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ABSTRACT 1 

C4 photosynthesis is a carbon concentrating mechanism that increases delivery of carbon dioxide 2 

to RuBisCO and as a consequence reduces photorespiration. The C4 pathway is therefore 3 

beneficial in environments that promote high photorespiration. This pathway has evolved many 4 

times, and involves restricting gene expression to either mesophyll or bundle sheath cells. Here we 5 

review the regulatory mechanisms that control cell preferential expression of genes in the C4 cycle. 6 

From this analysis, it is clear that the C4 pathway has a complex regulatory framework, with control 7 

operating at epigenetic, transcriptional, post-transcriptional, translational, and post-translational 8 

levels. Some genes of the C4 pathway are regulated at multiple levels, and we propose that this 9 

ensures robust expression in each cell type. Accumulating evidence suggests that multiple genes 10 

of the C4 pathway may share the same regulatory mechanism. The control systems for C4 11 

photosynthesis gene expression appear to operate in C3 plants, and so it appears that pre-existing 12 

mechanisms form the basis of C4 photosynthesis gene expression.    13 
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INTRODUCTION 1 

Ribulose 1,5-Bisphosphate Carboxylase Oxygenase (RuBisCO) is the primary carboxylation 2 

enzyme in photoautotrophs - fixing inorganic atmospheric carbon dioxide (CO2) into an organic 3 

form for carbohydrate anabolism (Calvin and Benson, 1948; Nelson and Cox, 2008). It has been 4 

proposed that every organic carbon molecule has passed through the RuBisCO active site at some 5 

point in time (Mauseth, 2012). When RuBisCO and photosynthesis first appeared, the earth’s 6 

atmosphere was dominated by CO2. Over a prolonged period of time, oxygenic photosynthesis 7 

transformed the atmosphere and oceans, allowing aerobic organisms to survive (Luo et al., 2016; 8 

Holland, 2006).  9 

Despite its indispensable role in carbon assimilation, RuBisCO is a surprisingly inefficient 10 

enzyme. Its rate of catalysis is slow, and it has a low affinity for CO2. Furthermore, it carries out a 11 

deleterious side-reaction that fixes molecular oxygen (O2) rather than CO2 (Portis and Parry, 2007). 12 

In a high CO2 world, this would not likely affect growth, however, with approximately 21% O2 and 13 

0.04% CO2 in the current atmosphere, catalysis of O2 is common and generates a toxic two carbon 14 

compound that must be recycled via photorespiration (Bowes et al., 1971; Sharkey, 1988). Not 15 

only is energy expended in photorespiration, but it also leads to loss of carbon, leading to 16 

reductions in photosynthetic efficiency. To date, attempts to manipulate RuBisCO to impair or 17 

remove its oxygenase activity while maintaining carboxylase functionality have not been successful 18 

(Whitney et al., 2011; Spreitzer and Salvucci, 2002; Peterhansel and Offerman, 2012). However, 19 

on an evolutionary timescale, multiple independent lineages of plants have developed mechanisms 20 

to reduce oxygenation by RuBisCO in an oxygen rich world (Sage et al., 2012). Rather than 21 

evolving an improved CO2-O2 discrimination mechanism, a seemingly simple modification that 22 

would eradicate energy wasted in photorespiration, these lineages instead developed carbon-23 

concentrating mechanisms (CCMs) that boost carboxylation by RuBisCO. Of these CCMs, C4 24 

photosynthesis is the most prevalent in terrestrial plants – being found in around 8100 species 25 

distributed across more than sixty lineages of plants (Sage, 2016). 26 

C4 photosynthesis operates as a molecular pump that generates high concentrations of CO2 27 

around RuBisCO (Figure 1A). A unique form of plant morphology termed Kranz anatomy has 28 

evolved in conjunction with this molecular pump to facilitate C4 photosynthesis (Haberlandt, 1904; 29 
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El-Sharkawy and Hesketh, 1965; Downton and Tregunna, 1968; Hatch, 1987). Kranz anatomy 1 

typically consists of narrowly spaced veins with large bundle sheath (BS) cells surrounded by outer 2 

and concentric layers of mesophyll (M) cells (Figure 1B). In all plants, CO2 enters the plant through 3 

stomata and diffuses into M cells. However, in C4 species, rather than the initial fixation by 4 

