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ABSTRACT 

Cytokinin promotes shoot branching by activating axillary buds, but its mechanism of 

action in this process is unclear. We have previously shown that a hextuple mutant 

lacking a clade of type-A Arabidopsis Response Regulators (ARRs) known to act in 

cytokinin signalling has reduced shoot branching compared to wild type. Since these 

proteins typically act as negative regulators of cytokinin signalling, this is an 

unexpected result. To explore this paradox more deeply, we characterised the 

effects of loss of function of the type-B ARR, ARR1, which positively regulates 

cytokinin-induced gene expression. The arr1 mutant has increased branching, 

consistent with a role antagonistic to the type-A ARRs, but in apparent conflict with 

the known positive role for cytokinin in bud activation. We show that the arr 

branching phenotypes correlate with increases in stem auxin transport and steady-

state levels of the auxin export proteins PIN3 and PIN7 on the plasma membrane of 

xylem-associated cells in the main stem. Cytokinin treatment results in increased 

accumulation of PIN3, PIN7 and the closely related PIN4 within several hours, and 

loss of PIN3, PIN4 and PIN7 can partially rescue the arr1 branching phenotype. This 

suggests there are multiple signalling pathways for cytokinin in bud outgrowth; one of 

these pathways regulates PIN proteins in shoots, independently of the canonical 

signalling function of the ARR genes tested here. A hypothesis consistent with the 

arr shoot phenotypes is that feedback control of biosynthesis leads to altered 

cytokinin accumulation, driving cytokinin signalling via this pathway.   
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INTRODUCTION 

Plant developmental plasticity is exemplified by the diversity in shoot forms seen 

within a species, which are tuned according to environmental conditions. One 

process underlying this diversity is differential activation of axillary buds throughout 

the plant’s life cycle, which results in diverse shoot branching habits. The hormonal 

signalling network controlling bud activity involves auxin, strigolactone (SL) and 

cytokinin (CK), all of which have well-defined physiological roles, although the 

molecular mechanisms through which they control bud outgrowth are not yet entirely 

clear (reviewed in Domagalska and Leyser 2011; Teichmann and Muhr 2015). It is 

well-established that apical dominance, the inhibitory effect imposed by an actively 

growing shoot apex on axillary buds, is mediated at least in part by the synthesis and 

movement of auxin from young expanding leaves into the basipetal polar auxin 

transport stream (PATS) in the main stem (Thimann and Skoog 1933; Ljung et al., 

2001). Auxin in the PATS does not enter axillary buds to exert this repression, and 

thus acts indirectly (Hall and Hillman 1975; Morris 1977; Booker et al., 2003). There 

is a substantial body of evidence supporting two parallel mechanisms for the indirect 

action of auxin on axillary bud growth (reviewed in Domagalska and Leyser 2011). 

One is that auxin in the main stem regulates the synthesis of second messengers 

that move up into the buds and regulate their activity. The other is that stem auxin 

influences the establishment of canalised auxin flow out of buds into the PATS. 

According to this canalisation-based mechanism, auxin movement begins as a weak 

flux from the bud – an auxin source – into the main stem PATS – an auxin sink. This 

flux narrows and strengthens due to positive feedback between auxin flux and the 

auxin transport machinery (Sachs 1981; Prusinkiewicz et al., 2009). This process 

results in the formation of specialised cell files that conduct auxin from source to 
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sink, and this is hypothesised to be required for sustained bud activation. The action 

of SL and CK in bud activation control can be considered in terms of these two 

models. 

 

In dicots, SL is thought to act via both mechanisms. Auxin up-regulates the 

transcription of SL biosynthetic genes in the stem and SL can move upward into 

buds, presumably in the transpiration stream (Foo et al., 2001; Bainbridge et al., 

2005; Foo et al., 2005; Johnson et al., 2006; Hayward et al., 2009). There, SL 

modulates expression of the TEOSINTE BRANCHED1/CYCLOIDEA/PCNA (TCP) 

family transcription factor BRANCHED1 (BRC1), an inhibitor of shoot branching 

(Aguilar-Martínez et al., 2007; Poza-Carrion et al., 2007; Braun et al., 2012; Dun et 

al., 2012). However, high BRC1 transcript levels are neither necessary nor sufficient 

for bud inhibition and mutant buds lacking BRC1 can be inhibited by SL (Seale et al., 

2017). Furthermore, SL addition can promote branching in an auxin transport 

compromised genetic background, demonstrating that this simple second messenger 

mechanism cannot be the only mode of action for SL (Shinohara et al., 2013). 

Consistent with this idea, SL triggers rapid removal of the auxin export protein, PIN1, 

from the plasma membrane (Crawford et al., 2010; Shinohara et al., 2013; Bennett et 

al., 2016). This effect is sensitive to inhibitors of clathrin-mediated endocytosis, but 

not to the translation inhibitor cycloheximide, suggesting a non-transcriptional mode 

of action of SL on PIN1 endocytosis. In the context of an auxin transport 

canalisation-based model for bud activation, PIN1 removal can account for the 

inhibitory effect of SL on shoot branching since it is predicted to make canalisation 

more difficult to achieve by dampening the feedback between auxin flux and auxin 

transporter accumulation. Furthermore, when auxin transport is compromised and 
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auxin fluxes are systemically low, the effect of SL on PIN1 endocytosis is predicted 

to promote branching, as observed (Shinohara et al., 2013). 

 

Half a century before the discovery of SL, one of the earliest described roles for CK 

in plant development was in bud activation (Wickson and Thimann 1958). In 

Arabidopsis (Arabidopsis thaliana), basally applied CK can overcome the inhibitory 

effects of apical auxin on bud activity (Chatfield et al., 2000). Furthermore, 

isopentenyl transferase (ipt) 3,5,7 mutants impaired in CK biosynthesis have 

reduced CK levels and form fewer branches than wild-type plants (Miyawaki et al., 

2006; Müller et al., 2015). As for SL, there is good evidence that CK can act as a 

second messenger for stem auxin. Removal of the shoot apex correlates with 

increased stem CK levels, and addition of auxin reduces them (Bangerth 1994; 

Tanaka et al., 2006). In Arabidopsis, CK is perceived at the endoplasmic reticulum 

by the HISTIDINE KINASE (AHK) receptor kinase family, which initiate a 

phosphorelay cascade that targets the large, multi-member family of RESPONSE 

REGULATORs (ARRs) in the nucleus via HISTIDINE PHOSPHOTRANSFER (AHP) 

proteins (for review see Schaller et al., 2015). The ARRs possess an N-terminal 

phosphoreceiver domain and comprise two sub-classes based on the presence (in 

type-Bs) or absence (in type-As) of a DNA-binding domain. Type-B ARRs directly 

regulate transcription and function as positive regulators of CK signalling, whereas 

type-A ARRs typically function as negative regulators. It has therefore been widely 

assumed that CK activates buds by regulating the transcription of relevant genes in 

the bud, such as BRC1. There is good evidence to support this model since in both 

pea (Pisum sativum) and Arabidopsis, BRC1 expression is down-regulated by CK 

(Braun et al., 2012; Dun et al., 2012; Seale et al., 2017). However, CK can promote 
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bud activation in pea brc1 mutants, demonstrating that CK has BRC1-independent 

effects on the regulation of bud outgrowth (Braun et al., 2012). Furthermore, the 

Arabidopsis hextuple type-A arr3,4,5,6,7,15 mutant exhibits reduced bud activation, 

a phenotype opposite to that predicted, based on the established roles of type-A 

ARR proteins as negative regulators of transcriptional CK signalling (To et al., 

2004a; Müller et al., 2015).  

 

To explore this paradoxical result further, we describe here the analysis of the type-B 

ARR mutant, arr1. ARR1 binds to the promoters of CK up-regulated genes, including 

those induced during CK-triggered bud activation. We therefore hypothesised the 

arr1 mutant should show reduced and CK-resistant shoot branching. However, our 

results demonstrate arr1 has increased and CK-responsive shoot branching, 

suggesting an alternative mechanism for CK-mediated shoot branching control. We 

provide evidence that the mechanism involves CK-mediated accumulation of the 

PIN3, PIN4 and PIN7 auxin transporters. 
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RESULTS 

 

Type-A and type-B arr mutations confer opposite shoot branching and auxin 

transport phenotypes 

Previously, we found that the hextuple type-A arr3,4,5,6,7,15 mutant has reduced 

shoot branching relative to wild type (Müller et al., 2015). Since type-B ARR family 

members are known to act antagonistically to type-A ARRs in other CK responses, 

we investigated shoot branching in the arr1 loss-of-function mutant. ARR1 was 

selected because a group of CK-up-regulated genes in buds possess an ARR1 

response element in their promoters (Müller et al., 2015). In accordance with action 

antagonistic to type-A ARRs, the type-B arr1 single mutant has increased branching 

compared to wild-type controls, forming a mean of 6.8 rosette branches compared to 

5.5 in wild type when decapitated (Fig. 1A; p < 0.001), and a mean of 6.8 branches 

compared to 5.7 in wild type when intact (Fig. 1B-E; p < 0.001).  

