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Abstract  

During mammalian embryonic development, a single fertilized egg cell will proliferate and differentiate into all 
the cell lineages and cell types that eventually form the adult organism. Cell lineage diversification involves 
repeated cell fate choices that ultimately occur at the level of the individual cell rather than at the cell-
population level. Recent improvements in single-cell technologies are beginning to transform our 
understanding of mammalian development, not only by overcoming the limitations presented by the 
extremely low cell numbers of early embryos, but also by enabling the study of cell-fate specification in 
greater detail. In this Review, we first discuss recent advances in single-cell transcriptomics and imaging, 
and provide a brief outline of current bioinformatics methods available to analyze the resulting data. We 
then discuss how these techniques have contributed to our understanding of pre-implantation and early 
post-implantation development, and of in vitro pluripotency. Finally, we overview the current challenges 
facing single-cell research and highlight the latest advances and potential future avenues. 

 

 

Introduction 

During the early stages of mammalian embryonic development, the fertilized egg will give rise to all the cell 
types that form the adult organism through sequential rounds of proliferation and differentiation. The 
robustness of this process indicates that development is governed by a set of principles that guide each 
cell to commit to becoming a particular cell type. But what are these principles? How do cells consistently 
activate certain molecular programs and not others? There has been extensive research trying to decipher 
these principles by assessing how genes regulate each other. Conventional experimental approaches, 
however, required large homogeneous cell populations and were therefore not applicable to the early 
mammalian embryo, which is composed of very few cells that become increasingly heterogeneous as the 
embryo develops. 

 

With the advent of high-throughput single-cell sequencing and single-molecule imaging technologies, it is 
now possible to generate single-cell molecular profiles at a large scale, and to quantify single-cell gene 
expression more accurately in defined multicellular tissues. Since cell fate decisions are ultimately made 
by individual cells responding to external stimuli, these new transcriptional technologies are now making a 
great impact on our understanding of early embryonic development. In this Review, we summarize the recent 
advances in single-cell transcriptional technologies with a particular focus on single-cell transcriptomics and 
imaging, and provide a brief outline of the current bioinformatics methods to analyze the resulting data. We 
then focus on how these techniques have contributed to our understanding of in vivo pre-implantation and 
early post-implantation mouse development, and of in vitro pluripotency. Finally, we overview the current 
challenges of using these technologies and highlight some future avenues for the field. 

 

S i ngl e -cell technologies  

One of the most important discoveries in the single-cell field was the finding that single cells from organs or 
cell types that were previously considered to be homogeneous are often functionally and molecularly 
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heterogeneous. This initially became evident using flow cytometry, which is one of the first high-throughput 
single-cell analysis approaches that now permits the assessment of up to 40 cell-surface marker expression 

profiles in individual cells when combined with elemental mass spectrometry (reviewed in 1). The 
establishment of fluorescence-activated cell sorting has also enabled sorting individual cells, or molecularly 

defined cell populations, into single wells to evaluate them separately2. As outlined below, more recent 
technologies now permit the simultaneous measurement of many parameters of individual cells, which has 
contributed to the discovery of novel regulators of cell differentiation and developmental processes. 

 

 

Si n g l e -c ell transcriptomics.  

Single-cell transcriptional analyses were pioneered with the amplification of polyadenylated RNA from 

individual hematopoietic cells to measure relative abundances between transcripts3. However, this was a 

qualitative approach and it was not until the development of quantitative real-time PCR (qPCR)4,5 that single-
cell qPCR (sc-qPCR) became feasible. Since then, significant progress in automation and the development of 
microfluidics systems has allowed measuring the expression of several genes in several single cells in one 

run6. This targeted analysis of known genes has been instrumental in characterizing molecular programs of 
multilineage cell progenitors, which seem to co-express genes characteristic of the different mature cell 

types they will give rise to7,8. It also essential for the study specific signaling pathways or transcription factor 
networks in developmental cell populations, ranging from the zygote to the differentiation of particular cell 

lineages, such as blood or endothelial cells6,9,10. However, to identify novel factors and signaling pathways 
at play during embryonic development, genome-wide, transcriptomics approaches are required. 

Transcriptomics technologies began with the development of single-cell microarrays to study gene expression 

in the mouse blastocyst 11. Using this strategy, embryonic single cells were molecularly classified into two 
groups, epiblast and primitive endoderm , which are two lineages known to segregate at the blastocyst 

stage11 (BOX 1). Although microarrays could already distinguish between cells of different lineages, they are 
restricted to analyzing characterized transcripts, from which the probes used to measure transcript 
abundances are derived. 

The need for a more comprehensive tool led to the development of the first single-cell RNA-seq (scRNA-

seq) protocol in 200912. This method was able to detect a considerably higher number of genes in 
blastocysts compared to single-cell microarrays and, therefore, a more thorough transcriptional 

characterization of this developmental stage could be achieved12. Since then, several optimized protocols 
have been developed, including Smart-Seq2 and cell expression by linear amplification and sequencing 2 

(CEL-seq2)13–16 (BOX 2). These improved methods achieve a higher transcript coverage compared to early 
scRNA-seq protocols and are considered the gold standards in the field. However, they still require the 
isolation of individual cells into single wells, and are thus designated ‘well-based’ methods. Such methods 
utilize strategies such as fluorescence-activated cell sorting or microdissection, which restrict cell throughput. 

To transcriptionally characterize whole organs or embryonic stages at the single-cell level in a genome-wide 

manner, ‘droplet-based’ microfluidics protocols are a suitable alternative17,18 (BOX 2). These allow processing 
thousands of cells in one experiment, thus contributing to the discovery of rare subpopulations within the 
sample or to the characterization of its molecular diversity. This methodology has recently been used to 

transcriptionally characterize several biological systems, such as adult retinal cell populations18, mouse 

embryonic stem cells (mESCs)17 and the entire mouse embryo at day 8.25 of development (E8.25)19. 
However, droplet-based techniques also have some limitations, such as the higher risk of generating data 
from cell doublets, a transcript coverage bias towards 3’ ends and being less sensitive than well-based 
methods due to capturing fewer unique transcripts. Therefore, well-based methods remain a good choice for 
answering specific questions that require a better transcriptome coverage and/or a relatively low cell number. 

Whether using a well-based or a droplet-based method, single-cell transcriptomics protocols require a pre-
amplification step to obtain enough material for the downstream detection method, and, therefore, the raw 
data obtained in these methods reflect the relative abundances of the amplified cDNAs instead of the 
original amounts of RNAs in the sample. Since PCR amplification occurs in a non-linear fashion, quantitative 
biases could be easily introduced in the resulting gene counts. Therefore, optimizing the number of PCR 
cycles in order to keep every reaction within the exponential phase by performing a preliminary set of tests, 
can help reducing the risk of bias. Alternatively, a more precise method to quantify RNA reliably is the 

addition of molecular labels called unique molecular identifiers before amplifying the biological material20. By 
tagging each transcript individually, the absolute numbers of RNA molecules in each cell can be estimated, 



 

thus minimizing amplification noise. 

