481869 (2q22.3) was specific to ETV6-
RUNX1-positive BCP-ALL. The SNP association is intergenic
with no obvious candidate gene in the vicinity, presently hin-
dering the suggestion of testable hypotheses regarding its func-
tional basis. eQTL data does, however, provide evidence
implicating GTDC1. GTDC1 encodes a glucosyltransferase whose
expression is relatively high in peripheral blood leukocytes36.
Chromosomal rearrangements of MLL (mixed lineage leukemia)

Table 1 rs28665337 (8q24.21) genotypes and risk associated with BCP-ALL, high-hyperdiploid, and ETV6-RUNX1-positive
childhood BCP-ALL subtypes

RAF Number

All BCP-ALL Cases Controls Cases Controls OR CI P-value

UK GWAS I 0.15 0.12 824 5200 1.32 (1.12–1.55) 7.91 × 10−4

German GWAS 0.16 0.12 834 2024 1.28 (1.07–1.53) 7.64 × 10−3

UK GWAS II 0.15 0.12 784 7385 1.39 (1.21–1.47) 4.16 × 10−5

Combined 2442 14,609 1.34 (1.21–1.47) 3.86 × 10−9

Phet= 0.77 I2= 0%
High-hyperdiploid
UK GWAS I 0.15 0.12 289 5200 1.45 (1.11–1.88) 6.30 × 10−3

German GWAS 0.17 0.12 176 2024 1.49 (1.06–2.09) 2.29 × 10−2

UK GWAS II 0.15 0.12 251 7385 1.38 (1.05–1.81) 2.19 × 10−2

Combined 716 14,609 1.49 (1.21–1.87) 2.55 × 10−5

Phet= 0.94 I2= 0%
ETV6-RUNX1-positive
UK GWAS I 0.16 0.12 126 5200 1.51 (1.01–2.26) 4.27 × 10−2

German GWAS 0.09 0.12 63 2024 0.78 (0.44–1.38) 3.93 × 10−1

UK GWAS II 0.14 0.12 220 7385 1.23 (0.94–1.62) 1.38 × 10−1

Combined 409 14,609 1.23 (1.00–1.51) 5.20 × 10−4

Phet= 0.18 I2= 42%

Note: P-values for each individual study were generated using SNPTEST v2.5.2 software. Combined P-values and estimates were obtained using a fixed-effects model using beta values and standard
errors. RAF risk allele frequency, OR odds ratio, Phet P heterogeneity, I2 index to quantify dispersion of odds ratio, CI confidence interval
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genes are associated with infant leukemia and intriguingly
GTDC1 has been identified as a 3′ MLL fusion partner in acute
leukemia37.

Most cancer GWAS risk loci map to non-coding regions of the
genome and in-so-far as they have been deciphered their func-
tional basis has been attributed to changes in regulatory regions
influencing gene expression33,38,39. The finding that the current
and previously identified risk SNPs show a propensity to map
within regions of B-cell active chromatin is consistent with such a
model of disease susceptibility in ALL. It is therefore noteworthy
that SMR analysis revealed significant relationships between
10p12.2 risk variants and PIP4K2A expression and 10q26.13 risk
variants and FAM53B expression suggesting a mechanism for
these associations.

Our analysis sheds further light on inherited predisposition to
childhood ALL. Functional characterization of risk loci identified
should provide additional insight into the biological and etiolo-
gical basis of this malignancy. While the power of our meta-
analysis to identify common variants loci (MAF > 0.2) associated
with relative risks ≥ 1.2 was around 80%, we acknowledge that we
had low power to detect alleles conferring more moderate effects
or were present at low frequency. By inference, these types of
variant may be responsible for a larger proportion of the heritable
risk of ALL. Hence, a large number of risk SNPs may as yet be
unidentified. Finally, as we have demonstrated, considering ALL
subtypes individually should reveal additional specific risk
variants.