 

Buds on isolated nodal stem segments from arr3,4,5,6,7,15 plants treated with apical 

auxin were previously shown to be resistant to the effects of basal CK and slightly 

resistant to basal SL (Müller et al., 2015). The same isolated nodal assay system 

was used to assess bud hormone responses in arr1 (Chatfield et al., 2000; Crawford 

et al., 2010). Briefly, small nodal stem segments, each bearing an inactive cauline 

bud, were excised from bolting inflorescences. The apical end of the stem was 

embedded in an agar block supplemented with synthetic auxin (1-napthalene acetic 

acid; NAA) or a control solution. The basal end of the stem was embedded in an 

agar block supplemented with CK (6-benzylaminopurine; BA), SL (rac-GR24) or a 

control solution (hereafter referred to as apical NAA, basal BA and basal GR24 
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treatments). The kinetics of outgrowth in mock-treated arr1 buds was similar to wild 

type (Fig. 2A & B). For both genotypes, apical NAA delayed bud activation by 

approximately three days. The response of arr1 to BA was also similar to wild type, 

where basal BA alone had little effect compared to mock treatment, but basal BA 

could overcome the inhibitory effect of apical NAA and activate buds. As previously 

reported, basal GR24 prolonged the inhibitory effect of apical NAA in wild type, but 

arr1 buds were resistant to basal GR24 under these conditions (Fig. 2C & D). To 

assess whether this altered GR24 response extended beyond isolated nodes, whole 

plants were grown under axenic conditions on ATS media supplemented with GR24, 

as per Crawford et al. (2010). Branching in wild-type plants was significantly inhibited 

by 1 µM GR24, whereas 5 µM was required for significant branch inhibition in arr1 

plants (Fig. S1). 

 

The altered GR24 responses of arr1 single and arr3,4,5,6,7,15 hextuple mutants 

raise the possibility that arr mutations may affect auxin transport processes in the 

shoot. We therefore compared bulk auxin transport in wild type, type-A and type-B 

arr mutant stem segments, as previously described (Bennett et al., 2016). Compared 

to wild type, arr1 transported 40% more auxin (p < 0.01) and arr3,4,5,6,7,15 

transported 23% less (p < 0.01) over the 6-hour assay period (Fig. 3A). To determine 

whether this effect was associated with CK signalling, we also assessed the ipt3 CK 

biosynthesis mutant, which we have previously shown to have a reduced shoot 

branching phenotype (Müller et al., 2015). Similar to arr3,4,5,6,7,15, the ipt3 mutant 

also exhibited reduced auxin transport (Fig. S2). Thus, the degree of shoot 

branching positively correlates with bulk auxin transport in the stems of these mutant 

genotypes.  
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To test this correlation further, we assessed the shoot branching response of arr1 

and arr3,4,5,6,7,15 plants to the auxin transport inhibitor 1-naphthylphthalamic acid 

(NPA). Plants were grown under axenic conditions on ATS media supplemented with 

NPA, as per Bennett et al. (2006). Significant reductions in branching were observed 

in arr1 plants treated with 0.1 µM NPA (p < 0.05) and 1.0 µM NPA (p < 0.001) (Fig. 

3B), consistent with a causative link between auxin transport defects and shoot 

branching in the arr1 mutant, similar to the results obtained for SL deficient mutants 

(Bennett et al., 2006). In contrast, treatment with 0.1 µM NPA significantly increased 

branching in arr3,4,5,6,7,15 (p < 0.01) (Fig. 3C). This is consistent with the well-

established promotive effect of very low auxin transport on branching (Ruegger et 

al., 1997; Geldner et al., 2003). Taken together, the results suggest mutations in 

type-A and type-B ARR family members perturb auxin transport in the shoot, and this 

contributes to their effects on shoot branching. 

 

CK signalling targets PIN proteins in the stem 

Several PIN proteins contribute to stem auxin transport in Arabidopsis. PIN1 is an 

important component of the classical PATS and is expressed in a highly polar 

manner in xylem parenchyma and cambium cells in the stem vasculature. PIN3, 

PIN4 and PIN7 contribute to PATS and to a less-polar route, termed Connective 

Auxin Transport (CAT), which connects surrounding tissues and organs, including 

axillary buds, to the PATS (Bennett et al., 2016). To determine whether arr mutant 

shoots have alterations in PIN accumulation we analysed the steady-state transcript 

levels of PIN1, PIN3, PIN4 and PIN7 in arr1 and arr3,4,5,6,7,15. PIN transcript levels 

were analysed in upper inflorescence internodes of wild-type, arr1 and 
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arr3,4,5,6,7,15 plants using RT-qPCR (Fig. S3). Apart from a 5-fold increase in PIN7 

transcripts in arr3,4,5,6,7,15 compared to wild type (p < 0.01), no significant changes 

were observed, suggesting the arr mutant auxin transport phenotypes do not 

correlate with alterations in PIN transcript abundance in inflorescence stems.  

 

In the absence of correlative changes in PIN transcription, we assessed PIN protein 

localisation and abundance using established PIN-GFP reporter lines crossed into 

the type-A and B arr mutant backgrounds. PIN-GFP accumulation patterns were 

analysed in longitudinal or transverse sections of basal inflorescence internodes (the 

inflorescence internode located directly above the rosette and farthest from the shoot 

apex) and imaged using confocal microscopy. In arr3,4,5,6,7,15 mutants, the amount 

of PIN1-GFP on the basal plasma membrane (the rootward-facing membrane 

farthest from the shoot apex) of xylem parenchyma cells was unchanged compared 

to wild type (Fig. 4A-C). In contrast, the amount of PIN3-GFP on the basal plasma 

membrane of xylem parenchyma cells was reduced by approximately 25% in 

arr3,4,5,6,7,15 compared to wild type (p < 0.001) (Fig. 4D-F). As PIN7-GFP typically 

shows a broad, cross-stem pattern of accumulation in young wild-type internodes, 

and PIN7-GFP was not detectable on the basal plasma membrane of xylem 

parenchyma cells in arr3,4,5,6,7,15, the PIN7-GFP signal was quantified within 

vascular bundles in inflorescence stem transverse sections (Fig. 4G-I). Like PIN3-

GFP, PIN7-GFP was also significantly decreased in arr3,4,5,6,7,15 compared to 

wild-type (p < 0.001). Analysis of the ipt3 CK synthesis mutant revealed similar 

patterns of PIN1-GFP and PIN7-GFP accumulation as the arr3,4,5,6,7,15 mutant, 

with wild-type levels of PIN1-GFP present on the basal plasma membrane of xylem 
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parenchyma cells and decreased levels of PIN7-GFP within vascular bundles (p < 

0.001) (Fig. S4).  

 

Wild-type levels of basal plasma membrane-localised PIN1-GFP were also observed 

in the arr1 mutant (Fig. 5A-C). However, in contrast to arr3,4,5,6,7,15, PIN3-GFP 

was increased approximately 20% in arr1 inflorescence stems compared to wild type 

(p < 0.05) (Fig. 5D-F). In transverse sections of young basal arr1 inflorescence 

internodes (8-10 cm high), PIN7-GFP was restricted to the outer xylem parenchyma 

and cambium of vascular bundles, whereas wild-type plants exhibited a brighter and 

broader accumulation pattern that decreased at later stages, as previously reported 

(Bennett et al., 2016) (Fig. S5). In contrast, the accumulation of PIN7-GFP 

associated with vascular bundles appeared to be slightly higher in arr1 than wild type 

at later stages of inflorescence development (18-20 cm and 28-30 cm high) (Fig. 

S5C-F). In accordance with this observation, the amount of PIN7-GFP present on 

the basal plasma membranes of xylem parenchyma cells in longitudinal sections of 

inflorescence stems was increased approximately 25% (p < 0.01) in arr1 compared 

to wild-type (Fig. 5G-I).  