Due to the small amount of starting material, scRNA-seq data is prone to contain technical noise, which 

negatively correlates with transcript abundance21. Moreover, batch effects can confound both data analysis 
and display. These could be caused by several experimental conditions, ranging from using different reagent 
batches to performing the experiment on different days. To counteract these problems, normalization 

strategies and ways to bioinformatically infer the highly variable genes have been developed21–25. Once the 
raw sequencing counts are processed, current single-cell transcriptomics studies use dimensionality-
reduction approaches such as principal component analysis, t-distributed stochastic neighbour embedding 

(t-SNE)26 and diffusion maps27,28 to visualize the data (FIG. 1A). In contrast to principal component analysis, 
t-SNE and diffusion maps are able to capture the non-linear nature of biological processes; t-SNE is 
particularly useful for identifying the main transcriptionally-defined cell groups that exist within the dataset. 
For instance, this strategy has been applied to resolve the biological structure of a scRNA-seq dataset 
composed of cells collected during gastrulation (BOX 1). This revealed the existence of ten distinct cell 
groups, which included populations of epiblast cells, mesoderm cells, blood and endothelial progenitor cells 

and differentiated cells29. Importantly, the distances between the different groups visualized in t-SNE plots 
should not be considered a biological representation of relatedness. Coupled with cell clustering strategies, 
which help reveal the prevalent gene expression profiles within the dataset, t-SNE has allowed the 
transcriptional characterization of embryonic cell populations from single cells ranging between the early 
pre-implantation stages, gastrulation and organogenesis, as well as the transcriptional characterization of 
developing tissues, such as the heart and the blood10,19,29–32. 

Diffusion maps aim to display the data on a continuous manifold, where nearby cells have higher 
transcriptional similarities, and therefore are commonly used to visualize biological processes such as cell 

differentiation. Diffusion maps are often coupled with pseudotime algorithms, such as Diffusion Pseudotime9, 

Wishbone33, Monocle34 and Monocle225 (FIG. 1B). These analyses are used to infer a sequential progression 
by computationally ordering the cells along a coordinate that reflects the developmental path and, therefore, 
allow the study of gene expression dynamics along this trajectory. This has been applied to visualize the 

differentiation of many cell lineages, including those of blood cells10,28, lymphoid cells33,35 and mESCs9, and 
helped to discover novel regulators of these processes. Importantly, pseudotime analyses assume that these 
biological processes are continuous, and thus position cells that share a similar transcriptional profile close 
in the developmental path. Consequently, they may not be accurate if the biological system behaves in an 
oscillatory manner or undergoes fast state transitions, thereby necessitating experimental validation. In such 
cases, previous knowledge of, for instance, specific genes known to have gradient expression along the 
trajectory of the studied process, can help infer the developmental progression from snapshot data. This 
approach has recently been applied to predict genes with wave-like expression during mouse 

somitogenesis from cells at E8.25, and was subsequently validated using microdissection19. 

 

High -throughput single - molecule i magin g 

A major limitation of single-cell transcriptomics is the lack of spatial and temporal resolution. Many studies 
have therefore used imaging technologies to understand how gene expression occurs and is orchestrated in 
single cells across a given tissue. Although imaging has generally been restricted by the number of transcripts 
one can assess due to the limited range of discernible dyes, it is now possible to spatially resolve the 

expression of about 103 genes simultaneously in single cells using single-molecule RNA fluorescent in situ 

hybridization (sm-FISH)36–38. This is feasible due to a combination of different sequence-specific probes that 
target each transcript multiple times, thus generating a unique transcript barcode, which can be resolved with 

microscopy (FIG. 1C). sm-FISH has been applied in mESCs to describe their molecular heterogeneity39. This 
technique has also been used together with a CRISPR–Cas9 tool to establish a system called MEMOIR 

that records lineage information in single mESCs40. Importantly, sm-FISH is a targeted approach, which 
requires costly pre-designed probes to study all the genes of interest. Moreover, the technique currently 
requires bespoke imaging equipment and software, which, at least in the near future, will limit its use. 
Recently, a more indiscriminate strategy called fluorescent in situ sequencing (FISSEQ) has been 

established41, which enables unsupervised sequencing of single-cell transcripts in situ. However, its current 
detection limit of about 200 transcripts per cell and its high cost are considerable drawbacks. 

The aforementioned methods provide temporal snapshots. Therefore, to validate the dynamics of a particular 
process, it is important to resort to live imaging techniques, which can track gene expression changes over 
time. In the past few years, major improvements enabled the detection of single molecules in living cells. For 
example, RNA can be labeled using the MS2 and PP7 systems, which consist of RNA hairpin sequences 



 

fused in tandem to the transcript of interest, and which are bound by a fluorescent protein with high 

specificity42,43. However, in practice, most live imaging studies to date have used fluorescent reporters to 
track the changes in protein levels instead of transcript levels. This has produced controversial results 
regarding cell fate specification. For instance, gene regulation inferences from single-cell transcriptional 
studies in mice have suggested that during hematopoietic differentiation, the transcription factors Gata1 and 
Pu.1 are the master regulators of cell-fate choice between the erythroid and myeloid lineages, respectively, 

by cross-repressing each other44. Recently, this model has been challenged by data obtained from tracking 
Gata1 and Pu.1 proteins using live imaging methods, which showed that Gata1 protein levels are 

independent of lineage specification45. This is a paradigmatic example of the importance of using 
complementary-analysis approaches to validate the models inferred by single-cell transcriptomics studies. 

 

Heterogeneity in cell fate decisions 

One of the most fascinating and still unanswered questions in developmental research is how single cells 
consistently commit to particular lineages. Are the lineages molecularly primed at an early stage, where 
the cells are functionally indistinguishable by current methods, or do they become restricted just prior to 
their functional segregation? Single-cell transcriptional profiling addressed this question in the context of the 
first three lineage-branching points of embryonic development: (1) from a totipotent cell to the inner cell 
mass (ICM) and trophectoderm; (2) from the ICM to the epiblast and the primitive endoderm; and (3) from 
the epiblast to the ectoderm, mesoderm and endoderm. In this section, we will discuss recent findings 
achieved using single-cell experiments to understand these cell-fate decisions. 