Methods
Ethics. The ascertainment patient samples and associated clinical information was
conducted with informed consent according to ethical board approval. Specifically,
ethical committee approval was obtained for Medical Research Council UKALL97/
99 trial by UK therapy centers and approval for UKALL2003 from the Scottish
Multi-Centre Research Ethics Committee (REC:02/10/052)40,41. Additionally
ethical approval was granted by the Childhood Leukemia Cell Bank, the United
Kingdom Childhood Cancer Study, and University of Heidelberg.

Published GWAS samples. The United Kingdom (UK) GWAS I and German
GWAS have been previously published6,7. In summary, UK GWAS I comprised
(numbers post quality control (QC)) 824 BCP-ALL cases (360 female, average age
at diagnosis 5.5 years) genotyped using Human 317K arrays (Illumina, San Diego;
http://www.illumina.com); control genotypes were obtained from 2699 individuals

from the 1958 British Birth Cohort (Hap1.2M-Duo Custom array data) and 2501
from the UK Blood Service produced by the Wellcome Trust Case Control Con-
sortium 2 (http://www.wtccc.org.uk/; 51% male)42. The German GWAS comprised
1155 cases (620 male; mean age at diagnosis 6 years) from the
Berlin–Frankfurt–Münster (BFM) trials (1993–2004) genotyped using Illumina
Human OmniExpress-12v1.0 arrays (834 samples post QC). Control data was
generated on 2132 (50% male) healthy individuals from the Heinz Nixdorf Recall
study; 704 individuals genotyped using Illumina-HumanOmni1-Quad_v1 and
1428 individuals genotyped on Illumina-HumanOmniExpress-12v1.0 platform. In
total 2024 controls remained post QC in the German cohort.

New GWAS samples. UK GWAS II consisted of 1021 BCP-ALL cases recruited to
Medical Research Council UK ALL-2003 (2003–2011) (683 cases; 307 females,
mean age: 5.9 years) and ALL-97/99 trials40,41 (338 cases, 160 females, mean age:
4.9 years) obtained from the Bloodwise Childhood Leukemia Cell Bank (www.
cellbank.org). DNA was extracted from cell pellets by standard ethanol precipita-
tion methods. Samples were then genotyped on an Infinium OncoArray-500K
BeadChip from Illumina comprising a 250K SNP genome-wide backbone and a
250K custom content selected across multiple consortia within COGS (Colla-
borative Oncological Gene-Environmental Study). OncoArray genotyping was
carried out in accordance with the manufacturer’s recommendations by the High-
Throughput Genomics Group, Oxford Genomics Center. Prior to genotyping DNA
samples were quantified by Quant-iT PicoGreen (Thermo Fisher Scientific, MA,
USA), normalized and 50 ng/μl aliquots plated in 96 deep-well plates. Post QC we
obtained genotype data for 784 cases (365 female; mean age at diagnosis 5.3 years).
Controls consisted of: (1) 2976 cancer-free, men ascertained by the PRACTICAL
Consortium; (2) 4446 cancer-free women from the UK through the Breast Cancer
Association Consortium. All controls were genotyped on Infinium OncoArray-
500K BeadChip arrays.

Statistic and bioinformatics analysis of GWAS data sets. Analyses and/or data
management were undertaken using R v3.2.3 (R Core Team 2013; http://www.R-
project.org/)72, PLINK v1.943, and SNPTEST v2.5.2 software44. GenomeStudio
software (Illumina, San Diego; Available at: http://www.illumina.com) was used to
extract genotypes from raw data. QC of all GWAS data sets was performed as
suggested by Anderson et al45. PLINK v1.943 was used for conducting the sample
and SNP QC steps. Specifically, individuals with low call rate (<95%) as well as all
individuals with non-European ancestry (using the HapMap version 2 CEU, JPT/
CHB, and YRI populations as a reference) were excluded using the smartpca
package, part of EIGENSOFT v4.246,47. SNPs with a call rate <95% were excluded
as were those with a MAF < 0.01 or displaying significant deviation from
Hardy–Weinberg equilibrium (i.e., P < 10−5). The adequacy of case-control
matching and possibility of differential genotyping of cases and controls were
formally evaluated using QQ plots of test statistics. The inflation factor λ was
calculated by dividing the median of the test statistics by the median expected
values from a χ2 distribution with 1 degree of freedom. Q–Q plots were generated
and inflation factors estimated using R. Uncorrected and pre imputation QQ plots
of UK GWAS I, UK GWAS II, and German GWAS showed λ values of 1.01, 1.05,
and 1.10, respectively. Prior to imputation the data sets were pre-phased by