RuBisCO CO2 is converted into bicarbonate (HCO3
-) by CARBONIC ANHYDRASE (CA). 5 

PHOSPHOENOLPYRUVATE CARBOXYLASE (PEPC) then combines HCO3
- with the three-6 

carbon acceptor molecule phosphoenolpyruvate (PEP) to produce the four-carbon acid 7 

oxaloacetate in M cells. The initial formation of the C4 acid led to the name C4 photosynthesis. 8 

Oxaloacetate is then commonly reduced to malate, which diffuses into BS cells where it is 9 

decarboxylated to yield pyruvate, a three-carbon compound, and a molecule of CO2, which is 10 

secondarily refixed by RuBisCO. Key steps in the C4 carbon assimilation cycle are therefore: initial 11 

CO2 fixation by PEPC to form a C4 acid in M cells, decarboxylation of the C4 acid in BS cells to 12 

release high concentrations of CO2 near RuBisCO for re-fixation in the Calvin-Benson-Bassham 13 

(CBB) cycle, and lastly, regeneration of the C3 substrate PEP in M cells (Hatch, 1987; Kagawa and 14 

Hatch, 1974). 15 

The compartmentation of C4 photosynthesis between M and BS cells depends on the regulation 16 

of the genes encoding this complex metabolic network (Hibberd and Covshoff, 2010). Fifty years 17 

after the discovery of C4 photosynthesis (Hatch and Slack, 1966; Furbank, 2016) there is 18 

considerable interest in understanding its regulation between M and BS cells. A better 19 

understanding of how C4 gene expression is controlled could impact on efforts to incorporate the 20 

C4 pathway into C3 crops to improve their photosynthetic efficiency (Sage and Zhu, 2011; Covshoff 21 

and Hibberd, 2012; Matsuoka et al., 2001; von Caemmerer et al., 2012; Raines, 2011; Hibberd et 22 

al., 2008; Osborne and Beerling, 2006).  23 

Here we aim to highlight recent advances in understanding the gene regulation associated with 24 

the C4 pathway. The regulation of C4 photosynthesis gene expression is stringent. Once 25 

established, environmental stimuli such as heat, cold, light or dark, and even hormonal 26 

manipulation, are not known to perturb its patterns of cell specific gene expression (Bräutigam and 27 

Weber, 2011). It is not clear if the complex C4 phenotype is based on the evolution of conserved 28 

regulatory mechanisms that have repeatedly been recruited into C4 photosynthesis in independent 29 
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C4 linages. However, it is apparent that the pathway is regulated at many checkpoints including 1 

epigenetic, transcriptional, post-transcriptional, translational and post-translational processes. 2 

Analysis of the available literature supports the notion that to ensure the correct patterns of gene 3 

expression, individual genes are subject to an interconnected mosaic of gene regulation operating 4 

at many levels.  5 
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C4 GENES ARE SUBJECT TO EPIGENETIC REGULATION 1 

Epigenetic regulatory mechanisms, such as covalent modifications to DNA or alternations in 2 

chromatin structure, can impact on gene expression, and are not dependent on the underlying 3 

DNA sequence (Feng et al., 2010). As a passive barrier to gene expression, chromatin compacted 4 

by nucleosomes, is inaccessible to regulatory proteins (Loidl, 2004). Covalent modifications to 5 

DNA such as methylation at cytosine nucleotides, or histone modifications, such as lysine 6 

acetylation or methylation, are commonly associated with epigenetic regulation (Vanyushin and 7 

Ashapkin, 2011). 8 

Based on a search of Histone H3 Lysine 4 tri-methylation (H3K4me3) and H3 lysine 9 9 

acetylation (H3K9ac) within C4 pathway gene promoter regions, which represent histone marks for 10 

actively transcribed genes (Wang et al., 2009; Dion et al., 2005), six C4 cycle genes were found to 11 

share a similar histone code in the C4 grasses Zea mays (maize), Setaria italica and Sorghum 12 

bicolor (Heimann et al., 2013). The M preferential C4 genes, PEPC, CA and PYRUVATE, 13 

ORTHOPHOSPHATE DIKINASE (PPDK) showed an enrichment of H3K4me3 in M cells compared 14 

with the BS. In contrast, C4 genes such as NADP-MALIC ENZYME (NADP-ME) and 15 

PHOSPHOENOLPYRUVATE CARBOXYKINASE (PEPCK) were enriched with H3K4me3 marks in 16 

the BS compared with M cells. Interestingly, the small subunit of RuBisCO (RbcS) showed nearly 17 

the same degree of H3K4me3 in both M and BS cells (Heimann et al., 2013). All of these genes 18 

showed an enrichment of H3K9ac marks upon illumination (Heimann et al., 2013), which may 19 

indicate that histone modification helps regulate both cell specificity and the induction of gene 20 

expression by light. It therefore appears that H3K9ac primes genes for expression from light stimuli, 21 

and H3K4me3 further initiates preferential expression of C4 genes in either M or BS cells but is 22 

independent of light (Offerman et al., 2008). A genome-wide search of maize revealed that many 23 

putative regulators of C4 photosynthesis exhibited similar H3K9ac histone activation marks 24 