 

From totipotency to the inner cell mass and trophectoderm 

The first lineage segregation in the mouse embryo will lead to the generation of the so-called ICM and the 
trophectoderm (BOX 1). This distinction becomes morphologically and molecularly apparent at the blastocyst 
stage, where cells are divided into round-shaped ICM cells expressing epiblast and primitive endoderm 
markers such as the transcription factors Nanog, Oct4 (also known as Pou5f1) and Gata6, and to relatively 
flat outer trophectoderm cells with high levels of the trophectoderm marker caudal-type homeobox protein 2 

(Cdx2)46–51. Although these lineages have been widely characterized, how this segregation occurs remains 
controversial. 

In the past few years, some studies have reported transcriptional heterogeneity between very early 

blastomeres of many factors that eventually confer the ICM or trophectoderm identities52,53. How this early 
heterogeneity affects cell fate decisions is currently under debate with two contrasting hypotheses. The 
equivalence hypothesis argues that individual cells are not pre-patterned until the 8-cell stage, when the 
embryo undergoes a series of symmetric and asymmetric divisions that would drive the internalization of the 

cells that will become part of the ICM52,54–56,57–60. Under this hypothesis, the heterogeneity seen in early 
stages is explained as random fluctuations of gene expression. By contrast, the asymmetric hypothesis 
proposes that partitioning inequities occur during cell divisions, which lead to cellular components being 

unevenly distributed in the daughter cells61–65. This asymmetry becomes amplified through consecutive 
divisions and eventually leads to lineage segregation. This hypothesis not only implies that cells would start 
showing some preferences towards particular lineages before the 8-cell stage, but that this asymmetry would 
be fairly reproducible between cells when comparing different embryos. 

Imaging experiments assessing the behavior of some ICM and trophectoderm markers, such as Nanog, 
Oct4 and Cdx2, have shown that these are expressed in a random and uncorrelated manner before lineage 

segregation is apparent at the 16-cell stage52. Although this would support the equivalence hypothesis, these 
factors could alternatively be essential only once the lineages are established, and some other genes could 
be responsible for an early cell pre-patterning. To address whether other molecular candidates exist before 
the 16-cell stage, genome-wide transcriptome analyses are key. Recently, several groups have applied 
scRNA-seq on cells collected during these stages and have shown that some genes are already expressed in 
a bimodal manner early on, and their transcription is positively or negatively inter-correlated, which is 

unlikely to be compatible with random fluctuations66,67. 

Gene expression heterogeneity between cells seems to start at the 2-cell stage and increases over time, 

with significant differences at the 2-to-4 and 4-to-8 cell transitions53,66,67 (FIG. 2A). Particularly, the transitions 
where the highest changes in gene expression were observed correspond to the stages where the 

maternal-to-zygotic transition occurs6866. Since this process consists of the degradation of maternal 



 

transcripts and transcription activation of the zygotic genome, it is expected to generate a bimodal 
distribution of the levels of the transcripts involved. Although the timing of events and some expression 

profiles differ from mice69–71, similar findings were made in the human setting, where single-cell transcriptomic 
studies have also shown that the greatest gene expression changes take place during the maternal-to-

zygotic transition70–72, supporting the hypothesis that molecular segregation occurs shortly after fertilization. 
However, these results do not prove that this transcriptional segregation directly determines cell fates. Of 
note, recent evidence suggests that the molecular variability seen during earlier stages may bias cells towards 
undergoing either asymmetric or symmetric divisions during the 8-to-16 and 16-to-32 cell stages, which, in 
turn, would influence cell fate. The transcription factor SRY-box 21 (Sox21) was reported as 
heterogeneously expressed at the 4-cell stage. When knocked down in one of the blastocysts at the 2-cell 
stage, reduction of Sox21 reduced the cell's probability to undergo asymmetric divisions, and enhanced the 

contribution towards the trophectoderm53 (FIG. 2A). These results support a model where early transcriptional 
heterogeneity of some genes influences the type of cell division and fate from very early stages. However, 
the evidence provided for these conclusions was indirect, with no direct demonstration that a consistent 
inter-blastomere segregation of Sox21 mRNA and protein content continues to exist after the 4-cell stage, 
and that this in turn correlates with lineage segregation at the 8-to-16 cell stage. 

Regarding the question of how asymmetric divisions would then influence cell fate, recent studies have 
related the fate of daughter cells to different timings of cell division, as well as to their exposure to different 
physical conditions, which then regulate the internalization of the cells that will subsequently become 

ICM58,58,60,73. Such physical conditions include differences in membrane tension, inheritance of the apical 

pole, and contractility of the ICM (reviewed in 74,75). 

 

Specification of the inner cell mass to epiblast or primitive endoderm 

This first decision, of specification into ICM or trophectoderm, is partly coupled with the second fate choice, 
where the inner cells will become either epiblast or primitive endoderm. It was first thought that cells 
become segregated to either lineage depending on their localization within the ICM. However, in 2006, it 
was demonstrated that cells first become molecularly specified in a ‘salt-and-pepper’ manner within the ICM 
and later organize themselves to achieve their final configuration: inner epiblast cells surrounded by primitive 

endoderm76. But how is this achieved? How do ICM cells choose between an epiblast and a primitive 
endoderm identity? 

Once at the morula stage (8 cells in the mouse), cells that will form the ICM become internalized during the 

following two rounds of asymmetric divisions: from 8-to-16 cells and from 16-to-32 cells 57–60. Some 
evidence suggests that the round of division where the ICM cells become internalized influences their epiblast 

vs. primitive endoderm fate77,78 (FIG. 2B). More specifically, cells that internalize during the first round of 
asymmetric divisions tend to become epiblast whereas a later internalization leads to a higher probability of 

becoming primitive endoderm. However, whether this is the case has been debated79 and an alternative 
mechanism, consisting of a random specification towards epiblast or primitive endoderm has been proposed 
(FIG. 2B). Whichever mechanisms may be at play (see below), single-cell transcriptional studies using sc-
qPCR and single-cell microarrays have shown that during early stages, ICM cells are highly heterogeneous 
and co-express different epiblast and primitive endoderm markers, which eventually adopt a mutually 

exclusive pattern6,80,81. 

The functions of the transcription factors Nanog and Gata6 and of fibroblast growth factor (FGF) signaling 

are key to ICM segregation6,76,78–80,82–84 (FIG. 2C). Single-cell imaging analyses have shown that Nanog and 
Gata6 become heterogeneously expressed at the 8-to-16 cell stage, with some cells expressing both. Slightly 
later, these factors are expressed in a mutually exclusive manner, which marks the initiation of lineage 

segregation76,82. To induce epiblast formation, Nanog activity is required to suppress Gata6 expression82. 
However, the sole expression of Gata6 in Nanog-negative cells is not sufficient to impose the primitive 

endoderm identity and FGF signaling is also required82. At the 16-to-32 cell stage (E3.25), Fgf4 becomes 
expressed and secreted by a cell subpopulation that already expresses Nanog, and is key for the paracrine 
induction of the primitive endoderm factors Gata4 and Sox17 in Gata6-expressing cells, thus committing the 

cells to a primitive endoderm identity82. Notably, rarely a few primitive endoderm-biased cells appear to turn 
into epiblast cells by re-activating Nanog expression during the initial phases of lineage segregation, 
indicating that fate change is still possible. However, once the epiblast and primitive endoderm fates have 

been established following FGF signaling, fate switch is absent81. Infrequent cell fate switching has also been 
reported in vitro in ESCs. 