Table 2 rs17481869 (2q22.3) genotypes and risk associated with BCP-ALL, high-hyperdiploid, and ETV6-RUNX1 childhood
BCP-ALL subtypes

RAF Number

All BCP-ALL Cases Controls Cases Controls OR CI P-value

UK GWAS I 0.08 0.07 824 5200 1.18 (0.95–1.46) 1.37 × 10−1

German GWAS 0.10 0.08 834 2024 1.25 (1.01–1.56) 4.33 × 10−2

UK GWAS II 0.10 0.07 784 7385 1.52 (1.25–1.84) 2.53 × 10−5

Combined 2442 14,609 1.32 (1.17–1.49) 5.36 × 10−6

Phet= 0.19 I2= 39.3%
High-hyperdiploid
UK GWAS I 0.06 0.07 289 5200 0.86 (0.61–1.22) 4.03 × 10−1

German GWAS 0.08 0.08 176 2024 0.98 (0.64–1.48) 9.11 × 10−1

UK GWAS II 0.10 0.07 251 7385 1.48 (1.06–2.08) 2.13 × 10−2

Combined 716 14,609 1.10 (0.89–1.35) 0.38
Phet= 0.07 I2= 62%

ETV6-RUNX1-positive
UK GWAS I 0.11 0.07 126 5200 2.01 (1.20–3.39) 8.52 × 10−3

German GWAS 0.12 0.08 63 2024 1.72 (0.88–3.38) 1.14 × 10-1

UK GWAS II 0.13 0.07 220 7385 2.34 (1.64–3.35) 2.90 × 10−6

Combined 409 14,609 2.14 (1.64–2.80) 3.20 × 10−8

Phet= 0.70 I2= 0%

Note: P-values for each individual study were generated using SNPTEST v2.5.2 software. Combined P-values and estimates were obtained using a fixed-effects model using beta values and standard
errors. RAF risk allele frequency, OR odds ratio, Phet P heterogeneity, I2 index to quantify dispersion of odds ratio, CI confidence interval
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estimating haplotypes from the GWAS data sets using Segmented HAPlotype
Estimation and Imputation Tool to make imputation less computationally
intensive48,49. Prediction of the untyped SNPs was carried out using IMPUTE
v2.3.0 based on the data from the 1000 Genomes Project (Phase 1 integrated
variant set, v3.20101123, http://www.1000genomes.org, 9 December 2013) and
UK10K (ALSPAC, EGAS00001000090/EGAD00001000195, and TwinsUK,
EGAS00001000108/EGAD00001000194, studies only; http://www.uk10k.org/) as
reference. In order to account for genomic inflation post imputation in the German
data set, eigenvectors were inferred using the “smartpca” component within
EIGENSOFT v2.4 and adjustment was carried out by including the first two
eigenvectors as covariates in SNPTEST during association analysis46,47. The
inflation factor λ and λ1000 was again calculated for all SNPs post imputation,
QC13,50. The association between each SNP and risk was calculated using
SNPTEST assuming an additive model using a “-frequentist” test and applying a
default genotype calling probability threshold of 0.9. Where applicable the first two
eigenvectors were used as covariates in the association analyses for that data set.
ORs and 95% CIs were obtained from the beta values and standard errors obtained
from the SNPTEST output. Meta-analyses were performed using META v1.751

pooling the beta values and standard error for SNPs from each GWAS data sets.
Association meta-analyses only included markers with info scores >0.8, imputed
call rates/SNP >0.9, and MAFs > 0.01. Collectively the three GWAS provided
genotype data on 2442 cases (mean age at diagnosis 5.6 years; 54% male) and
14,609 controls (45% male) with data for 6,755,715 SNPs6,7,9. We calculated
Cochran’s Q statistic to test for heterogeneity and the I2 statistic to quantify the
proportion of the total variation that was caused by heterogeneity52.