(Perduns et al., 2015). Among 294 genes found to be M or BS specific from maize and C4 25 

Gynandropsis gynandra (Aubry et al., 2014), 68 had up-regulated H3K9ac marks (Perduns et al., 26 

2015). Examples of putative regulators that also show cell specific histone marks include DNA-27 

binding with One Finger transcription factor (Yanagisawa, 2000), and an ethylene response 28 

element binding factor (Pick et al., 2011). Thus, histone modifications may have a broad role to 29 
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control the expression of enzymes and putative regulators involved in the induction of C4 1 

photosynthesis in response to light and may also prime their cell specificity. 2 

It is also possible that DNA methylation serves as a regulator of C4 gene expression. 3 

Methylation sensitive restriction endonucleases (Langdale et al., 1991) and bisulphite sequencing 4 

of DNA (Tolley et al., 2011) indicated that the maize PEPC promoter region contains several 5 

cytosine methylation sites. These cytosine residues are de-methylated in response to light 6 

specifically in M cells. However, these methylated cytosines are upstream of the 600 base pair (bp) 7 

region of the maize PEPC promoter that is sufficient to generate preferential expression in M cells 8 

(Matsuoka et al., 1994). Therefore, it is unclear whether these methylated sites play a role in M cell 9 

specific expression of maize PEPC. Taken together, these results indicate that epigenetic 10 

modifications likely contribute to preferential expression of C4 genes in M or BS cells and may be 11 

an initial mechanism that primes C4 genes for preferential expression in these cells (Wang et al., 12 

2011; Heimann et al., 2013). In subsequent sections, we present evidence that argues for the 13 

spatial regulation of C4 genes being subject to additional levels of regulation. 14 

 15 

CIS-ELEMENTS AND TRANS-FACTORS AFFECTING TRANSCRIPTION 16 

Transcription represents the first stage of gene expression and allows a DNA sequence to 17 

specify an RNA copy by the action of RNA polymerase. RNA polymerase requires the assistance 18 

of transcription factors that bind euchromatic DNA elements to facilitate pre-initiation of 19 

transcription. Transcription factors and the DNA elements they recognise are often referred to as 20 

trans- and cis-regulators respectively. There has been significant interest in understanding the cis-21 

elements and trans-factors that facilitate M or BS expression of C4 genes (Hibberd and Covshoff, 22 

2010).  23 

One of the best-characterised examples of transcriptional control in C4 photosynthesis is the 24 

promoter region of the PEPC gene from maize. As previously mentioned, a 600bp region of the 25 

maize PEPC promoter is sufficient to generate strong and light-activated expression in M cells 26 

(Taniguchi et al., 2000; Kausch et al., 2001). Interestingly, these 600bp can drive M expression in 27 

C3 rice (Oryza sativa) (Matsuoka et al., 1994; Ku et al., 1999). In the C4 dicotyledon Flaveria 28 

trinervia, the PEPC promoter region is also sufficient for preferential expression in M cells 29 
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(Stockhaus et al., 1997). Detailed dissection of this F. trinervia PEPC promoter region identified a 1 

41bp cis-element responsible for M expression, termed the Mesophyll Enhancing Module 1 2 

(MEM1) (Gowik et al., 2004). MEM1 is also capable of conferring expression in the palisade M of 3 

C3 Nicotiana tabacum (Akyildiz et al., 2007). Interestingly, the PEPCK gene from C4 Zoysia 4 

japonica (a warm season turf-grass) that encodes one of the C4 acid decarboxylases that supplies 5 

CO2 to RuBisCO in BS cells is also able to generate expression in the BS of rice (Nomura et al., 6 

2005). The most parsimonous explanation for these data is that in multiple C4 lineages, PEPC and 7 

PEPCK have evolved novel cell specific cis-elements that utilised an ancestral regulatory 8 

mechanism that was based on trans-factors present in C3 species. 9 

It is becoming increasingly apparent that the spatial patterning of C4 genes can be mediated by 10 

cis-elements found inside genes. In both genes that encode the heterodimeric NAD-dependent 11 