 

Single-cell transcriptome analyses have shown a strong negative correlation between Fgf4 and Fgfr2 
expression, suggesting that the direct interaction between Fgf4 and Fgfr2 expressed in different cells could 

be important for the ICM cell fate decision6,78,80,82. However, whereas mutations in Fgf4 completely disrupt 

primitive endoderm formation, mutations in Fgfr2 are not sufficient to abolish this lineage83,84. During these 
early stages of development, Fgfr1 is also broadly expressed in the ICM, suggesting it has a role in ICM 

segregation80. This hypothesis, which originated from single-cell transcriptional studies, was recently 

confirmed by two single-cell imaging studies that showed Fgfr1 is required for ICM specification83,84. Thus, 
the repression of Gata6 by Nanog initiates ICM lineage segregation, and this is subsequently coupled with 
Fgf4 activity, which completes the epiblast and primitive endoderm specification through its direct interactions 
with the receptors Fgfr1 and Fgfr2 (FIG. 2C). 

 

Post-implantation epiblast cells: committing to mesendodermal fates 

Once the epiblast and primitive endoderm lineages have segregated, and after the embryo implants into the 

uterus and undergoes a series of morphological changes (see 85,86 for a review), gastrulation begins (BOX 
1). During this process, the three germ layers – ectoderm, mesoderm and endoderm – are formed. While 
mesodermal and endodermal cells arise from epiblast cells egressing through the primitive streak, the 

remaining epiblast cells will become the ectoderm87. A series of transplantation assays performed in the 
1990s showed that epiblast cells do not appear to be committed to a specific lineage during this stage; 
rather, they seem to remain pluripotent and to adopt a particular fate depending on when and where they 

egress through the primitive streak88. However, fate-mapping studies have shown that cells residing in 

particular regions within the epiblast have a preference to contribute to a specific tissue87. This would 
suggest that cells are already biased in the epiblast but, as morphogenetic movements are highly organized 
at this stage, the starting position rather than any specific transcriptome differences could be the 
determining factor of epiblast contribution to later-forming tissues. 

Post-implantation epiblast cells were recently profiled using single-cell transcriptomics to determine whether 

they exhibit any priming towards a particular lineage29,89. These studies have shown that post-implantation 
epiblast cells are molecularly heterogeneous, but they do not appear to express markers indicative of early 
segregation to mature lineages. Interestingly however, both studies observed some cells that co-expressed 
transcription factors known as mesoderm and endoderm markers, such as the T gene (encoding the 
Brachyury protein) and hepatocyte nuclear factor 3β (also known as Foxa2), indicative of a mesendodermal 

progenitor identity90,91. This subpopulation seems to appear as early as E5.589, when the primitive streak is 
not morphologically visible, suggesting that this could be one of the earliest populations committing towards a 
mesendodermal fate. Moreover, this also suggests that molecular changes precede morphological changes 
during gastrulation, although spatial information would be needed to confirm this (FIG. 2D). 

Since the E6.5 post-implantation epiblast population appeared to contain the transition from pluripotent 
epiblast to mesoderm and definitive endoderm, cells were examined for genes whose expression positively 

or negatively correlated with the expression levels of T29. Although some of the resulting differentially 
expressed genes have been already reported in the literature, such as the transcription factor Mixl1, these 
analyses also revealed some potentially novel factors, like solute carrier family 35 member D3, which may 
have an important role in the generation of mesoderm from epiblast cells. Their further characterization 
could therefore provide insights into the regulation of epiblast commitment towards mesendoderm. 

 

 

Gastrulation 

During gastrulation, as the cells egress through the primitive streak, both the timing and anterior–posterior 

location along the primitive streak have been shown to influence their lineage fate85,88. The molecular 
mechanisms establishing this diverse range of progenitors along the streak and the transcription factors 
regulating mesendodermal cell differentiation towards mature cell types are still obscure, but single-cell 
transcriptional analyses have contributed to their characterization. 

 

Heterogeneity within the mesodermal population 

To investigate the maturation of a specific lineage from the mesoderm, it is crucial to have a good 



 

understanding of the molecular properties of that particular mesodermal progenitor so that we can identify it. 
Nevertheless, assigning a unique combination of markers to define specific progenitor populations has been 
difficult and most currently used markers are expressed in several lineages. Functional analyses of progenitor 
populations defined by ambiguous markers contributed to the attribution of multipotency to mesodermal cells, 
but a single-cell assessment has revealed that this may not always be the case. For instance, mesodermal 
cells expressing the kinase vascular endothelial growth factor receptor 2 (also known as Flk1) can give rise 

to blood, endothelial and smooth muscle cells92–94; however, these cells are highly heterogeneous at the 

molecular level29 (FIG. 3A). Another case is the transcription factor ETS translocation variant 2 (Etv2), which 

is required for endothelial, endocardial and blood development95,96. Using scRNA- seq, Etv2-expressing cells 
were shown to be broadly transcriptionally divided into mesodermal, blood, endocardial and endothelial 
subpopulations, suggesting that, in addition to immature multipotent mesodermal progenitors, unipotent 

progenitors may also exist97. 

The reliance on markers could also be misleading. For instance, during heart development, cardiac cells 
form two different structures: the first heart field and the second heart field. Both populations appear to arise 
from mesoderm posterior protein 1 (Mesp1)-expressing mesodermal progenitors, but whether a common 
progenitor or different cardiac progenitors exist that give rise to both fields could not be assessed with 

population assays98. When performing lineage tracing of single clones, each mesodermal clone contributed to 
either the first heart field or the second heart field, showing that two distinct Mesp1- expressing mesodermal 

progenitor populations exist99,100. Moreover, sc-qPCR revealed that these populations have different molecular 

characteristics100, suggesting that transcriptional characterization of progenitor populations at the single-cell 
level will contribute to resolving their heterogeneous differentiation potential. 