LD metrics were calculated in PLINK43 and vcftools53 using UK10K genomic
data. LD blocks were defined on the basis of HapMap recombination rate, as
defined by using the Oxford recombination hotspots, and on the basis of
distribution of CIs54,55. Association plots were generated using visPIG14.

HLA imputation. Classical HLA alleles were imputed, both common and rare (A,
B, C, DQA1, DQB1, DRB1) and coding variants across the HLA region using
SNP2HLA29. The imputation was based on a reference panel from the T1DGC
consisting of genotype data from 5225 individuals of European descent with
genotyping data of 8961 common SNPs and indel polymorphisms across the HLA
region, and four digit genotyping data of the HLA class I and II molecules. This
reference panel has been used previously and showed high imputation quality for
the HLA regions in other studies27–29. Individual GWAS studies were imputed at
the 6p21 region and meta-analyzed to identify significant HLA risk alleles. A
significance threshold of 5.7 × 10−6 was set after Bonferroni correction as the
number of SNPs tested was 8654.

Sanger sequencing. To assess the accuracy of imputed genotypes, a random series
of samples was Sanger sequenced using BigDye® Terminator v3.1 Cycle Sequencing
Kit (Life Technologies, CA, USA) and analyzed using a ABI 3700xl sequencer
(Applied Biosystems, CA, USA). Oligonucleotide primer sequences are provided in
Supplementary Table 12.

Chromatin mark enrichment analysis. To assess for an over-representation of
markers for open chromatin the variant set enrichment method of Cowper-Sal Lari
et al. was adapted56. For each risk locus, SNPs in LD were defined (i.e., R2 > 0.8 and
D′ > 0.8), and termed associated variant set (AVS). Transcription factor ChIP-Seq
broad peak data were obtained from the ENCODE project for 14 cell lines for
H3K27ac, H3k4me1, and H3K4me3 chromatin signatures. ChIP-Seq broad peak
data for three AML and six childhood ALL cell types were obtained from the Blue-
Print Epigenome database (www.blueprint-epigenome.eu)15. For each mark,
overlap of SNPs in the AVS and the ChIP peak were derived, generating a mapping
score. The null hypothesis was tested by scoring randomly chosen SNPs with the
same LD structure at the risk-associated SNPs. After 10,000 iterations, approximate
P-values were calculated as the proportion of permutations where null mapping
score was at least equal to the AVS mapping score. Enrichment was calculated
normalizing scores to the median of the null model.

Hi-C analysis. Hi-C analysis was conducted using the HUGIn browser57, which is
based on the analysis by Schmitt et al58. Specifically we analyzed Hi-C data gen-
erated on the H1 ES Cells and GM12878 lymphoblastoid cell lines originally
described in Dixon et al.59 and Schmitt et al.58, respectively. Plotted topologically
associating domains boundaries were obtained from the insulating score method at
40 kb bin resolution57. We searched for significant interactions (P-values generated
using “Fit-Hi-C”18) between bins overlapping the currently identified ALL risk loci
with target genes (e.g., “virtual 4C”).

Functional annotation. SNPs in LD (r2 > 0.8) with the top SNPs from each risk
loci were assessed for histone marks in relevant tissue, proteins bound and location
were annotated using HaploReg17 (Supplementary Data 1). eQTL analysis was
performed by testing each sentinel SNP with genes 1MB upstream and downstream
using the whole blood tissue data available from GTEx portal v6p60 and Blood
eQTL browser61 (Supplementary Data 1). Methylation quantitative trait loci
(mQTL) for all known BCP-ALL risk loci where assessed using the mQTL

Database (www.mqtldb.org), which shows the presence of significant methylated
CpG sites at various stages of life as described by Gaunt et al62.