Malic Enzyme (NAD-ME), a 240bp region within the coding sequence confers BS expression in G. 12 

gynandra (Brown et al., 2011). This 240bp sequence from G. gynandra does not produce BS 13 

specificity in C3 Arabidopsis thaliana. However, the orthologous sequence from Arabidopsis is able 14 

to generate BS expression in G. gynandra. Thus, the cis-elements used to generate cell specificity 15 

of G. gynandra NAD-ME are present in the ancestral C3 state but the trans-regulator appears to be 16 

lacking.  17 

A number of trans-factors have been identified in vitro that bind to PEPC promoter regions from 18 

different C4 species. For example, DNA Binding with One Finger 1 (DOF1), DOF2, F. trinervia ZF-19 

HD homeobox protein 1 (FtHB1), Maize Nuclear Factors (MNFs), and PEP-I all interact with PEPC 20 

promoters (Windhövel et al. 2001; Westoff and Gowik, 2004; Kano-Murakami et al., 1991). DOF 21 

transcription factors are specific to the plant kingdom and both up- and down-regulate light-22 

responsive genes (Park et al., 2003; Ward et al., 2005). DOF1 appears to promote PEPC 23 

expression throughout the plant (Yanagisawa and Sheen, 1998) and it is proposed that expression 24 

is then restricted to M cells by the repressive function of DOF2 which is itself BS specific 25 

(Yanagisawa, 2000). When DOF1 expression was repressed to very low levels in maize mutants 26 

PEPC expression was unaltered (Cavalar et al., 2007). Thus, low activity of DOF1 is able to 27 

regulate PEPC expression. It has been speculated that DOF1 may regulate other C4 genes such 28 

as PPDK (Yanagisawa, 2000), and it also appears to regulate PPDK in tissues of rice (Zhang et al., 29 
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2015). Despite indications that the homeodomain proteins, FtHB1, FtHB3 and FtHB4 bind cis-1 

elements present in the 5’-untranslated region (UTR) of PEPC from F. trinervia (Windhövel et al., 2 

2001), there was no disruption in expression of PEPC when the putative binding site was deleted 3 

(Engelmann et al., 2008). To date, none of these trans-factors have been verified in vivo as being 4 

necessary or sufficient for expression in M cells of C4 leaves, thus the role these proteins play in 5 

PEPC regulation is not yet elucidated.  6 

Comparative transcriptomics between C3 and C4 species and between M and BS cells of the 7 

same C4 species has led to the in silico identification of many transcription factors proposed to 8 

impact C4 gene expression (Bräutigam et al., 2011; Gowik et al., 2011, Ding et al., 2015; Li et al., 9 

2010; Aubry et al., 2014; Wang et al., 2014; Yu et al., 2015; Pick et al., 2011; Rao et al., 2016; 10 

John et al., 2014; Chang et al., 2012; Tausta et al., 2014). To our knowledge, none of these 11 

candidates have been validated in vivo. The reasons for the lack of progress in identifying the 12 

transcriptional regulators of cell specificity are not clear, but may be associated with redundancy 13 

being caused by multiple transcription factors binding relevant cis-elements, and/or significant 14 

amounts of post-transcriptional control. 15 

The only transcription factor that has a fully validated role in C4 photosynthesis is Golden Like 2 16 

(GLK2) (Wang et al., 2013a). Rather than regulating genes of the core C4 cycle, GLK2 controls 17 

genes critical for chloroplast development and the photosynthetic apparatus (Waters et al., 2009; 18 

Langdale and Kidner, 1994). In most C4 species, there are two GLK genes that are preferentially 19 

expressed in either M and BS cells (Wang et al., 2013a), and differential expression of these GLK 20 

genes is thought to give rise to dimorphic chloroplasts in maize M and BS cells (Rossini et al., 21 

2001; Wang et al., 2013a). Evidence is accumulating for the SCARECROW (SCR) and 22 