 

From mesodermal progenitors to differentiated cell types 

Following gastrulation, cells are thought to receive cues that promote changes in gene expression to drive 
specification towards a particular lineage. To help discover potential regulators of these processes, 
computational methods were recently applied to gene expression data obtained from individual cells to study 

the origins of blood cells10,19,29. During embryonic development, mesodermal progenitors give rise to blood 
through multiple waves, the first two occurring in the yolk sac (FIG. 3B). To investigate the first wave of 
blood differentiation from mesoderm, single cells positive for Flk1 or CD41, proteins that are expressed 
during blood development, were profiled using scRNA-seq and, applying pseudotime inferences, a 

differentiation trajectory was proposed29. Notably, the reconstructed trajectory identified some ChIP-seq-
verified target genes of the blood-differentiation regulator Gata1, such as Nuclear factor, erythroid derived 2 

(Nfe2), as being upregulated after the onset Gata1 expression, thereby validating the trajectory29. 

To discover novel factors involved in the emergence of definitive blood within the yolk sac, a Boolean 
algorithm was applied on sc-qPCR data from cells ranging from uncommitted mesoderm to the appearance 

of definitive blood in the yolk sac, leading to a model of the underlying gene regulatory network10. The 
produced model predicted the previously unrecognized regulation of Erg by the Hox and Sox transcription 
factors, which was then experimentally validated. Moreover, it provided a platform for performing in silico 
perturbations, which predicted the requirement of Sox7 downregulation for blood emergence in the yolk 
sac during development. This novel finding was also functionally validated using transgenic mouse embryos 
with enforced Sox7 expression, showing a marked defect in blood maturation. Further characterization of the 
emergence of definitive blood using single-cell transcriptomics has recently guided the discovery of the 

leukotriene pathway as a previously unrecognized regulator of yolk sac definitive hematopoiesis19. Together, 
these studies demonstrated how single-cell transcriptional measurements not only provide a snapshot of the 
molecular profiles underlying blood emergence, but also enable the prediction of the molecular mechanisms 
and gene regulatory networks controlling these developmental processes. 

 

 

Pluripotency in vitro: stem cells 

Although in vivo pre-implantation studies have provided insights into how cells become segregated into the 
epiblast and the primitive endoderm lineages, the transient nature of pluripotent ICM cells limit their use for 
investigating the molecular process behind the maintenance of, the entry to and the exit from pluripotency. 
Understanding this process requires a cell system that is easy to manipulate, able to both self-renew and 
differentiate, and also that gives the flexibility to follow gene expression dynamics throughout the transition 



 

between states. 

 

Defining subpopulations within mouse embryonic stem cells 

Mouse ESCs have been one of the most popular tools used to understand pluripotency. mESCs were 

obtained from the ICM in 1981 and were first grown in culture on a feeder cell layer101. Advancements in 
the understanding of their needs led to the two most popular feeder-free culturing strategies, namely 
culturing in fetal bovine serum and leukemia inhibitory factor (serum–LIF), or in 2i, which is a serum-free 

medium supplemented with the GSK3β and Mek inhibitors (see 102 for a review). DNA methylation profiling 
as well as single-cell transcriptional studies have shown that mESCs can be divided into at least two 
major subpopulations: naïve pluripotent cells expressing pluripotency factors, and epiblast-primed cells, 

which express higher levels of keratins and actins24,39,103. Whereas mESCs cultured in serum–LIF are highly 

heterogeneous, 2i conditions tend to restrict them to a naïve state39,103,104. 

Nanog is a pluripotency factor that has been widely used to characterize pluripotent states in culture, with 
high Nanog expression being characteristic of the naïve state. Transitions between the Nanog-high and 
Nanog-low populations have been reported though these are infrequent, which makes the study of the 

mechanisms behind the entry to and the exit from pluripotency difficult39,105–107. As seen in vivo, Nanog 
expression levels also appear to be heterogeneous within cell populations grown over time in serum–LIF 
media, which suggests that cell-state change from the naïve to the primed state or vice versa could occur 
when reaching the lower or upper levels of Nanog expression, respectively. Importantly, this heterogeneity 
does not seem to be completely random and a mechanism for cell-state maintenance or switch may exist 

(FIG. 4A). Nanog expression appears to correlate with the cell cycle39,105,106: following cell division, as cells 
progress through the cell cycle, Nanog levels gradually rise until the next cell division, where its levels 
abruptly drop. Transcription noise leading to a higher transcription rate and an extended cell cycle are two 
non-exclusive hypotheses for increasing Nanog expression to levels that would maintain pluripotency or 
promote cell-state switch from the primed to the pluripotent state, as both would cause Nanog to gradually 

accumulate in the cell during consecutive cell cycles39 (FIG. 4A). Consistent with this hypothesis, mESCs 
grown in 2i conditions and mostly composed of cells in the naïve state, have higher transcription rate and a 

longer cell cycle24,39, which would favor the Nanog-high pluripotent state39,106.  

Recently, single-cell imaging has also allowed the discovery of a rare cell subpopulation within cultured 

mESCs, presenting some molecular features resembling the embryonic 2-cell (2C) stage108. This 2C-like 
population expresses Gag and mouse endogenous retrovirus-L (MERVL), which are two retroviral genes that 

are transiently expressed in vivo during the 2-cell stage108, as well as zinc finger and SCAN domain 

containing protein 4C (Zscan4), which is important for genome stability109. Initial single-cell transcriptome 

profiling clustered the 2C-like cells with cells from the blastocyst stage instead of with the 2-cell stage24. 
However, a recent single-cell transcriptome re-evaluation has demonstrated that the genes upregulated in 
the MERVL- and Zscan4-expressing cells are those activated during the MZT, which occurs around the 2–

4 cell stage68,110. Consistent with being a distinct cell type and in contrast to ESCs or epiblast cells, 2C-like 
cells present an open chromatin profile and their DNA is hypomethylated, thereby resembling the in vivo 2-

cell stage110. Further supporting their 2-cell identity, 2C-like cells appear to be totipotent, as they are able to 

colonize both embryonic and extra-embryonic tissues upon injection into mouse blastocysts108. 

 

Induced pluripotent stem cells: reprogramming towards the pluripotent state 

The discovery of induced pluripotency by Shinya Yamanaka and colleagues, who reported that the mESC 
properties of pluripotency and self-renewal can be imparted into mature somatic cells upon over- expression 
of four transcription factors — Oct4, Sox2, Krüppel-like factor 4 (Klf4) and Myc (OSKM) — has reshaped 

our understanding of pluripotency regulation111,112. Induced pluripotent stem cells (iPSCs) not only represent 
a promising technology for regenerative medicine, but they also constitute a formidable tool to unravel how 
pluripotency and differentiated lineages are established. Since the seminal reports using retroviral-mediated 

overexpression of the OSKM factors for iPSC generation111, considerable effort has been invested towards 
improving the initially inefficient rates of cell reprogramming. For example, FACS and mass spectrometry 
were used to characterize and purify cell-surface marker-defined populations at intermediate stages of 

reprogramming113,114, but the current proportion of iPSCs produced is still low. 