SMR analysis. SMR analysis was conducted as per Zhu et al. (at http://
cnsgenomics.com/software/smr/index.html)63. Publicly available eQTL data was
extracted from the whole blood eQTL, Muther consortia, and GTEx16 v6p release
portals60,61,64. GWAS summary statistics files were generated from the meta-
analysis of UK GWAS I, UK GWAS II, and German GWAS data sets. Reference
files were generated by merging 1000 genomes phase 3 and UK10K (ALSPAC and
TwinsUK) vcfs. Summary eQTL files for the GTEx samples were generated from
downloaded v6p “all_SNPgene_pairs” files. BESD files were generated from
downloaded SNP-gene eQTL data, which were converted into a query flat file
format as mentioned in the SMR online guide (http://cnsgenomics.com/software/
smr) and then using the –make-besd command to make binary versions of the files.
Only probes with eQTL P < 5.0 × 10−8 were considered in the SMR analysis. A
threshold for the SMR test of Psmr < 1.3 × 10−4 corresponding to a Bonferroni
correction for 38 tests for all the 23 genes within 1MB of the sentinel risk SNPs in
each risk loci (38 gene probes with a top eQTL P < 5 × 10−8). HEIDI test P-values
< 0.05 were taken to indicate significant heterogeneity as suggested by Zhu et al.
For the two genes passing the thresholds, plots of eQTL and GWAS associations as
well as plots of GWAS and eQTL effect sizes were constructed.

Relationship between SNP genotype and survivorship. The relationship
between SNP genotype and survival was analyzed in the, German AIEOP-BFM
series, MRC ALL 97/99 and the UKALL2003 series. The German series consisted of
834 patients within the AIEOP-BFM 2000 trial65. Patients were treated with
conventional chemotherapy (i.e., prednisone, vincristine, daunorubicin, l-aspar-
aginase, cyclophosphamide, ifosfamide, cytarabine, 6-mercaptopurine, 6-thiogua-
nine, and methotrexate), a subset of those with high-risk ALL were treated with
cranial irradiation and/or stem cell transplantation. Events, for EFS, were defined
as resistance to therapy, relapse, secondary cancer, or death. Kaplan–Meier
methodology was used to estimate survival rates, with differences between groups
tested using the log-rank method (two-sided P-values). Cumulative incidences of
competing events were calculated using the methodology of Kalbfleisch and Pre-
ntice66, and compared using Gray’s test67. Cox regression analysis was used to
estimate hazard ratios and 95% CIs adjusting for clinically relevant covariates.

The full details regarding the recruitment, classification, and treatment of
patients on MRC ALL97/99 (1997–2002) or UKALL2003 (2003–2011) have been
published41,68–70. In ALL97, patients were classified as standard or high risk based
on the Oxford score. In ALL99 and UKALL2003, patients were initially assigned to
regimen A or B based on whether they were NCI standard or high risk. Regimen A
comprised a three drug induction followed by consolidation, CNS-directed therapy,
interim maintenance, delayed intensification, and continuing therapy. Regimen B
patients additionally received a four drug induction and BFM consolidation.
Treatment response and cytogenetics were used to re-assign high-risk patients to
regimen C to receive augmented BFM consolidation and Capizzi maintenance. In
ALL99 and ALL2003, early treatment response was measured by marrow
morphology at day 8/15 for regimen B/A-treated patients. In addition, ALL2003
patients were randomized to regimen C if their end of induction minimal residual
disease levels—evaluated by real-time quantitative PCR analysis of
immunoglobulin and T-cell receptor gene rearrangements—were >0.01%. Survival
analysis considered two endpoints: EFS defined as time to relapse, second tumor or
death, censoring at last contact; and relapse rate defined as time to relapse for those
achieving a complete remission, censoring at death in remission or last contact.
Survival rates were calculated and compared using Kaplan–Meier methods and log-
rank tests. All analyses were performed using Intercooled Stata 13.0 (Stata
Corporation, USA).