SHORTROOT (SHR) transcription factors being involved in specification of Kranz anatomy of C4 23 

leaves. In Arabidopsis, SCR and SHR have been shown to determine the fate of BS cells (Cui et 24 

al., 2014). SCR and SHR transcripts accumulate preferentially in the BS of several C4 species, 25 

such as maize (Wang et al., 2013b; Tausta et al., 2014) and Echinochloa glabrescens (Covshoff et 26 

al., 2016). Mutations in maize SCR led to more than one BS layer surrounding veins, aberrant BS 27 

chloroplast differentiation and loss of minor veins (Slewinski et al., 2012). To our knowledge 28 
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however, these transcription factors have not yet been implicated in controlling genes of the C4 1 

cycle. 2 

 3 

STABILITY OF C4 TRANSCRIPTS 4 

Post-transcriptional regulation is typically used to define mechanisms that impact RNA 5 

abundance prior to translation. The stability of mRNA is affected in multiple ways including pre-6 

mRNA processing within the nucleus, or after nuclear export to the cytosol by the action of small 7 

RNAs and RNA-binding proteins. Sequences present in the mRNAs of several C4 cycle genes 8 

contribute to cell-specificity. In G. gynandra the 5’ UTR of CA confers preferential expression in M 9 

cells (Kajala et al., 2012). The cis-element responsible for this M expression is also found in the 10 

UTRs from PPDK, and it appears to act at the level of translational efficiency (Williams, Burgess et 11 

al., 2016). Although this cis-element is present in orthologous genes from A. thaliana, it does not 12 

generate M preferential expression in G. gynandra (Williams, Burgess et al 2016). These data 13 

imply that multiple genes (CA and PPDK) have used the same cis-regulatory code to generate 14 

preferential expression in M cells of the C4 leaf. Although these cis-elements are present in C3 15 

orthologues, it is not until they are integrated into the C4 leaf that they specify the spatial patterns 16 

of expression required for the C4 pathway. 17 

In C4 amaranth, mRNAs encoding both the large subunit (LSU) and small subunit (SSU) of 18 

RuBisCO accumulate in M and BS cells early in leaf development but the polypeptides only 19 

accumulate in BS cells (Patel and Berry, 2008; Boinski et al., 1993). This strongly implicates post-20 

transcriptional regulation of gene expression. In the case of RbcS, the 5’ and 3’ UTRs from 21 

Flaveria bidentis and Amaranthus hypochondriacus drive preferential expression of β-22 

glucoronidase (GUS) in the BS, possibly indicating post-transcriptional regulation (Patel et al., 23 

2004; Patel et al., 2006). In maize, it was also found that the promoter region including 66bp of the 24 

5’ UTR (Nomura et al., 2000) as well as the 3’ UTR (Viret et al., 1994) are responsible for BS 25 

accumulation of RbcS. Together the data suggest transcriptional regulation and RNA stability of 26 

RbcS are important for expression. In maize, rbcL transcripts accumulate in both BS and M cells in 27 

darkness, but upon illumination transcripts are restricted to BS cells. It has been proposed that this 28 

process is likely controlled by RNA stability (Sheen and Bogorad, 1985; Kubicki et al., 1994). 29 
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Furthermore, in amaranth, rbcL transcripts appear in M and BS chloroplasts, however, the LSU of 1 

RuBisCO protein only accumulates in BS cells (Boinski et al., 1993). Overexpression of RbcS and 2 

rbcL by the ubiquitin promoter in maize did not lead to accumulation of RuBisCO in M cells, but 3 

was still expressed in BS cells (Wostrikoff et al., 2012). This is consistent with a mechanism 4 

subsequent to transcription, affecting mRNA stability of the RuBisCO holoenzyme to facilitate BS 5 

localisation. In fact, a nuclear encoded mRNA binding protein, rbcL RNA S1-Binding Domain 6 

(RLSB) has been shown to co-localise and bind to rbcL mRNA in chloroplasts (Bowman et al., 7 

2013) and lower RLSB expression reduces expression of rbcL (Yerramsetty et al., 2016). RLSB 8 

mRNAs accumulate preferentially in BS cells in a number of C4 species, yet accumulate 9 

throughout the leaf in A. thaliana (Bowman et al., 2013; Yerramsetty et al., 2016). Thus, in C4 10 

leaves restriction of RLSB to the BS may contribute to the accumulation of LSU in this cell-type. 11 

 Control of RNA stability is also important for the glycine decarboxylase complex (GDC), a 12 

component of photorespiration. In C4 species, GDC operates in the mitochondria of BS cells, 13 

whereas in C3 species, it is expressed throughout all photosynthetic tissues (Bauwe et al., 2010). 14 