 

These data suggest that the auxin transport phenotypes of the arr3,4,5,6,7,15 and 

arr1 mutants are due at least in part to differential accumulation of PINs belonging to 

the PIN3, 4, 7 clade in the stem. To assess whether this is a direct effect of CK, we 

assessed the response of these PIN proteins to BA treatment. Inflorescence stem 

segments from wild-type plants were held between two agar blocks supplemented 

with NAA in the upper block and BA or a control solution in the lower block. After 4 h 

treatment, a longitudinal section was made in the basal half of the stem segment, at 
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or near the site of BA treatment, and imaged using confocal microscopy. The amount 

of PIN1-GFP on the basal plasma membrane was unchanged in mock versus BA-

treated stems (Fig. 6A-C). BA treatment increased the amount of PIN3-GFP on the 

basal plasma membrane by ~30% (p < 0.01) (Fig. 6D-F), PIN4-GFP by ~20% (p < 

0.001) (Fig. 6G-I) and PIN7-GFP by ~15% (p < 0.01) (Fig. 6J-L). No changes in the 

steady-state transcript levels of PIN1, PIN3, PIN4 or PIN7 were found in the basal 5 

mm of equivalently treated wild-type inflorescence internodes after 4 h BA treatment 

(Fig. S6). When tracking individual PIN7:PIN7-GFP-expressing xylem parenchyma 

cells in a longitudinal section for 2 h, the amount of PIN7-GFP on the basal plasma 

membrane of NAA-treated internodes generally decreased over time, but cells 

treated with a combination of NAA and BA retained more PIN7-GFP signal 

compared to NAA alone (p < 0.01) (Fig. S7).  

 

Together, the results demonstrate CK affects plasma membrane levels of PIN3, 

PIN4 and PIN7 proteins in inflorescence stems, and this correlates with changes in 

auxin transport. The effect of CK on these PINs may be post-transcriptional and the 

response has some specificity, since PIN1 is unaffected. 

 

Nitrate phenocopies the effect of CK on PIN proteins in stems 

Nitrate supply promotes shoot branching in Arabidopsis but the mechanisms 

underlying this response are complex, with multiple modes of action likely (de Jong 

et al., 2014). The response of branching to nitrate is unlikely to involve PIN1, since 

steady-state PIN1-GFP levels in the stem remain the same under different nitrate 

regimes (de Jong et al., 2014). It is well-established that CK can act as a nitrate 

signal (Sakakibara et al., 2006) and consistent with this, we previously showed that 
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higher order ipt3,5,7 and arr3,4,5,6,7,15 mutants form similar numbers of branches 

under high and low nitrate conditions, suggesting CK contributes to the ability of 

Arabidopsis plants to modulate branching in response to nitrate supply (Müller et al., 

2015). The CK-responsiveness of PIN3, PIN4 and PIN7 suggests a possible route 

for nitrate-mediated regulation of branching via CK. To assess whether changes in 

nitrate status might be reflected in PIN3, PIN4 and PIN7 accumulation, PIN3:PIN3-

GFP, PIN4:PIN4-GFP and PIN7:PIN7-GFP plants were grown under nitrate sufficient 

and insufficient conditions and the amount of PIN-GFP signal on the basal plasma 

membrane of xylem parenchyma cells quantified in basal inflorescence internodes. 

As for exogenous CK supply, nitrate sufficient conditions were associated with 

increased levels of PIN3-GFP, PIN4-GFP and PIN7-GFP on the basal plasma 

membrane (Fig. 7). Under low N conditions, PIN3-GFP was reduced to ~75% of the 

levels observed in high N plants (p < 0.001) (Fig. 7A), while PIN4-GFP and PIN7-

GFP were reduced to approximately 85% of that in high N plants (p < 0.001) (Fig. 7B 

and C). These results are consistent with the idea that nitrate modulates shoot 

branching at least in part via CK effects on PIN3, PIN4 and PIN7 abundance; 

although, it is also possible that nitrate supply modules PIN3,4,7 accumulation via a 

CK-independent mechanism. 

 

PIN3, PIN4 and PIN7 contribute to shoot branching control in arr1 

To assess the contribution of changes in PIN3, PIN4 and PIN7 to CK-mediated 

branching control, we generated the arr1 pin3 pin4 pin7 quadruple mutant (hereafter 

referred to as arr1 pin3,4,7) and analysed its branching phenotype. As the 

differences in branch numbers between wild type, arr1 and pin3,4,7 are typically 

small, plants were grown under short days for 4 weeks initially then shifted to long 
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days for 5 weeks in order to maximise branch numbers, providing sensitised 

conditions to assess any differences. At terminal flowering, an intermediate number 

of branches were formed in the arr1 pin3,4,7 quadruple mutant (9.9) compared to the 

arr1 single mutant (12.1) and the pin3,4,7 triple mutant (8.4) (Fig. 8A-F). This 

reduction in branching of arr1 in the pin3,4,7 mutant background is consistent with 

the hypothesis that CK-regulated changes in PIN3, PIN4 and PIN7 contribute to the 

increased shoot branching phenotype of arr1. The pin3,4,7 mutant exhibits twisted 

rosette leaves and an increased cauline branch angle phenotype (Bennett et al., 

2016) and in both these aspects the arr1 pin3,4,7 quadruple mutant appeared similar 

to the pin3,4,7 triple mutant (Fig. 8A-E and G).  

 

To assess the responses of pin3,4,7 buds to exogenous CK treatment, we used the 

same experimental set-up described for arr1, in which buds on isolated nodal stem 

segments were treated with apical NAA and basal BA supplied through the stem. 

Overall, the pin3,4,7 triple mutant responded similarly to wild type, activating in mock 

and basal BA treatments and remaining inhibited for several days in the presence of 

apical NAA (Fig. 9A and B). As for wild type, basal BA could override the effect of 

apical NAA in pin3,4,7 mutants, however, mutant buds activated significantly faster 

than wild type during the first four days (Fig. 9C). Together, the results suggest PIN3, 

PIN4 and PIN7 contribute to CK-mediated bud activation, but the phenotypic effects 

of pin3,4,7 mutation suggest that CK also functions via other mechanisms. 
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DISCUSSION 

Perturbing CK levels through exogenous application or through manipulation of 

endogenous levels provides clear evidence that CK can promote bud activation 

(Wickson and Thimann 1958; Faiss et al., 1997; Chatfield et al., 2000; Müller et al., 

2015). Elucidating the role of the known CK signalling pathway in bud activation has 

been less straightforward due to the large gene families involved and consequent 

functional redundancy. Previously, we showed that the arr3,4,5,6,7,15 mutant has 

reduced branching and its buds are CK resistant – an unexpected result since type-A 

ARRs are generally considered to be negative regulators of CK signalling (Müller et 

al., 2015). Since the type-A ARRs are themselves transcriptionally induced by CK as 

part of a negative feedback loop, loss-of-function mutations in these genes could 

have complex phenotypes with respect to CK response. However, our demonstration 

that the arr1 mutant has a branching phenotype opposite to arr3,4,5,6,7,15 suggests 

that the type-A and type-B ARRs do indeed function antagonistically in bud 

activation, leaving the paradox unresolved.  

 

ARR1 and ARR3,4,5,6,7,15-independent CK signalling and shoot branching  

ARR1 is a well-characterised positive regulator of CK signalling and regulates the 

expression of CK-responsive genes (Sakai et al., 2001). Throughout our analyses of 

shoot branching and associated auxin transport phenotypes, arr1 phenocopied CK 

treatment, whereas arr3,4,5,6,7,15 phenocopied CK depletion, as in ipt3 (Figs. 1, 3-

6, Figs. S2 and S4). This raises the interesting prospect that the arr mutant 

phenotypes are due to feedback regulation of the pool of active CKs via synthesis or 

degradation, such that reduced CK signalling in arr1 leads to an increase in the pool 

of active CKs, while increased CK signalling in arr3,4,5,6,7,15 reduces the pool of 
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active CKs. Such feedback between hormone signalling and hormone levels is well-

established for most plant hormones, including CK. For example, CK application 

induces expression of genes encoding CYTOKININ OXIDASE (CKX) degrading 

enzymes (Kiba et al., 2002; Rashotte et al., 2003), and this has also been observed 

in CK-treated buds (Müller et al., 2015). Consistent with this feedback, the triple ahk2 

ahk3 cre1 CK receptor mutant has elevated levels of N6-(Δ2-isopentenyl)-adenine 

precursor and trans-zeatin-type CKs in young plants (Riefler et al., 2006). This 

feedback has the potential to account for the “high CK” increased branching 

phenotype of the arr1 mutant and the “low CK” reduced branching phenotype of the 

arr3,4,5,6,7,15 mutant (Fig. 10).  