Contribution of genetic variance to familial risk. Estimation of risk variance
associated with each SNP was performed as per Pharoah et al71. For an allele (i) of
frequency p, relative risk R and log risk r, the risk distribution variance (Vi) is:

Vi= (1–p)2E2+ 2p(1–p)(r–E)2+ p2(2r–E)2,
where E is the expected value of r given by:
E= 2p(1–p)r+ 2p2r
For multiple risk alleles the distribution of risk in the population tends toward

the normal with variance:
V= ΣVi

The percentage of total variance was calculated assuming a familial risk of
childhood ALL of 3.2 (95% CI 1.5–5.9) as per Kharazmi et al4. All genetic variance
(V) associated with susceptibility alleles is given as √3.24. The proportion of genetic
risk attributable to a single allele is:

Vi/V
Eleven risk loci were included in the calculation of the PRS for childhood ALL

by selecting the top SNP from the current meta-analysis from each previously
published loci in addition to the two risk loci discovered in this study. The eleven
variants are thought to act independently as previous studies have shown no
interaction between risk loci6–8. PRS were generated as per Pharoah et al. assuming
a log-normal distribution LN(μ, σ2) with mean μ, and variance σ232. The
population μ was set to σ2/2, in order that the overall mean PRS was 1.0. The
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sibling relative risk were assumed to be 3.24. The discriminatory value of risk SNPs
was examined by determining the AUC for the ROC curve.

GCTA to estimate heritability. Since artefactual differences in allele frequencies
between cases and controls have the potential to bias estimation genetic variation,
additional QC measures were imposed on the GWAS data sets which have been
advocated by Lee et al73. Typed SNPs were excluded if they had a MAF < 0.01 or a
HWE test with P < 0.05. SNPs were also excluded if a differential missingness test
between cases and controls was P < 0.05. In addition, individuals were excluded if
having a relatedness score of >0.05. Filtering resulted in the 260,127 SNPs in the
UK GWAS I and 355,899 SNPs in UK GWAS II data sets, respectively. GCTA
(http://cnsgenomics.com/software/gcta/) was employed to estimate the fraction of
the phenotypic variance attributed by SNPs given a prevalence of 0.0005 for ALL30.

Data availability. The UK GWAS I control set comprised 2699 individuals in the
1958 British Birth Cohort (Hap1.2M-Duo Custom array data) and 2501 individuals
from the UK Blood Service obtained from the publicly accessible data generated by
the Wellcome Trust Case Control Consortium 2 (http://www.wtccc.org.uk/;
WTCCC2:EGAD00000000022, EGAD00000000024). The reference panels used in
the imputation can be obtained from the 1000 genomes phased haplotypes (n=
1092) from the Phase I integrated variant set release (ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20110521/) and the UK10K (n= 3781; EGAS00001000090,
EGAD00001000195, EGAS00001000108; www.uk10k.org) sequenced data sets.
eQTL data for various functional analyses were obtained from the MuTHer studies
(genome-wide expression profiled samples with genotype array data and methy-
lation data; E-TABM-1140), Blood eQTL (whole-genome gene exression array data
sets with RNA sequencing and genotyping data: E-TABM-1036, E-MTAB-945, E-
MTAB-1708; http://www.nature.com/ng/journal/v45/n10/abs/ng.2756.html), and
ENCODE transcription factor binding data sets (transcription factor ChIP-seq data
from various tissues: http://genome.ucsc.edu/ENCODE/downloads.html). ChIP-
seq broad peak data for childhood ALL and AML cells were obtained from the
BluePrint Epigenome (dcc.blueprint-epigenome.eu) for samples S00FGCH1,
S005GFH1, S00KPBH1, S017E3H1, S0179DH1, S01GRFH1, S01GQHH1,
S0176JH1, and S0177HH1. The UK GWAS II data set can be accessed through the
European Genome-Phenome Archive website (EGA, https://ega-archive.org) under
the study accession EGAS00001002809. All other relevant data are available on
request to the authors.
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