Single-cell qPCR of human and mouse cells has shown that during the early stages of reprogramming, 
there is an increase in transcriptional heterogeneity within the culture, followed by a gradual decline over 



 

time115,116. This initial variation could be attributed to differences in the expression levels of different OSKM 
factors, as individual cells appear to overexpress the four retroviral constructs at different stoichiometries 

during the early stages of reporgramming117. When evaluating gene expression distributions, dynamically 
expressed genes tend to start with a bimodal profile at the population level, and to later switch to a unimodal 

distribution 116,118,119. A similar scenario is also seen during the early stages of mESC differentiation17, which 
may suggest that, following external cues, cells start modifying their expression profiles at different rates. 
This initial heterogeneity has formally been described as a stochastic process, governed by an ordered set of 

probabilistic events that regulate the expression of each gene independently115,116. Supporting this model, 
single-cell live imaging and mass cytometry studies have also shown that, upon OSKM expression, cells 
start dividing at different rates: cells that quickly proliferate and reduce their cellular area are more likely to 

become iPSCs120, whereas those that with a lower proliferative profile tend to revert to the original 

differentiated state117 (FIG. 4B). This indicates that the speed ofproliferation is a limiting step during the early 
stages of reprogramming and, therefore, controlling it more precisely may lead to a higher rate of iPSC 
production. 

When studying early stages of reprogramming in more detail, single-cell transcriptomic analysis has shown 
that changes in the expression of chromatin remodellers are one of the key molecular processes that 

distinguish cells that will undergo successful reprogramming from those that will fail116 (FIG. 4B) This is 
consistent with previous population studies, where the importance of chromatin remodeling during the first 

stages of reprogramming had been highlighted (reviewed in 121). Once cells become partially reprogrammed 
during the intermediate stages of the process, non-coding RNAs appear to regulate some of the 
reprogramming processes, namely by inducing metabolic changes as well as suppressing lineage- specific 

genes, thus suppressing the cell’s differentiated phenotype111 (FIG. 4B). At this stage, pluripotency genes, 
such as endogenous Oct4, also start to be expressed; however, their expression does not seem to be 

predictive of successful reprogramming until later on113,115, indicating that the relatively early expression of 
these factors is not sufficient for iPSC reprogramming. Once the cells enter the late stages of reprogramming, 
pluripotency factors gain importance. For instance, sc-qPCR has suggested that Sox2 drives a hierarchical 

sequence of gene expression changes115, which finally leads to the cells reaching the iPSC state (FIG. 4B). 
This sequence of events has not only been studied at the transcriptome level; single-cell high resolution 
imaging has shown that more local transcriptional changes such as X chromosome reactivation, also occur in 

a stepwise manner122. 

 

Future perspective and conclusion 

One of the greatest challenges of single-cell transcriptomics is the absence of spatial and temporal resolution, 
which is critically relevant in the context of developmental biology. Computational inferences, such as 
pseudotime ordering, have contributed to our understanding of defined differentiation trajectories by 
highlighting potential novel relevant factors, and have allowed the analysis of an extensive number of genes 
compared to current live imaging technologies. However, they are not sufficient to unravel the intricate 
mechanisms underlying early mammalian development. This is especially relevant once the epiblast and the 
primitive endoderm are established, as the embryo rapidly acquires a high level of complexity that is 
orchestrated by dynamic morphogenetic movements, cell proliferation and changes in gene expression, 
which are difficult to comprehensively capture. 

In the past few years, there has been significant progress in determining spatial positions from single-cell 
transcriptional data. The establishment of imaging strategies to obtain thousands of single-molecule 
measurements in single cells has provided us with both real spatial coordinates and quantitative data. 
Moreover, computational biology has developed algorithms to infer cell positions by reconstructing spatial 

reference maps from images obtained with fluorescence microscopy123,124. New sample collection techniques, 
such as tomo-seq or laser capture microdissection have also enabled the transcriptomic analysis of particular 

cells extracted from specific spatial positions125,126. Of note, the latter technique has been recently applied to 
mouse embryonic development and led to the production of a high resolution map of E7.0 mouse epiblast 
cells, which has improved our understanding of the different expression patterns occurring at this 

developmental stage127. Although these techniques are generating promising outcomes, they are laborious 
and thus require further optimization. 

Another area where single-cell technologies are advancing is in the development of combined methods to 
obtain as much information as possible from a single cell. This has currently been implemented at the level 

of chromatin accessibility, DNA methylation status and transcriptomic profile128,129 and is expected to give us 



 

a mechanistic view of the regulatory systems that govern developmental processes such as cell differentiation 
or cell-state transitions. Due to the relatively recent establishment of these techniques, we expect that 
computational strategies to simultaneously analyze the data will improve in the near future. Moreover, by 
eliminating the need for reverse transcription and non-specific amplification, direct sequencing of RNA, which 
is currently under development for the new generation of nanopore sequencers also has substantial 

potential to enhance future scRNA-seq protocols130. 

One of the main goals of single-cell transcriptomics remains the reconstruction of lineage trajectories using 
snapshots of continuous developmental processes. Incorporation of lineage tracing strategies into scRNA-
seq protocols would therefore provide invaluable evidence to support the lineage hierarchies postulated from 
scRNA-seq data analyses. Recent studies have attempted to address this challenge by using the CRISPR–
Cas9 genome editing system to introduce into eukaryotic cells a barcode coupled to a ’scratchpad’ 

sequence harboring multiple copies of the target sequence of a specific guide RNA40,131. Through successive 
cell divisions, the Cas9 nuclease will introduce stochastic mutations onto the scratchpad sequence, thereby 
‘recording’ the cell’s lineage history and enabling the reconstitution of lineage hierarchies in a given tissue. 

This powerful technology has been currently applied in vivo in zebrafish131 and in vitro in mESC cultures40. 
Coupling this tool to scRNA-seq will take the application of single-cell transcriptomics in developmental 
biology to a whole new level. 

Single-cell technologies have already given us many new insights into early mammalian development. 
Molecular heterogeneity in early embryos as well as in mESCs underscore their highly dynamic nature, but 
we still do not fully understand the basis for this heterogeneity. We envisage that, in addition to optimization of 
current methods and the establishment of new techniques, as protocols mature and become more user-
friendly, their adoption by the wider developmental biology research community will accelerate and increase 
their impact. 
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Boxes  

Box 1. Mouse embryonic development. 
 

Fertilization gives rise to a totipotent cell, the zygote, which will generate all the embryonic and supportive 
extra-embryonic tissues necessary for development. These processes start with the segregation of the 
embryonic and extra-embryonic lineages before the embryo implants into the uterus wall. Once the embryo is 
implanted, the embryonic part will further diversify into the different organs that will make the adult 
organism. 