Reporter promoter fusions of the P-subunit of the GDC (GLDPA) confer preferential expression in 15 

the BS of C4 F. trinervia and C3 A. thaliana (Engelmann et al., 2008). Although this is consistent 16 

with transcriptional regulation, the situation is more complex because this upstream sequence 17 

contains two promoters, which together ensure BS specific and high levels of expression. With 18 

respect to the transcription start site, a proximal sub-promoter directs strong BS specificity while a 19 

distal promoter confers constitutive expression in leaf tissue. The distal promoter is strong and 20 

generates abundant transcripts in M and BS cells. However, due to the presence of a cryptic intron 21 

in the 5’ UTR of transcripts derived from this promoter, these transcripts are improperly spliced 22 

during post-translational processing. Incorrectly spliced GLDPA transcript variants that lack the BS 23 

specific elements are suppressed via RNA decay (Wiludda et al., 2012). The regulation of GLDPA 24 

therefore epitomizes how a single gene is regulated at multiple levels, in this both transcription and 25 

RNA processing, to ensure cell specific expression in the C4 leaf. 26 

 27 

TRANSLATIONAL AND POST-TRANSLATIONAL MECHANISMS 28 
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Translational and post-translational regulation of C3 photosynthesis gene expression are 1 

particularly common for plastid-encoded genes (Cohen and Mayfield, 1997; Chi et al., 2012; 2 

Jensen et al., 2007; Järvi et al., 2015; Schöttler et al., 2015). Evidence for translational and post-3 

translational regulation in C4 leaves is provided through analysis of genes encoding proteins of the 4 

CBB cycle and Photosystem II (PSII). In maize most of the CBB cycle operates in BS cells, 5 

whereas PSII preferentially accumulates in M cells (Friso et al., 2010; Li et al., 2010; Kawaga and 6 

Hatch, 1974; Schuster, 1985). As photosynthesis in eukaryotes depends on co-ordinate 7 

expression from both the nuclear and plastid genomes, this integration of genomes also impacts 8 

on the C4 pathway. 9 

Mutants for the M specific maize high chlorophyll fluorescence 136 (hcf136) gene completely 10 

lack PSII in M cells (Covshoff et al., 2008). Interestingly, both cytosolic and plastidic transcripts 11 

encoding proteins of the PSII core accumulate to normal levels in M cells of hcf136 mutants, yet 12 

the corresponding proteins are undetectable, strongly implying translational regulation. It has been 13 

suggested that the hcf136 mutant is not able to process the plastid-encoded psbB-psbT-psbH-14 

petB-petD polycistron, a co-transcriptional unit that encodes components of PSII and the 15 

cytochrome b6f complex, in M cells (Chi et al., 2012; Nakamura et al., 2003; Meierhoff et al., 2003). 16 

Furthermore in hcf136 mutants, other photosynthetic genes show ectopic expression. For instance, 17 

PSI and ATP synthase complex transcripts were up-regulated in M cells of hcf136 mutants, and 18 

many BS specific genes were expressed in M cells (Covshoff et al., 2008). The mechanism by 19 

which hcf136 impacts on differential gene expression of these other photosynthesis genes 20 

between M and BS cells remains unclear.  21 

The maize mutant, bundle sheath defective 2 (bsd2) lacks RuBisCO in both M and BS cells 22 

(Roth et al., 1996; Langdale and Kidner, 1994). Although bsd2 plants lack the SSU and LSU of 23 

RuBisCO, mature transcripts accumulate in each cell-type. It is proposed that BSD2 acts as a co-24 

translational chaperone for LSU (Brutnell et al., 1999). In addition to translational regulation by 25 

BSD2, RuBisCO is regulated post-translationally. The RuBisCO accumulation factor 1 (Raf1) 26 

protein is specific to BS chloroplasts in maize and is required for RuBisCO expression (Feiz et al., 27 

2012; Friso et al., 2010). Mutants for Raf1 transcribe RbcS and rbcL mRNAs and translate both 28 

subunits normally, but do not accumulate the RuBisCO holoenzyme and therefore die as seedlings. 29 
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It is thought that Raf1 acts by direct interaction with LSU to either free or insulate the LSU from 1 

chaperones during the early assembly process, and lack of Raf1 leads to a degradation of both 2 