 

Importantly, in addition to shoot branching, the phenotypic correlations we observe in 

arr mutants extend to auxin transport properties. CK treatment, nitrate supply, and 

loss of ARR1 result in over-accumulation of PIN3, PIN4 and PIN7, whereas CK-

depleting conditions such as ipt3 mutation or nitrate starvation, and loss of the 

ARR3, 4, 5, 6, 7, 15 clade result in PIN3, PIN4, and PIN7 depletion. If CK 

homeostasis is indeed altered in the arr mutants, it implies that CK can signal 

independently of the ARR genes analysed here to promote PIN3, PIN4 and PIN7 

accumulation (Fig. 10). One possibility is that CK can signal entirely independently of 

ARRs via a non-canonical pathway or simply independently of ARR1 and ARR3, 4, 

5, 6, 7, 15, for example through a specialised type-B family member (or members) 

via the canonical pathway. Further work will be required to understand precisely 

which CK signalling components target PIN proteins in shoots. No differences were 

observed in PIN1 accumulation, suggesting specific auxin transporters are targeted 

by this signalling route. 
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The lack of change in PIN gene expression levels in type-A and type-B arr mutants 

and in wild-type plants in response to CK addition suggests PIN transcription is not a 

direct target for CK signalling in bud activation, by whatever pathway, and suggests 

that the effect of CK on PINs is post-transcriptional (Figs. S3 and S6). This could be 

a protein-level effect on PINs, similar to that established for SLs and PIN1, or it could 

be a transcriptional effect on PIN regulators. For example, PINOID-dependent (PID) 

phosphorylation can modulate the apical-basal polarity of PINs (Friml et al., 2004) 

and PID expression is reduced in shoots within 2 h of CK treatment in Arabidopsis 

seedlings, consistent with CK promoting basal localisation of PINs (Brenner and 

Schmulling 2012). Such a post-transcriptional effect on PINs acting via the canonical 

CK signalling pathway has been established in roots. In the octuple 

arr3,4,5,6,7,8,9,15 mutant, lower levels of GFP-tagged translational fusions of PIN1, 

3 and 4 are observed in root tips, whereas PIN7 is reduced in the stele but increased 

in the root cap, and these changes do not correlate with PIN transcript abundances 

(Zhang et al., 2011). In contrast to our results, this effect mirrors CK treatment, as 

expected if the type-A ARRs are acting as negative regulators of CK signalling.   

 

The role of the auxin transport system in the regulation of shoot branching by 

CK 

Our results show a strong correlation between CK, basal membrane abundance of 

PIN3, PIN4 and PIN7, bulk auxin transport and shoot branching across all our 

experiments. Reducing auxin transport with the pharmacological inhibitor NPA has 

opposite effects on branching in arr1 and arr3,4,5,6,7,15 (Fig. 3), suggesting a 

causal link between auxin transport perturbation and the arr mutant shoot branching 
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phenotypes. The pin3,4,7 triple mutant partially suppresses the increased branching 

of arr1 mutants, consistent with the idea that this phenotype is caused in part by 

over-accumulation of these PINs (Bennett et al., 2016) (Fig. 8). One explanation for 

this relationship is that CK-mediated increases in PIN3, PIN4 and PIN7 accumulation 

increase the initial flow of auxin between the bud and the PATS, thereby supporting 

the establishment of canalised auxin transport between the bud and the stem and 

increasing the ease with which buds can activate. Consistent with this idea, polarised 

PIN1 protein can be observed at the bud-stem junction in pea within 24 h of CK 

treatment (Kalousek et al., 2010) and CK applied to axillary buds can promote the 

export of auxin out of the buds (Li and Bangerth 2003). This hypothesis is also 

consistent with the resistance of arr1 buds to the inhibitory effects of the SL 

analogue GR24 (Fig. 2). SL acts in part by dampening the positive feedback in auxin 

transport canalisation between the bud and the stems. Increased PIN3, PIN4 and 

PIN7-mediated bud-stem auxin flux could counteract SL-mediated PIN1 removal by 

promoting additional flux-correlated PIN1 allocation. According to this model, it is the 

role of PIN3, PIN4 and PIN7 in cross-stem auxin flux, rather than basipetal transport 

down the stem that is important in CK-mediated bud activation. This is consistent 

with our previous analyses demonstrating that PIN3, PIN4 and PIN7 play an 

important role in the ability of consecutive buds on opposite sides of the stem to 

inhibit one another’s outgrowth, while having only limited impact on the total level of 

shoot branching in intact plants.  

 

Importantly, the pin3,4,7 mutant only partially suppresses the arr1 shoot branching 

phenotype and pin3,4,7 buds respond strongly to basal BA supply in isolated nodal 

assays, even activating slightly earlier than wild-type buds when treated with a 
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combination of apical NAA and basal BA. These results demonstrate that CK can 

activate buds through PIN3-, PIN4- and PIN7-independent mechanisms. The 

mechanism(s) underlying faster pin3,4,7 bud activation in response to apical NAA 

and basal BA is not known. In Arabidopsis, the ability of strigolactone to inhibit bud 

activity appears to depend jointly on its ability to promote accumulation of transcripts 

of the BRC1 gene and to trigger endocytosis of PIN1, reducing the ability of buds to 

establish canalised auxin export into the stem. Our data for CK support a similar dual 

activity for CK, reducing BRC1 transcript abundance and increasing PIN3,4,7 

accumulation at the plasma membrane (Seale et al., 2017) (Fig. 6). One highly 

speculative possibility is that the combination of low BRC1 expression and reduced 

peripheral stem auxin in pin3,4,7 mutants might allow for rapid early expansion of the 

bud.  

 

Other targets for CK signalling in shoot branching 

Our data suggest CK promotes shoot branching in part by driving plasma membrane 

accumulation of PIN3, PIN4 and PIN7. This would operate in parallel with the 

established ability of CK to regulate transcription in buds, for example by down-

regulating expression of the BRC1 bud regulatory gene (Fig. 10) (Aguilar-Martínez et 

al., 2007; Poza-Carrion et al., 2007; Braun et al., 2012; Dun et al., 2012; Seale et al., 

2017). The parallel operation of these two mechanisms makes interpretation of the 

arr mutant phenotypes complicated. For example, in the arr1 mutant, impaired CK-

induced changes in transcription should lead to reduced shoot branching. Consistent 

with this, the arr1 mutant has reduced steady-state type-A ARR gene expression, as 

expected if there is reduced CK signalling via the canonical pathway (Fig. S8). At the 

same time, it is possible that this results in over-accumulation of CK due to impaired 
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feedback regulation on CK levels. This CK could signal in an ARR1-independent 

manner to promote PIN3, PIN4 and PIN7 accumulation, thereby promoting shoot 

branching. Thus, it is likely that the arr1 shoot branching phenotype is a compromise 

between these opposing effects. Added to this, there is likely to be some redundancy 

in the type-B ARR family and it is possible that different family members are 

differentially important in regulating feedback on CK synthesis versus modulation of 

transcription of bud-regulating genes. Given all these considerations, there are many 

alternative ways to interpret our result that arr1 mutant buds inhibited by apical NAA 

supply can be activated by basal BA similar to wild type, whereas arr3,4,5,6,7,15 

buds cannot (Müller et al., 2015). 

 

CONCLUSIONS 

Several studies have proposed a causal link between CK and increased auxin 

transport as one mechanism for CK-mediated bud outgrowth (Davies et al., 1966; 

Chatfield et al., 2000; Li and Bangerth 2003). Our results support this hypothesis, 

and in particular we demonstrate that CK drives accumulation of PIN3, PIN4 and 

PIN7 on the plasma membrane, and this contributes to the branching phenotype 

observed in the arr1 mutant. Interestingly, the phenotypes of type-A and type-B arr 

CK signalling mutants are the opposite of those expected given their respective 

negative and positive roles in CK-mediated transcriptional control in roots. This 

suggests strong specialisation within the ARR gene families or an ARR-independent 

mechanism for CK signalling in the control of shoot branching. 
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MATERIALS & METHODS 

 

Plant lines  

Col-0 was used as wild type for all experiments. The arr3,4,5,6,7,15 line was 

published previously (Müller et al., 2015). The homozygous arr1-4 (SALK_042196) 

T-DNA insertion line was obtained from the Nottingham Arabidopsis Stock Centre 

and identified using ARR1-4 LP (5’-GAT CAA ACC CAT TCA ATG TCG-3’), ARR1-4 

RP (5’-GAG ATG GCA TTG TCT CTG CTC-3’) and LBb1.3 as per the SALK T-DNA 

website (www.signal.salk.edu/tdnaprimers.2.html) (Alonso et al., 2003). The 

PIN1:PIN1-GFP (Benková et al., 2003), PIN3:PIN3-GFP (Žádníková et al., 2010), 

PIN4:PIN4-GFP (Bennett et al., 2016) and PIN7:PIN7-GFP (Blilou et al., 2005) 

reporter lines have been described previously. All PIN:PIN-GFP reporter lines on the 

arr3,4,5,6,7,15 mutant background were generated by crossing arr3,4,5,6,7,15 to 

each of the arr3,4,5,6,7,8,9,15 PIN-GFP lines described previously (Zhang et al., 

2011) and screened for the presence of wild-type ARR8 (F 5’-CAA ATG GCT GTT 

AAA ACC CAC CAA TA-3’ and R 5’-CCA TTG TTA GTG TGC TAT CAC CTG AGT 

G-3’) and ARR9 genes (F 5’-CAG ACT CTT TAT TTC TCT TCC TC-3’ and R 5’-CCC 

ACA TAC AAC ATC ATC ATC ATA TTC C-3’). For arr1, the four Col-0 PIN:PIN-GFP 

lines were crossed to arr1-4. Segregants were screened in the F2 and F3 

generations for GFP and the correct genotype using the above gene-specific primers 

and ARR3, -4, -5, -6, -7 and -15 primers published previously (To et al., 2004b; 

Zhang et al., 2011).  

