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Abstract Multi-state models provide a convenient statistical framework for a wide
variety of medical applications characterized by multiple events and longitudinal data.
We illustrate this through four examples. The potential value of the incorporation of
unobserved or partially observed states is highlighted. In addition, joint modelling
of multiple processes is illustrated with application to potentially informative loss to
follow-up, mis-measured or missclassified data and causal inference.

Keywords Causal inference · Classification uncertainty · Informative missing data ·
Multi-state models · Time dependent explanatory variables

1 Introduction

Ross Prentice’s work has influenced and inspired many generations of academic and
applied statisticians. His contributions to event history analysis have been notable,
both in terms of the breadth of topics covered and the insights made. His book with
Jack Kalbfleisch on “The Statistical Analysis of Failure Time Data” (Kalbfleisch and
Prentice 2002) is a classic, and a must have text for those wanting a thorough ground-
ing in methods for the analysis of failure time data. His ability to quickly identify
and grasp the fundamental nature of problems and the issues arising in applications is
impressive, resulting in many important methodological and applied works. Through-
out over 40 years of statistical research, he has shown the power and flexibility of
survival analysis techniques to successfully tackle a range of problems.
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The aim of this current paper is to demonstrate that the multi-state modelling
approach provides a convenient framework for handling a wide variety of medical
applications characterized by multiple events and longitudinal data. While not explic-
itly formulated in terms of multi-state models, the work of Ross Prentice presented in
his 1981 pioneering paper on multivariate failure times (Prentice et al. 1981) informs
much of the model building presented here. If multiple events can be observed in
longitudinal follow-up, then consideration must be given to the re-formulation of
time-to-event models after the occurrence of events. Baseline hazards, the definition
of time-dependent explanatory variables, the choice of time scale, the incorporation of
history and the interpretability of formulations may all need to be carefully examined.

Prentice et al. (1981) is just one example of Ross Prentice’s work where the practical
application of the latest development in statistical methodology, there Cox’s (1972)
relative risk regression model, was carefully implemented, further developed where
necessary and then used to clearly illustrate the potential of the method. We wish
to use a number of applications to demonstrate the same potential and versatility of
multi-state models.

Aalen et al. (2008) highlights the value of a process point of view and, in particular,
the use of multi-state models for handling the temporal aspects of longitudinal data and
for reflecting the inherent structures of particular applications. In the four examples
examined in this paper, we will specifically demonstrate the potential value of the
incorporation of partially observable states, and the use of multi-state models as an
approach to joint modelling, including that of loss to follow-up, for dealing with
mis-measured or misclassified data, and to aid causal inference. The proposed multi-
state models or their estimation will all involve the handling of some unobserved
information about one or more of state occupancy, transition times or random effects.
While illustrative results will be provided for all examples, our focus will be on model
formulation. Details of parameter estimation will not be provided, although references
will be given.

Our first example will focus on joint modelling of two related processes and a
sensitivity analysis related to potentially informative censoring.

2 Semi-competing risks and informative observation

In biostatistics and epidemiology, Prentice et al. (1978) convincingly argued that the
framing of standard competing risks problems, where occurrence of a competing event
precludes the occurrence of other events, in particular the event of interest, in terms
of conceptual or latent failure times is inappropriate and should be avoided. Instead,
they advocate that the formulation of competing risks problems in these areas should
be in terms of multi-state processes, since reference to conceptual times is avoided
and focus instead is placed on the cause-specific hazard functions (i.e. the transition
intensity functions), which are the basic estimable/identifiable quantities. Although
the nomenclature “multi-state processes” was not explicitly used in Prentice et al.
(1978), their inherent structure is clearly evident in the paper.

In a variation to the competing risks problem, semi-competing risks (Fine et al.
2001) refer to the situation when, in longitudinal follow-up of subjects, there are two
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events of interest, a terminal and a non-terminal one. The terminal event can censor
the non-terminal one but not vice-versa. Here more information about event times
are available than in the standard competing risks setting as data beyond the first
event (if not terminal) are collected. Again we would argue that developing models
based on latent event times should be avoided and multi-state models are preferable,
if not advisable. In this section we describe a multi-state modelling approach (Siannis
et al. 2007) for analysing data of this type that arose in the Whitehall II study, a large
epidemiological study of British civil servants (CS).

2.1 A multi-state model for the Whitehall II study

The Whitehall longitudinal cohort included 10,308 men and women aged 35–55 years
who were recruited between 1985 and 1988 (Marmot et al. 1991). Data used here were
from four follow-up study phases, the last ending in 1999. One outcome of interest
is the occurrence of serious coronary heart disease (CHD) events. These events can
be either fatal (F) or non-fatal (NF). A link to the National Health Service Central
Registry provided accurate information on the date and cause of death for all CS who
died. Thus complete information is available on F events but data on NF events are
subject to interval censoring when a CS is lost to follow-up.

A key question of interest was the relationship between the grade of employment
‘level’ of a civil servant and CHD risk. It was recognized however that loss to follow-up
may be linked to health status and thus that censoring could be informative. Therefore
it was important to understand how robust any findings related to the risks associated
with civil service grade were to informative censoring, and a sensitivity analysis to
address this was desired.