LSU and SSU (Feiz et al., 2012).  3 

Lastly, some C4 cycle enzymes themselves are post-translationally chemically modified. PPDK 4 

is phosphorylated by pyruvate,orthophosphate dikinase regulatory protein (PDRP) in a dynamic 5 

light-responsive manner (Chen et al., 2014; Chastain et al., 2011). PDRP is capable of both 6 

phosphorylating and dephosphorylating PPDK at serine and threonine residues in the PPDK active 7 

site, which deactivate and activate its function respectively (Astley et al., 2011). PEPC is 8 

phosphorylated in several C4 and C3 species (Aldous et al., 2014; Nimmo et al., 2001). Additionally, 9 

the phosphorylation states of C4 Panicum maximum PEPC and PEPCK are tightly coordinated with 10 

each other, despite being localised in M and BS cells respectively (Bailey et al., 2007). However to 11 

our knowledge, these modifications have not yet been associated with cell specificity, but are 12 

thought to adjust the C4 cycle for different conditions within each cell type. 13 

 14 

INDIVIDUAL C4 GENES ARE CONTROLLED BY MULTIPLE REGULATORY MECHANISMS 15 

The above analysis indicates that epigenetic, transcriptional, post-transcriptional, translational 16 

and post-translational regulatory mechanisms mediate preferential gene expression in either M or 17 

BS cells of C4 leaves (Figure 2). However, these analyses of C4 gene regulation are scattered 18 

across C4 plants from a broad range of taxa. This makes it difficult to model the levels of regulation 19 

that are controlling each enzyme. Nevertheless, it is clear that C4 genes within the same species 20 

are controlled at multiple levels. In addition to GLDPA (see above), evidence is provided by BS 21 

specific RuBisCO and M specific PEPC in maize (Table 1), two enzymes known to operate in all C4 22 

subtypes.  23 

For example, accumulation of the RuBisCO holoenzyme in BS cells involves transcriptional, 24 

post-transcriptional, translational and post-translational mechanisms in maize (Berry et al., 2016). 25 

The small subunit is transcriptionally and post-transcriptionally regulated by cis-elements in its 26 

promoter and UTRs (Nomura et al., 2000; Viret et al., 1994). To ensure strong BS specificity, the 27 

stability of the large subunit transcript is regulated by the RNA binding protein RLSB (Bowman et 28 

al., 2013), translationally by BSD2 (Brutnell et al., 1999) and post-translationally by Raf1 (Feiz et 29 
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al., 2012). Additionally, the RuBisCO holoenzyme has a complex post-translational assembly 1 

process, mediated by chaperones, many of which are themselves BS specific, and influenced by 2 

the amount of both SSU and LSU (Hauser et al., 2015; Berry et al., 2016).  3 

Likewise, maize PEPC appears to be regulated at multiple levels. It is epigenetically 4 

predisposed to cell specific expression through an enrichment of histone marks for actively 5 

transcribed genes, and through demethylation of DNA sites in its promoter region that are all 6 

enriched in M cells and responsive to light (Heimann et al., 2013; Tolley et al., 2011). Cell 7 

specificity is further ensured by transcriptional control mediated by cis-elements in the maize 8 

PEPC promoter that confer M specificity (Kausch et al., 2001; Taniguchi et al., 2000). These 9 

examples of PEPC and RuBisCO indicate that their cell specific expression patterns are 10 

underpinned by regulatory redundancy operating at multiple levels. This may well be the case for 11 

many more C4 genes in multiple C4 lineages.  12 

Despite being a seemingly complex system, C4 photosynthesis has also likely co-opted multiple 13 

ancestral regulatory mechanisms (Sage, 2004; Williams et al., 2013). This is evidenced by C4 cycle 14 

genes from C3 species already being regulated by light and chloroplast signalling networks 15 

(Burgess et al., 2016), but also C4 genes from independent C4 lineages sharing regulatory 16 

mechanisms, including a shared epigenetic histone code for NADP-ME, PEPCK, PEPC, CA, and 17 

PPDK (Heimann et al., 2013) and shared post-transcriptional cis-elements for PPDK and CA 18 

(Williams, Burgess et al., 2016; Hibberd and Covshoff, 2010). Furthermore, certain C4 cycle genes 19 

may have gained cell specificity from pre-existing regulatory mechanisms, as in some cases, 20 

orthologous genes in C3 plants contain cis-elements that confer cell-specificity in C4 leaves 21 

(Williams et al., 2012; Kajala et al., 2012; Brown et al., 2011), whereas in others, they are 22 

regulated correctly when expressed in C3 congeners (Nomura et al., 2005; Matsuoka et al., 1994; 23 

Ku et al., 1999). This is an indication that cis-elements, trans-factors and other regulators for C4 24 

photosynthesis are present in C3 species.   25 
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CONCLUSION  1 