 

Growth conditions 
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Seeds were stratified for 3-5 days at 4°C. Soil-grown plants were sown onto F2 soil 

treated with Intercept 70WG (both Levington, http://www.scottsprofessional.co.uk) or 

Exemptor (ICL, http://icl-sf.com/uk-en) in P24 or P40 trays in controlled environment 

rooms under long-day (16 h light/ 8 h dark) or short-day (8 h light/16 h dark) 

photoperiods. For plants grown under sterile conditions, seeds were vapour-

sterilised with 100 mL 10% (w/v) chlorine bleach and 3 mL 10.2 M HCl for 4 h and 

sown onto solidified ATS medium (containing 0.8% agar) (Wilson et al., 1990). Soil 

and sterile-grown plants were subject to an average light intensity of 170 or 100 µmol 

m-2 sec-1, respectively, and an average temperature range of 17–21°C. 

 

Branch counts 

Primary rosette and cauline branches ≥1 cm were counted on intact plants at or near 

terminal flowering. Decapitation assays were performed as per Greb et al. (2003).  

 

Hormone and NPA treatments 

For testing bud responses to NAA, BA and GR24, plants were grown under sterile 

conditions and one-node assays performed as previously described (Chatfield et al., 

2000; Müller et al., 2015). For treating whole plants with NPA or GR24, plants were 

grown for 6 weeks under sterile conditions on solidified ATS in glass jars as 

described previously (Bennett et al., 2006; Crawford et al., 2010). For NAA and BA 

treatment of stems, 2 cm segments from the basal inflorescence internode were 

collected from soil-grown plants. Similar to the one-node assay system, segments 

were placed vertically into split plates prepared with 1 µM NAA in the upper apical 

portion and either mock (DMSO) or 1 µM BA in the lower basal portion, or the apical 

portion. Plates were prepared by cutting a 1 cm trough through the middle of square 
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10 cm plates containing 50 mL solidified ATS without sucrose. Hormone or mock 

solutions were pipetted into the upper or lower half (25 µL of 1000X stocks). Plates 

were placed under standard light conditions for sterile-grown plants. 

 

Reverse transcription quantitative PCR 

For analysis of PIN1, PIN3, PIN4 and PIN7 gene expression levels in the arr1 and 

arr3,4,5,6,7,15 mutants, seeds were sown in glass jars on solidified ATS as 

described above for whole-plant NPA and GR24 treatments. Plants were grown for 6 

weeks and the uppermost inflorescence internodes (i.e. the inflorescence stem 

between the uppermost two cauline nodes) harvested onto liquid nitrogen. Three 

biological replicates each containing 10-15 internodes were collected. For NAA and 

BA treatments, 2 cm segments from the basal inflorescence internodes were 

collected from 6 week old soil-grown plants and placed vertically into plates 

containing apical NAA with or without basal BA, prepared as above. Treatments 

were left for 4 h and the basal 5 mm of the 2 cm segments were harvested into three 

biological replicates of 6-7 segments each on liquid nitrogen. RNA extractions, cDNA 

synthesis and quantification of transcript levels were carried out as described 

previously (Müller et al., 2015) using 650 or 500 ng total RNA for the arr or BA 

response analyses, respectively. Sequences of primers used are as follows: PIN1 F 

5’-CAG TCT TGG GTT GTT CAT GGC-3’, PIN1 R 5’-ATC TCA TAG CCG CCG CAA 

AA-3’, PIN3 F 5’-CCA TGG CGG TTA GGT TCC TT-3’, PIN3 R 5’-ATG CGG CCT 

GAA CTA TAG CG-3’, PIN4 F 5’-AAT GCT AGA GGT GGT GGT GAT G-3’, PIN4 R 

5’-TAG CTC CGC CGT GGA ATT AG-3’, PIN7 F 5’-GGT GAA AAC AAA GCT GGT 

CCG-3’ and PIN7 R 5’-CCG AAG CTT GTG TAG TCC GT-3’. For Fig. S8, ARR1 F 

5’-TAC GAA GTA ACG AAA TGC AAC AGA-3’, ARR1 R 5’-GAA ACC GTC CAT 
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GTC AGG CA-3’, and previously published primer sequences for ARR4, 5, 6, 7 and 

15 were used (Müller et al., 2015). 

 

Microscopy 

For PIN1:PIN1-GFP and PIN3:PIN3-GFP, which exhibit relatively stable levels of 

expression in the stem throughout development, basal inflorescence internodes from 

~6 week old soil-grown plants were collected for imaging. For PIN4:PIN4-GFP and 

PIN7:PIN7-GFP, which exhibit a reduction in stem expression during development, 

inflorescence internodes were taken from 4–5-week-old soil-grown plants when the 

inflorescence was approximately 5-15 cm high. Between treatments, individual 

plants were stage-matched so that the same internodes from two plants with 

inflorescence heights within 1 cm of each other were compared. Internodes were 

hand-sectioned longitudinally through vascular bundles using a razor blade under a 

dissecting microscope, or transversely in 2 mm segments, then secured to a petri 

dish with micropore tape or embedded in solidified ATS and covered in water. 

Confocal microscopy was performed using a Zeiss LSM700 imaging system with 

20X or 10X water immersion lenses. For longitudinal sections, xylem parenchyma 

tissues were located by focussing on the helical pattern of xylem cell wall lignin 

under transmitted light. Excitation was performed using 488 nm (3-6% laser power) 

and 639 nm (2% laser power) lasers. Images were acquired using SP 555 and 

LP640 emission filters for GFP and chloroplast autofluorescence, respectively. The 

same detection settings were used within an experiment. For longitudinal sections, 

GFP fluorescence intensities were quantified by manually tracing around the basal 

plasma membrane of a non-saturated cell using Zeiss ZEN 2012 software. At least 

five cells each from 8-10 individual plants were analysed per treatment and repeated 
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at least once. For transverse sections, Z-stacks were acquired using a 3-5 µm step 

size. Maximum projections generated using ImageJ software and GFP fluorescence 

(as arbitrary units per pixel) quantified by manually tracing around vascular bundles. 

Five vascular bundles were analysed from at least five individual plants and repeated 

at least once. For representative images, projections were made using LSM Image 

Browser software version 4.2.0.121 and processed in Adobe Photoshop. 

 

Auxin transport assays  

Auxin transport assays were performed as per (Bennett et al., 2016). 

 

Branch angle measurements 

Inflorescence stems bearing two branches from mature plants were trimmed, laid flat 

and photographed. The angle between the point of emergence and the inflorescence 

stem was measured using ImageJ software. 

 

Statistical analyses 

Statistical analyses were performed using SPSS Statistics version 22.  

ACCESSION NUMBERS 

Sequence data form this article can be found on The Arabidopsis Information 

Resource (TAIR; www.arabidopsis.org ) under accession numbers AT3G16857 

(ARR1), AT1G59940 (ARR3), AT1G10470 (ARR4), AT3G48100 (ARR5), 

AT5G62920 (ARR6), AT1G19050 (ARR7), AT1G74890 (ARR15), AT3G63110 

(IPT3), AT1G73590 (PIN1), AT1G70940 (PIN3), AT2G01420 (PIN4) and 

AT1G23080 (PIN7). 
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SUPPLEMENTAL FIGURES 

Figure S1. GR24 dose response of wild-type and arr1. 