 

Pre-implantation 

Following fertilization, the zygote undergoes a series of symmetric divisions until the 8-cell stage. The 
embryo then becomes compacted and this aggregation of cells is termed ‘morula’ (see the figure, part a). 
During the 8-to-16 and the 16-to-32 cell stage transitions, some cells will divide symmetrically and will 
become specified into the outer cell layer, called trophectoderm (TE), which will contribute to the placenta; 
other cells will undergo asymmetric divisions, where one of the daughters will become trophectoderm and the 
other will become part of the inner cell mass (ICM), which will give rise to the embryo proper. Following this 
first lineage specification, the ICM undergoes a second fate choice and becomes segregated into the 
epiblast (EPI) and the primitive endoderm (PE) at the 32-to-64 cell stage, the latter giving rise to the yolk 
sac. At the same time, the embryo also undergoes a process of cavitation, and the blastocoel will form. 
Finally, at the blastocyst stage, spatial cell rearrangement gives rise to epiblast cells surrounded by outer 
primitive endoderm 

 

Post-implantation 

Following implantation, which occurs at embryonic day 4.5 (E4.5), the embryo undergoes extensive 
proliferation coupled with morphogenetic cell movements. First, at E5.5, it adopts a cup-like shape (dashed 
rectangle; see the figure, part b), which is characteristic of mouse embryonic development. At this stage, 
the distal visceral endoderm (DVE) becomes specified. The DVE is thought to be a signaling center from 
which antagonists of the signaling factor Nodal, such as Cerberus (Cer) and Lefty1, are expressed and 
repress Nodal in the adjacent epiblast. Subsequently, through an ill-defined mechanism, the anterior visceral 
endoderm (AVE) is specified at the anterior side of the embryo, which also secretes Nodal antagonists that 
seem to contribute to the formation of the primitive streak at the posterior side. During gastrulation, epiblast 
cells at the primitive streak undergo an epithelial-to-mesenchymal transition and become mesoderm, which 
then migrates out and colonizes the different regions of the embryo, including the extra-embryonic yolk sac, 
and forms the allantois. The primitive streak extends distally as gastrulation progresses, and the cells that 
egress later and more anteriorly are thought to become endoderm and colonize other tissues, such as the gut. 
In parallel, anterior epiblast cells adopt an ectodermal fate and will eventually form part of tissues such as the 
brain or the skin. During this developmental progression, the embryo also undergoes other morphological 
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changes. Particularly, the amnion and the chorion, two membranes that delimit the two embryonic cavities, 
namely the amniotic and the exocoelomic cavities, respectively, are formed. 

 

 

Box 2. Advantages and limitations of single-cell transcriptional methods. 
 

Over the past few years, several single-cell methods have been developed to transcriptionally profile 
individual cells. Each method has advantages and limitations, and the choice of technique will depend on 
the biological question one would like to address. 

 

Single-cell qPCR measures the expression levels of a defined set of genes in single cells. 

 

Advantages 

More sensitive than single-cell RNA sequencing (scRNA-seq), as it captures lowly-expressedgenes more 
reliably. 

 

Limitations 

Targeted analysis. 

Allows the analysis of a limited number of genes per experiment. 

 

Well-based scRNA-seq methods (for example, Smart-seq2 and CEL-seq2). A collection of single-cell 
transcriptomics techniques where individual cells are sorted into single wells and processed separately (see 
the figure). 

 

Advantages 

Genome-wide approach. 

Low transcript 3’-end bias compared to droplet-based methods (see below). 

 

Limitations 

Requires isolating single cells. 

Time consuming, as each processed plate contains only 96 cells. 

 

Droplet-based scRNA-seq methods (for example, Drop-seq, inDrop). This group of recently-developed 
methods utilizes microfluidics to transcriptionally profile multiple cells genome-wide in a high-throughput 
manner. As the figure shows, single cells are combined with barcoded beads in oil emulsions (droplets) that 
are subsequently collected into one tube and processed together. 

 

Advantages 

Genome-wide approach. 

High-throughput. 

 

Limitations 

High 3’-end bias. 

Lower efficiency of capturing unique transcripts. 
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Higher risk of analyzing cell doublets. 

 

Figure legends  

Figure 1. Single-cell transcriptomics.  

A. Bioinformatics pipeline used to explore single-cell transcriptomics data. Following the normalization of 
gene expression data, visualization approaches (left), which are based on dimensionality reduction 
techniques, and clustering (right) are applied on the data. Rows in the heatmap depict single genes; columns 
refer to single cells; colors represent gene expression levels, where orange is high and blue is low. Cells 
are clustered into groups A—C based on their gene expression profiles, and genes are grouped into 
groups X–Z based on their expression profiles  

B. Pseudotime analysis. Pseudotime paths, which highlight the progression of the biological process, are 
inferred from the dataset (top), and the dynamics of differentially expressed genes is analyzed for each path 
(bottom). The top diagram is a visualization of the transcriptome data using diffusion maps and the paths 
that the pseudotime algorithm has inferred. The color gradient seen in the arrows (from red to blue or to 
yellow) highlight progression from the starting cells (red) to the end cells (blue or yellow). The bottom 
diagrams show the different trends of gene expression along each of the paths.  

C. In single-molecule RNA fluorescent in situ hybridization (sm-FISH) labeling, a fluorophore-based barcode 
is assigned to a specific RNA sequence. In combinatorial labeling, each RNA transcript is targeted with 
multiple sequence-specific probes with different fluorophores (three in the example) that can be detected 
under the microscope using different channels. The identity of each molecule is extrapolated from the pre-
established code. In sequential labeling, each RNA is targeted with multiple sequence-specific unicolor 
probes. Once the sample is imaged, the probes are digested with DNase I and the next batch of probes with 
different fluorophores (one per RNA) is hybridized. This will result in a sequential color-coding, where RNA 
identities will be assigned using the pre-established code. PCA, principal component analysis; t-SNE, t-
distributed stochastic neighbour embedding.  

 

Figure 2. Cell fate specification during mouse embryonic development.  

A. The decision between the inner cell mass (ICM) and the trophectoderm (TE). Gene expression differences 
increase as development progresses. Colors depict gene expression profiles. In the case of the 8-cell, 16-
cell and 32-cell stages, colors highlight the type of cell division: symmetric or asymmetric. Cells become 
molecularly heterogeneous at the 2-cell stage and the molecular segregation is amplified in the offspring, 
represented as a progression from light to dark colours along the stages. This molecular segregation leads 
the blue cells to undergo symmetric divisions and become trophectoderm while yellow cells divide 
asymmetrically and give rise to both epiblast and primitive endoderm.  