The spatial patterning of gene expression required in the C4 leaf is determined by a variety of 2 

mechanisms. Although there are few examples where an individual gene has been catalogued as 3 

being controlled at multiple levels of regulation, the above summary indicates that this may well be 4 

true for many genes. It is not yet clear the extent to which these regulatory mechanisms operate in 5 

C3 plants, nor how many changes in cis- and trans-regulation are responsible for C4 enzymes to be 6 

partitioned between mesophyll and bundle sheath cells.  7 
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Table I: C4 genes in maize for which there is evidence that cell-specificity is generated from 1 

multiple levels of regulation. 2 

Cell type C4 gene Type of regulation 
 

References 

Mesophyll Phosphoenolpyruvate 
carboxylase (PEPC) 

Epigenetic 
regulation 

Histone acetylation 
and methylation, as 
well as DNA 
methylation of 
promoter region 
 

Heimann et al., 
2013; Perduns et 
al., 2015; Tolley 
et al., 2011 

Transcriptional 
regulation 

Cis-elements in 
promoter region  

Kausch et al., 
2001; Taniguchi 
et al., 2000 
 

Bundle 
Sheath 

Small subunit of 
RuBisCO (RbcS) 

Transcriptional 
and post-
transcriptional 
regulation 
 

Cis-elements in 
promoter region and 
UTRs 

Nomura et al., 
2000; Viret et al., 
1994 

Large subunit of 
RuBisCO (rbcL) 

Post-
transcriptional 
regulation 

RNA stability 
mediated by RNA 
binding protein RLSB 
 

Bowman et al., 
2013 

Translational 
regulation 
 

Interaction with BSD2 Brutnell et al., 
1999 

Post-translational 
regulation 

Interaction with Raf1 Feiz et al., 2012 

  3 
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FIGURE LEGENDS 1 

Figure 1. Biochemical and anatomical hallmarks of C4 photosynthesis. (A) A unified cycle for the 2 

three decarboxylation subtypes of the C4 carbon assimilation cycle. Enzyme abbreviations: CA, 3 

carbonic anhydrase; PEPC, PHOSPHOENOLPYRUVATE CARBOXYLASE; ASPAT, ASPARTATE 4 

AMINOTRANSFERASE; ALAAT, ALANINE AMINOTRANSFERASE; PEPCK, 5 

PHOSPHOENOLPYRUVATE CARBOXYKINASE; NAD-MDH, NAD-MALATE 6 

DEHYDROGENASE; NADP-MDH, NADP-MALATE DEHYDROGENASE; NAD-ME, NAD-MALIC 7 

ENZYME, NADP-ME, NADP-MALIC ENZYME; PPDK, PYRUVATE ORTHOPHOSPHATE 8 

DIKINASE; RUBISCO, RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE. 9 

Metabolite abbreviations: OAA, oxaloacetate; Asp, aspartate; Ala, alanine; Pyr, pyruvate; M, 10 

malate; PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate. Coloured dots represent the 11 

number of carbon atoms present in each metabolite. Red dots represent the path of carbon to 12 

RuBisCO in one round of the C4 cycle. (B) Anatomical differences between C4 and C3 leaves. 13 

Kranz anatomy in C4 Gynandropsis gynandra (left) and typical non-Kranz anatomy in C3 Tarenaya 14 

hassleriana (right) are shown. Leaves were fixed in resin, sectioned, stained in Toluidine-Blue and 15 

imaged under light-microscopy. Scale bar = 100µm. Cell type abbreviation: BS, bundle sheath; M, 16 

mesophyll. 17 

 18 

Figure 2. Multiple regulatory mechanisms control cell specific expression of C4 genes. Genes 19 

listed under each regulatory checkpoint are known to be controlled at that step, as discovered in 20 

specific C4 species indicated by superscripted numbers. C4 gene abbreviations: CA, CARBONIC 21 

ANHYDRASE; PEPC, PHOSPHOENOLPYRUVATE CARBOXYLASE; PEPCK, 22 

PHOSPHOENOLPYRUVATE CARBOXYKINASE; PPDK, PYRUVATE ORTHOPHOSPHATE 23 

DIKINASE; NAD-ME, NAD-MALIC ENZYME, NADP-ME, NADP-MALIC ENZYME; RBCS, SMALL 24 

SUBUNIT OF RUBISCO; RBCL, LARGE SUBUNIT OF RUBISCO; GLDPA, P-SUBUNIT OF THE 25 

GLYCINE DECARBOXYLATION COMPLEX; psbB-psbT-psbH-petB-petD, polycistron encoding 26 

components of Photosystem II.  27 
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