Figure S2. ipt3 has reduced stem auxin transport. 

Figure S3. PIN gene expression in wild-type, arr1 and arr3,4,5,6,7,15 mutants. 

Figure S4. PIN7-GFP is reduced in ipt3 inflorescence stems. 

Figure S5. PIN7-GFP expression in arr1 inflorescence stems over time. 

Figure S6. PIN gene expression is unchanged in inflorescence stems after 4 h BA 

treatment. 

Figure S7. BA promotes accumulation of PIN7:PIN7-GFP on the basal plasma 

membrane of xylem parenchyma cells within 2 h. 

Figure S8. Expression of ARR genes in arr mutants. 
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FIGURE LEGENDS  

 

Figure 1. An ARR1 mutation confers increased shoot branching. A) Rosette 

branches formed 10 days after primary shoot decapitation in plants grown in short 

days for 4 weeks and long days for ~3 weeks, as per Greb et al. (2006) (n = 38-40). 

B) Total branches (rosette and cauline) formed in Col-0 and arr1-4 plants grown in 

long days for ~6 weeks (n = 30-31). C-E) Shoot branching phenotypes of Col-0 and 

arr1-4 plants grown in long days for ~7 weeks. A close-up view of the rosettes in C 

are shown in D (Col-0) and E (arr1-4). Bars indicate S.E.M., statistical comparisons 

shown are between mutant and wild type (Mann-Whitney test, ** = p < 0.01, *** = < 

0.001). 

 

Figure 2. arr1 buds have wild-type responses to auxin and cytokinin but are resistant 

to strigolactone. Wild type (A and C) or arr1 (B and D) isolated nodal segments 

bearing one bud were treated for 8 days with (A and B) mock, 1 µM NAA (apical) 1 

µM BA (basal) or combined 1 µM NAA (apical) and 1 µM BA (basal) (n = 18-20 per 

treatment), or (C and D) 0.5 µM NAA (apical) or combined 0.5 µM NAA (apical) and 

5 µM GR24 (n = 18-20). Bars indicate S.E.M. Statistical comparisons shown were 

made between NAA and NAA + GR24 treated buds at each time point (Student’s t-

test, * = p < 0.05, ** = p < 0.01). 

 

Figure 3. Type-A and type-B arr mutant branching phenotypes are associated with 

altered auxin transport. A) Amount of apically applied 14C-IAA (CPM; counts per 

minute) transported to the basal end of inflorescence stem internodes from ~6 week 

old wild-type, arr1 and arr3,4,5,6,7,15 plants in 6 hours (n = 24-32). Different letters 
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denote significant difference (ANOVA, Tukey-b post-hoc test, p < 0.05). B) NPA dose 

response of wild-type and arr1 plants grown for 6 weeks on different concentrations 

of NPA under sterile conditions (n = 18-42). C) NPA dose response of wild-type and 

arr3,4,5,6,7,15 plants grown for 6 weeks on different concentrations of NPA under 

sterile conditions (n = 13-24). For A-C bars indicate S.E.M. For B and C, letters 

denote significant difference within a genotype (Kruskal-Wallis H test, p < 0.05). 

 

Figure 4. PIN3-GFP and PIN7-GFP accumulation is attenuated in arr3,4,5,6,7,15 

inflorescence stems. Representative accumulation patterns of PIN1-GFP (A and B), 

PIN3-GFP (D and E) and PIN7-GFP (G and H) in basal inflorescence internodes of 

Col-0 (A, D and G) and arr3,4,5,6,7,15 (B, E and H) plants, imaged at ~5-6 weeks of 

age using confocal microscopy. For confocal images, green shows PIN-GFP signal 

and magenta shows chloroplast autofluorescence. Scale bars represent 10 µm (A, B, 

D and E) or 200 µm (G and H). For PIN1:PIN1-GFP and PIN3:PIN3-GFP, plants 

were sectioned longitudinally and the amount of GFP signal on the basal plasma 

membrane was quantified in the xylem parenchyma using at least five cells each 

from eight independent plants (C and F) (n = 40). For PIN7:PIN7-GFP, plants were 

sectioned transversely (~2 mm thickness) and the amount of GFP signal was 

quantified in at least five vascular bundles from five independent plants with 

inflorescence stems stage-matched at 24-26 cm in height (I) (n = 25). Bars indicate 

S.E.M., statistical comparisons shown were made between mutant and wild type 

(Student’s t-test, p < 0.001).  

 

Figure 5. PIN3-GFP and PIN7-GFP accumulation is elevated in arr1 inflorescence 

stems. Representative accumulation patterns of PIN1-GFP (A and B), PIN3-GFP (D 
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and E) and PIN7-GFP (G and H) in basal inflorescence internodes of 4–7-week-old 

Col-0 (A, D and G) and arr1 (B, E and H) plants, sectioned longitudinally and imaged 

using confocal microscopy. Green shows PIN-GFP signal and magenta shows 

chloroplast autofluorescence. Scale bars represent 10 µm. The amount of GFP 

signal on the basal plasma membrane was quantified in the xylem parenchyma 

using at least five cells each from eight independent plants (C, F and I) (n = 40). For 

PIN1:PIN1-GFP and PIN3:PIN3-GFP, plants were analysed at 6-7 weeks of age. For 

PIN7:PIN7-GFP, plants were stage-matched by comparing plants with inflorescence 

stems 18-20 cm in height. Bars indicate S.E.M., statistical comparisons shown were 

made between mutant and wild type (Student’s t-test, * = p < 0.05, ** = p < 0.01). 

 

Figure 6. Cytokinin promotes the accumulation of PIN3-GFP, PIN4-GFP and PIN7-

GFP on the basal plasma membrane of xylem parenchyma cells in inflorescence 

stems. Vertically held basal inflorescence internode segments (~2 cm) from 

PIN1:PIN1-GFP (A-C), PIN3:PIN3-GFP (D-F), PIN4:PIN4-GFP (G-I) and PIN7:PIN7-

GFP (J-L) plants (all Col-0 background), were treated apically with 1 µM NAA and 

basally with either 0.1% DMSO control (“Mock”) or 1 µM BA (“+ BA”). After 4 hours, 

stem segments were sectioned longitudinally at their basal ends and imaged using 

confocal microscopy. The amount of GFP signal on the basal plasma membrane of 

xylem parenchyma cells was quantified in five cells each from at least seven 

independent plants for PIN1:PIN1-GFP (A), ten independent plants for PIN3:PIN3-

GFP (D) and PIN4:PIN4-GFP (G), or eleven independent plants for PIN7:PIN7-GFP 

(J). Bars indicate S.E.M., statistical comparisons shown were made between mock 

and BA treated stems (Student’s t-test, * = p < 0.05, ** = p < 0.01). Representative 

confocal images used for GFP quantifications are shown for mock (B, E, H and K) 
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and BA (C, F, I and L) treated stems. Green shows PIN-GFP signal and magenta 

shows chloroplast autofluorescence. PIN1:PIN1-GFP and PIN3:PIN3-GFP plants 

were analysed at 5-6 weeks of age. PIN4:PIN4-GFP and PIN7:PIN7-GFP plants 

were analysed at 4-5 weeks of age and stage-matched across treatments according 

to inflorescence height. Scale bars represent 10 µm. 

 

Figure 7. Growth on low nitrate (N) conditions reduces PIN-GFP accumulation. 

PIN3:PIN3-GFP (A), PIN4:PIN4-GFP (B) and PIN7:PIN7-GFP (C) plants (all Col-0 

background) were grown on a sand and terragreen mix supplemented with ATS 

medium containing 9.0 mM NO3 (high N) or 1.8 mM NO3 (low N). Basal inflorescence 

internodes were sectioned longitudinally and imaged at 4-6 weeks of age using 

confocal microscopy. PIN7:PIN7-GFP plants were stage matched based on 

inflorescence heights across N treatments. The amount of GFP signal on the basal 

plasma membrane was quantified in the xylem parenchyma using five cells each 

from eight independent plants for (C) (n = 40). Bars indicate S.E.M., statistical 

comparisons shown were made between high and low N treated plants (Student’s t-

test, p < 0.001). 