B. The ‘ordered’ and ‘random’ models of the decision between epiblast (EPI) and primitive endoderm (PE). In 
the ordered model, the first cells to be internalized at the 16-cell stage will give rise to the epiblast and the 
later- internalized cells will become the primitive endoderm. In the random model, cells are not specified 
(purple) until the 32-cell stage.  

C. The interaction between Nanog+ and Gata6+ cells through fibroblast growth factor (FGF) signaling. Nanog 

represses Gata6 and promotes Fgf4 expression. The resulting Fgf4 emerging from Nanog+ cells binds to 

both Fgfr2 and Fgfr1 receptors in a paracrine manner in Gata6+ cells and induces the expression of the 
primitive endoderm factors Gata4 and Sox17. At the bottom of the diagram, the transcriptional status of 

these cells is described, with Nanog+ cells being Nanog+Gata6-Fgf4+Fgfr2-Fgfr1+ and Gata6+  cells

 being  Nanog-Gata6+Fgf4-Fgfr2+Fgfr1+.  

D. Molecular heterogeneity (left) precedes morphological changes (right) such as the emergence of the 

primitive streak. First, cells can be divided into T+, Foxa2+ and T+Foxa2+ populations. Next, the primitive 
streak, where these cells are, is formed. 

 

Figure 3. Mesoderm differentiation during gastrulation.  

A. Heterogeneity within the mesoderm. Flk1+ progenitors are molecularly heterogeneous (represented by the 
different colors). If studied as a whole, these will give rise to blood (orange), endothelium (purple) and 
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smooth muscle (blue). However, this progenitor population could be composed of populations of unipotent 
progenitor cells.  

B. First and second wave of blood differentiation. The box (left) highlights the region in the yolk sac of 
mouse embryos at E7.5 where the blood islands can be found. During the first wave of hematopoiesis 
(zoomed box; left), primitive erythrocytes are apparent in the blood islands at E7.5. During the second wave 
(zoomed box; right), at around E8.25, the hemogenic endothelium generates erythroid and myeloid 
progenitors (EMPs), which differentiate into definitive blood cells. 

 

Figure 4. Pluripotent stem cells to understand cell states.  

A.  Hypothetic mechanisms regulating Nanog levels that could cause cell-fate switch. Expression levels after 
cell division refer to the daughter cells. Top left: No cell-fate switch. Here, Nanog levels constantly increase 
during the cell cycle until reaching level 2 in the y axis. After cell division, the levels go back to the initial 
level 1. Top right: Fate switch by increasing the transcription rate. A higher transcription rate will result in 
higher maximal Nanog levels compared to ‘no cell-fate switch’ cells (level 4 instead of 2). This results in 
daughter cells with higher Nanog levels and the effect is amplified through consecutive cell divisions, 
leading to cell-fate switch towards the naïve state when Nanog levels are high enough. Bottom: Fate 
switch by extending the cell cycle. An extension of the cell cycle allows Nanog levels to increase, which 
again results in gradual increase in Nanog levels in daughter cells during consecutive cell divisions.  

B. Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). The diagram highlights the 
knowledge about reprogramming acquired using single-cell technologies. Upon induction of reprogramming 
with the OSKM factors (Oct4, SRY-box 2 (Sox2), Krüppel-like factor 4 (Klf4) and Myc), a stochastic 
molecular heterogeneity arises in the cell population. Some of the cells undergo fast proliferation, and these 
will progress to the next step of the reprogramming process. The next step consists of chromatin 
remodelling followed by repression of differentiated cell fates with non- coding RNAs (ncRNA). The second 
phase of reprogramming begins with the activation of endogenous Sox2 expression, which triggers the 
activation of a hierarchical program of gene expression that finalizes the conversion of the somatic cell into 
an iPSC. 

 

 

Glossary 

Fluorescence-activated cell sorting. Flow cytometry method to analyze and sort single cells based on the 
expression of cell surface markers. 

Microfluidics systems. Automated technologies based on the use of microminiaturized devices for mixing 
and manipulating low fluid volumes aiming to achieve multiplexing and high-throughput yields. 

Blastocyst. Embryonic stage composed of inner ICM cells, a fluid-filled cavity called blastocoel, and outer 
trophectoderm cells. 

Epiblast. Group of cells derived from the ICM that will give rise to the embryo proper. 

Primitive endoderm. Group of cells derived from the ICM that contribute to extra-embryonic tissues such 
as the yolk sac. 

Unique molecular identifiers. Short sequences that uniquely tag individual RNA molecules. 

Highly variable genes. Genes with biologically highly-variable expression levels. 

Dimensionality-reduction approaches. Methods used in high dimensional datasets, where each gene 
represents a dimension, to reduce the number of dimensions and elicit the visualization of the dataset’s 
structure in a 2- or 3-dimensional plot. 

Inner cell mass (ICM). Group of cells located inside the blastocyst that will give rise to the primitive 
endoderm and the epiblast. 

Trophectoderm. Group of cells located on the outer part of the blastocyst that will become the supportive 
extra-embryonic tissues, such as the placenta. 

Blastomeres. The cells resulting from the first divisions of the fertilized egg. 

Bimodal distribution. In gene expression analyses, refers to a gene being either (a) highly expressed or 
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(b) not or lowly expressed, with small numbers of cells displaying intermediate levels. Cells can thus be 
divided into two subpopulations based on the expression levels of that particular gene. 

Maternal-to-zygotic transition. Process occurring shortly after fertilization, where maternal RNA and proteins 
are degraded and the zygotic genome is activated and produces RNA and proteins. 

Morula. Early embryonic stage where the embryo is composed of a symmetric ball of morphologically similar 
cells. 

Salt-and-pepper. Group of ICM cells with heterogeneous expression of epiblast and primitive endoderm 
markers, where some cells express more epiblast markers while others express more primitive endoderm 
markers. 

Gastrulation. Embryonic process, following implantation, where epiblast cells become specified into the three 
germ layers (ectoderm, mesoderm and endoderm). 

Primitive streak. Morphological structure at the posterior side of the embryo, formed by the accumulation 
of cells. It is where epiblast cells will egress to become mesoderm or endoderm. 

Mesendodermal progenitor. A cell that can give rise to either mesoderm or endoderm. 

Yolk sac. Extra-embryonic tissue that originates from the primitive endoderm. 

Boolean algorithm. Qualitative algorithm based on the Boolean (binary) logic, where only two values are 
accepted. In gene regulatory networks, one value will be ‘active’ and the other one ‘inactive’. 

Unimodal distribution. In gene expression analyses, unimodal distribution refers to a gene being mostly 
expressed at intermediate levels. 

X chromosome reactivation. Process where one of the X chromosomes in mammalian female cells becomes 
reactivated. 
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