 

Figure 8. Interactions between arr1 and pin3,4,7 in shoot branching control. A-E) 

Shoot phenotypes of ~6 week old Col-0, arr1, pin3,4,7 and arr1 pin3,4,7 plants 

grown under long days. A close-up view of the rosettes in A are shown in B (Col-0), 

C (arr1), D (pin3,4,7) and E (arr1 pin3,4,7). F) Total number of branches formed at 

terminal flowering on ~9 week old wild-type, arr1, pin3,4,7 and arr1 pin3,4,7 plants 

grown under short days for 4 weeks then long days for 5 weeks (n = 16-47). Bars 

indicate S.E.M. Letters denote significant difference between genotypes (Kruskal-
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Wallis H test, p < 0.05). G) Angle between emergence point of branches on the 

primary inflorescence in wild-type, arr1, pin3,4,7 and arr1 pin3,4,7 plants at ~6 

weeks of age. Two cauline branches were analysed per plant from at least 13 

independent plants (n = 26-46). Bars indicate S.E.M. Letters denote significant 

difference (ANOVA, Tukey-b post-hoc test, p < 0.05).  

 

Figure 9. pin3,4,7 exhibits altered bud activation in response to BA. Bud length of 

wild type (Col-0) (A) and pin3,4,7 (B) isolated nodal segments treated for 8 days with 

mock, 1 µM NAA (apical), 1 µM BA (basal) or combined 1 µM NAA (apical) and 1 µM 

BA (basal) (n = 19-20 per treatment). (C) Close-up of days 0-4 for wild-type and 

pin3,4,7 buds treated with combined apical NAA and basal BA. Bars indicate S.E.M. 

Asterisks denote statistically significant difference between treatments (Student’s t-

test, * = p < 0.05, *** = p < 0.001). 

 

Figure 10. Proposed model for CK signalling in bud outgrowth regulation. Canonical 

CK signalling via the type-B ARR1 results in feedback-mediated down-regulation of 

CK levels as part of signal perception. Members of the type-A ARR family are 

transcriptionally induced by ARR1 and/or other type-B family members, and dampen 

type-B-mediated signalling, including the feedback-mediated down-regulation of CK 

levels. Basal plasma-membrane accumulation of PIN3, PIN4 and PIN7 in xylem 

parenchyma cells in the main stem is enhanced by CK by an unknown mechanism. 

In parallel, expression of other bud regulatory genes such as BRC1 may be targeted 

by the canonical CK signalling pathway. 
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Figure 1. An ARR1 mutation confers increased shoot branching. A) Rosette 

branches formed 10 days after primary shoot decapitation in plants grown in short 

days for 4 weeks and long days for ~3 weeks, as per Greb et al. (2006) (n = 38-40). 



B) Total branches (rosette and cauline) formed in Col-0 and arr1-4 plants grown in 

long days for ~6 weeks (n = 30-31). C-E) Shoot branching phenotypes of Col-0 and 

arr1-4 plants grown in long days for ~7 weeks. A close-up view of the rosettes in C 

are shown in D (Col-0) and E (arr1-4). Bars indicate S.E.M., statistical comparisons 

shown are between mutant and wild-type (Mann-Whitney test, ** = p < 0.01, *** = < 

0.001). 
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Figure 2. arr1 buds have wild-type responses to auxin and cytokinin but are resistant 

to strigolactone. Wild-type (A and C) or arr1 (B and D) isolated nodal segments 

bearing one bud were treated for 8 days with (A and B) mock, 1 µM NAA (apical) 1 

µM BA (basal) or combined 1 µM NAA (apical) and 1 µM BA (basal) (n = 18-20 per 

treatment), or (C and D) 0.5 µM NAA (apical) or combined 0.5 µM NAA (apical) and 

5 µM GR24 (n = 18-20). Bars indicate S.E.M. Statistical comparisons shown were 

made between NAA and NAA + GR24 treated buds at each time point (Student’s t-

test, * = p < 0.05, ** = p < 0.01). 
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Figure 3. Type-A and type-B arr mutant branching phenotypes are associated with 

altered auxin transport. A) Amount of apically applied 14C-IAA (counts per minute) 

transported to the basal end of inflorescence stem internodes from ~6 week old wild-

type, arr1 and arr3,4,5,6,7,15 plants in 6 hours (n = 24-32). Different letters denote 

significant difference (ANOVA, Tukey-b post-hoc test, p < 0.05). B) NPA dose 



response of wild-type and arr1 plants grown for 6 weeks on different concentrations 

of NPA under sterile conditions (n = 18-42). C) NPA dose response of wild-type and 

arr3,4,5,6,7,15 plants grown for 6 weeks on different concentrations of NPA under 

sterile conditions (n = 13-24). For A-C bars indicate S.E.M. For B and C, letters 

denote significant difference within a genotype (Kruskal-Wallis H test, p < 0.05). 
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Figure 4. PIN3:PIN3-GFP and PIN7:PIN7-GFP expression is attenuated in 

arr3,4,5,6,7,15 inflorescence stems. Representative expression patterns of 

PIN1:PIN1-GFP (A and B), PIN3:PIN3-GFP (D and E) and PIN7:PIN7-GFP (G and 

H) in basal inflorescence internodes of Col-0 (A, D and G) and arr3,4,5,6,7,15 (B, E 

and H) plants, imaged at ~5-6 weeks of age using confocal microscopy. For confocal 

images, green shows PIN-GFP signal and magenta shows chloroplast 



autofluorescence. Scale bars represent 10 µm (A, B, D and E) or 200 µm (G and H). 

For PIN1:PIN1-GFP and PIN3:PIN3-GFP, plants were sectioned longitudinally and 

the amount of GFP signal on the basal plasma membrane was quantified in the 

xylem parenchyma using at least five cells each from eight independent plants (C 

and F) (n = 40). For PIN7:PIN7-GFP, plants were sectioned transversely (~2 mm 

thickness) and the amount of GFP signal was quantified in at least five vascular 

bundles from five independent plants with inflorescence stems stage-matched at 24-

26 cm in height (I) (n = 25). The outline of a vascular bundle is shown by a white 

wedge. Bars indicate S.E.M., statistical comparisons shown were made between 

mutant and wild-type (Student’s t-test, p < 0.001).  
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Figure 5. PIN3:PIN3-GFP and PIN7:PIN7-GFP expression is elevated in arr1 

inflorescence stems. Representative expression patterns of PIN1:PIN1-GFP (A and 

B), PIN3:PIN3-GFP (D and E) and PIN7:PIN7-GFP (G and H) in basal inflorescence 

internodes of 4-7 week old Col-0 (A, D and G) and arr1 (B, E and H) plants, 

sectioned longitudinally and imaged between using confocal microscopy. Green 

shows PIN-GFP signal and magenta shows chloroplast autofluorescence. Scale bars 

represent 10 µm. The amount of GFP signal on the basal plasma membrane was 



quantified in the xylem parenchyma using at least five cells each from eight 

independent plants (C, F and I) (n = 40). For PIN1:PIN1-GFP and PIN3:PIN3-GFP, 

plants were analysed at 6-7 weeks of age. For PIN7:PIN7-GFP, plants were stage-

matched by comparing plants with inflorescence stems 18-20 cm in height. Bars 

indicate S.E.M., statistical comparisons shown were made between mutant and wild-

type (Student’s t-test, * = p < 0.05, ** = p < 0.01). 
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Figure 6. Cytokinin promotes the accumulation of PIN3:PIN3-GFP, PIN4:PIN4-GFP 

and PIN7:PIN7-GFP on the basal plasma membrane of xylem parenchyma cells in 



inflorescence stems. Vertically held basal inflorescence internode segments (~2 cm) 

from PIN1:PIN1-GFP (A-C), PIN3:PIN3-GFP (D-F), PIN4:PIN4-GFP (G-I) and 

PIN7:PIN7-GFP (J-L) plants (all Col-0 background), were treated apically with 1 µM 

NAA and basally with either 0.1 % DMSO control (“Mock”) or 1 µM BA (“+ BA”). After 

4 hours, stem segments were sectioned longitudinally at their basal ends and 

imaged using confocal microscopy. The amount of GFP signal on the basal plasma 

membrane of xylem parenchyma cells was quantified in five cells each from at least 

seven independent plants for PIN1:PIN1-GFP (A), ten independent plants for 

PIN3:PIN3-GFP (D) and PIN4:PIN4-GFP (G), or eleven independent plants for 

PIN7:PIN7-GFP (J). Bars indicate S.E.M., statistical comparisons shown were made 

between mock and BA treated stems (Student’s t-test, * = p < 0.05, ** = p < 0.01). 

Representative confocal images used for GFP quantifications are shown for mock 

(B, E, H and K) and BA (C, F, I and L) treated stems. Green shows PIN-GFP signal 

and magenta shows chloroplast autofluorescence. PIN1:PIN1-GFP and 

PIN3:PIN3GFP plants were analysed at 5-6 weeks of age. PIN4:PIN4-GFP and 

PIN7:PIN7-GFP plants were analysed at 4-5 weeks of age and stage-matched 

across treatments according to infloresence height. Scale bars represent 10 µm. 
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Figure 7. Growth on low nitrate (N) conditions reduces PIN-GFP accumulation.!

PIN3:PIN3-GFP (A), PIN4:PIN4-GFP (B) and PIN7:PIN7-GFP (C) plants (all Col-0 

background) were grown on a sand and terragreen mix supplemented with ATS 

medium containing 9.0 mM NO3 (high N) or 1.8 mM NO3 (low N). Basal inflorescence 

internodes were sectioned longitudinally and imaged at 4-6 weeks of age using 

confocal microscopy. PIN7:PIN7-GFP plants were stage matched based on 

inflorescence heights across N treatments. The amount of GFP signal on the basal 



plasma membrane was quantified in the xylem parenchyma using five cells each 

from eight independent plants for (C) (n = 40). Bars indicate S.E.M., statistical 

comparisons shown were made between high and low N treated plants (Student’s t-

test, p < 0.001). 
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Figure 8. Interactions between arr1 and pin3,4,7 in shoot branching control. A-E) 

Shoot phenotypes of ~6 week old Col-0, arr1, pin3,4,7 and arr1 pin3,4,7 plants 

grown under long days. A close-up view of the rosettes in A are shown in B (Col-0), 

C (arr1), D (pin3,4,7) and E (arr1 pin3,4,7). F) Total number of branches formed at 

terminal flowering on ~9 week old wild-type, arr1, pin3,4,7 and arr1 pin3,4,7 plants 

grown under short days for 4 weeks then long days for 5 weeks (n = 16-47). Bars 

indicate S.E.M. Letters denote significant difference between genotypes (Kruskal-

Wallis H test, p < 0.05). G) Angle between emergence point of branches on the 

primary inflorescence in wild-type, arr1, pin3,4,7 and arr1 pin3,4,7 plants at ~6 

weeks of age. Two cauline branches were analysed per plant from at least 13 

independent plants (n = 26-46). Bars indicate S.E.M. Letters denote significant 

difference (ANOVA, Tukey-b post-hoc test, p < 0.05). !
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Figure 9. pin3,4,7 exhibits altered bud activation in response to BA. Bud length of 

wild-type (Col-0) (A) and pin3,4,7 (B) isolated nodal segments treated for 8 days with 

mock, 1 µM NAA (apical), 1 µM BA (basal) or combined 1 µM NAA (apical) and 1 µM 

BA (basal) (n = 19-20 per treatment). (C) Close-up of days 0-4 for wild-type and 

pin3,4,7 buds treated with combined apical NAA and basal BA. Bars indicate S.E.M. 



Asterisks denote statistically significant difference between treatments (Student’s t-

test, * = p < 0.05, *** = p < 0.001). 



 

Figure 10. Proposed model for CK signalling in bud outgrowth regulation. Canonical 

CK signalling via the type-B ARR1 results in feedback down-regulation of CK levels 

as part of signal perception. Members of the type-A ARR family are transcriptionally 

induced by ARR1 and/or other type-B family members, and dampen type-B-

mediated signalling, including the feedback down-regulation of CK levels. Basal 

plasma-membrane accumulation of PIN3, PIN4 and PIN7 in xylem parenchyma cells 

in the main stem is enhanced by CK by an unknown mechanism. In parallel, 

expression of other bud regulatory genes such as BRC1 may be targeted by the 

canonical CK signalling pathway. 
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Figure S1. GR24 dose response of wild-type and arr1. Plants were grown for 6 

weeks on different concentrations of GR24 under sterile conditions (n = 22-37). 

Letters denote significant difference within a genotype (Kruskal-Wallis H test, p < 

0.05). Bars indicate S.E.M. 
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Figure S2. ipt3 has reduced stem auxin transport. Amount of apically applied 14C-

IAA (counts per minute) transported to the basal end of inflorescence stem 

internodes from ~6 week old wild-type and ipt3 plants in 6 hours (n = 31). Asterisks 

denote significant difference (Student’s t-test, p < 0.001). Bars indicate S.E.M. 

  



PIN1 PIN3 PIN4 PIN7

Ex
pr

es
si

on
 re

la
tiv

e 
to

 U
BC

21

-4

-2

0

2

4 Col-0
arr1-4
arr3,4,5,6,7,15 

**

 

Figure S3. PIN gene expression in wild-type, arr1 and arr3,4,5,6,7,15 mutants. 

Expression levels shown are log-transformed and relative to UBC21, calculated from 

three biological replicates of 10-15 stems each. Bars indicate S.E.M.; asterisks 

denote a significant difference of a PIN transcript to wild-type (Student’s t-test, p < 

0.01). 
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Figure S4. PIN7-GFP is reduced in ipt3 inflorescence stems. Representative 

expression patterns of PIN1-GFP (A and B) and PIN7-GFP (D and E) in basal 

cauline internodes of Col-0 (A and D) and ipt3-2 (B and E) plants, imaged at ~5-6 

weeks of age using confocal laser microscopy. Green shows PIN-GFP signal and 

magenta shows chloroplast autofluorescence. Scale bars represent 10 μm (A and B) 

or 200 μm (D and E). For PIN1-GFP plants were sectioned longitudinally and the 

amount of PIN-GFP signal on the basal plasma membrane was quantified in the 

xylem parenchyma from at least five cells from eight independent plants (C) (n = 40). 

For PIN7-GFP, plants were sectioned transversely (~2 mm thickness) and the 

amount of PIN-GFP signal was quantified in at least five vascular bundles from eight 

independent plants with cauline stems stage-matched between 5-10 cm in height (I) 

(n = 40). Bars indicate S.E.M.; asterisks denote significant difference compared to 

wild-type (Student’s t-test, p < 0.001).  
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Figure S5. PIN7-GFP expression in arr1 inflorescence stems over time. Expression 

patterns in ~2 mm transverse sections of basal cauline internodes from Col-0 (A, C 

and E) and arr1 (B, D and F) plants with cauline stem heights of 8-10 cm (A and B), 

18-20 cm (C and D) or 28-30 cm (E and F), imaged using confocal laser microscopy. 

Images shown are representative of at least five independent plants. White 

arrowheads correspond to xylem parenchyma tissue where PIN7-GFP expression is 

quantified. Green shows PIN-GFP signal and magenta shows chloroplast 

autofluorescence. Scale bars represent 200 μm.  
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Figure S6. PIN gene expression is unchanged in inflorescence stems after 4 h BA 

treatment. Expression levels shown are log-transformed relative to UBC21, 

calculated from three biological replicates of 6 or 7 stems each. Bars indicate S.E.M. 

Basal cauline internode segments (~2 cm) from ~6 week old Col-0 plants were 

placed in split ATS-agar medium plates containing 1 μM NAA in the apical half and 

0.1 % DMSO control (“Mock”) or 1 μM BA (“+ BA”) in the basal half. Basal 5 mm 

sections were harvested after 4 h hormone treatment and analysed.  
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Figure S7. BA promotes accumulation of PIN7:PIN7-GFP on the basal plasma 

membrane of xylem parenchyma cells within 2 h. (A) The amount of GFP signal on 

the basal plasma membrane at 2 h was quantified using 3-5 cells each from at least 

12 independent plants, calculated as a percentage of the fluorescence observed at 0 

h (n = 56-59). Bars indicate S.E.M., statistical comparisons shown were made 

between mock and BA treated stems (Student’s t-test, ** = p < 0.01). BA treatments 

were performed using basal cauline internode segments from ~4 week old 

PIN7:PIN7-GFP (Col-0) plants, sectioned longitudinally, treated with mock (1 μM 

NAA and 0.1 % DMSO control) or BA (1 μM NAA and 1 μM BA) ATS solution. 

Identical cells were imaged at 0 h (B and D) and 2 h (C and E) using confocal laser 

microscopy. Representative images used for GFP quantifications are shown for 

mock (B and C) and BA (D and E) treated stems. Green shows PIN-GFP signal and 

magenta shows chloroplast autofluorescence. Plants were stage-matched across 

treatments according to inflorescence height. Scale bars represent 10 μm. 
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Figure S8. Expression of ARR genes in arr mutants. Expression levels shown are 

log-transformed and relative to UBC21, calculated from three biological replicates of 

10-15 stems each, using UBC21 as a reference gene. The transcript assayed within 

the arr mutant background is shown in uppercase above or in lowercase below the 

lines on the x-axis label, respectively. Bars indicate S.E.M.; asterisks denote 

significant difference to wild-type (Student’s t-test, * = p < 0.05, ** = p < 0.01). 

 

 

  

 

  

 