If we regard the two expressions of CHD (NF and F) as two separate, but perhaps
dependent, events, then a model for two processes, NF and F , operating simultaneously
is needed. During the observation period, each CS can experience none, one or even
both of the events, the latter being possible only if an NF event happens first. NF events
can also occur after the CS has been lost to follow-up (LTF) for the NF-process. In
this case the NF event will be unobserved. No loss to follow-up is possible for the
mortality process.

To model the two processes, the multi-state model presented in Fig. 1 can be used.
This model, with five possible states, allows all possible combinations of events to be
represented. Although we have complete information for the F-process, we have no
information from a CS after they are LTF to the NF-process until the end of follow-up
for the F-process (either death or end of study). In particular, we have no informa-
tion on NF events that happen during that period of time. However, we allow for
the possibility of such an event through inclusion of an unobservable state. The five
states in the model are the healthy state, ‘H’, the fatal state, ‘F’, which is absorbing, a
state, ‘NF’, to represent an observed non-fatal event, a state, ‘LTF’, to represent loss-
to-follow-up for the NF-process, and the unobservable state, ‘NF(LTF)’, that repre-
sents an NF event experienced after the CS is lost-to-follow-up for the NF-process.

Note that for simplicity, we have described this multi-state model without regard
to the non-CHD related deaths. In the subsequent analysis of the data, these deaths
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Fig. 1 Whitehall II multi-state model (H healthy, NF non-fatal CHD event, LTF lost to follow-up, F fatal
CHD event)

are treated as arising from a competing risk for the CS in the Whitehall II Study. Thus
the estimated CHD-related hazard functions in our model are actually cause-specific
hazards in a slightly more complex model. As in a typical competing risks analysis,
we estimate these hazard functions by treating death from non-CHD related deaths as
independently right censored.

Likelihood estimation for the model in Fig. 1 is outlined in Siannis et al. (2007),
where the transition rates are assumed to have a proportional hazards structure with
a Weibull baseline hazard function, with the time from entry into the study, denoted
by t, taken as the time scale. However, for this model to be identifiable, at least two
assumptions, that relate to the baseline transition intensity functions λ5(t), λ6(t) and
λ7(t), are required. The model fitting will be dependent on these assumptions, and
hence they need to be plausible and subject to some level of sensitivity analysis.

The first assumption is that λ3(t) = λ7(t). This implies that whether or not a subject
is censored, the risks of death after having an NF event are the same. The second is
that

λ1(t)

λ2(t)
= k

λ5(t)

λ6(t)
,

which implies that, although the risk, or hazard, associated with having either an F
or NF event could be different after a subject is LTF than before, the ratios of these
hazards before and after LTF are assumed proportional, and, when k = 1, equal.

The proposed assumptions are motivated by the particular multi-state model and
are not data-driven. They provide a means to identify the transition rates introduced
because an unobservable state has been added to the model. The parameter k cannot be
estimated and can serve only as a sensitivity parameter. However, it may be valuable
to compare predictions from these alternative multi-state models with those from
dynamic predictions made through alternative methods such as landmarking (van
Houwelingen and Putter 2008).
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2.2 Illustrative Whitehall II results

As mentioned earlier, the role of employment grade is of primary interest. A rele-
vant test of significance can be based on the multi-state model. A further simplifying
assumption can be made that the explanatory variable effects related to all transitions
to the F state are the same. Then, to carry out the significance test, the multi-state
models with the grade effect allowed to vary across the different hazards (six df for
grade, two for each freely varying transition rate) and the grade effect completely
removed (zero df for grade) are fitted. A likelihood ratio (LR) test to compare the
two models leads to the test statistic L R = 142.68, which, when compared to the
χ2 distribution with six df, is highly significant (p < 0.0001). This demonstrates a
significant role for grade level.

The possible inadequacies of analyses based on the time-to-first event, either NF
or F, and the time-to-NF event in the competing risks setting where we ignore the
F-process subsequent to occurrence of the NF event, were also a motivating factor for
the semi-competing risks multi-state model developed since the follow-up of subjects
after an NF event can and should be incorporated. To illustrate the differences in
results obtained from performing a time-to-first event Cox regression analysis and
the proposed multi-state analysis, we present the cumulative incidence functions from
both these analyses by grade level, restricted to males aged 45–49 years. Figure 2a
presents the results for all grade levels but with the multi-state results restricted to
k = 1. The remaining figures (Fig. 2b–d) present for each grade level in turn, the Cox
results and the multi-state results from sensitivity analyses with k = 0.5, 1 and 2. It
can be seen that the multi-state model estimates more of an increased risk for males
associated with grade 3 than does the time-to-first event analysis. The differences for
the other grade levels are much less marked.

2.3 Remarks

Standard methods, such as those based on Cox’s relative risk regression model, can
provide analyses of the (semi-)competing risks separately and investigate, to an extent,
the relationship between the risk of the terminal and non-terminal event through the use
of time-dependent covariates. However such methods do not provide a comprehensive
joint analysis for semi-competing risks data, as they do with standard competing
risks data. An analysis of time-to-first event is particularly problematic using standard
methods since some potentially informative data must be ignored.

The multi-state model presented here, with an unobservable state, provides another
approach to the analysis of semi-competing risks data. While two model-based
assumptions are necessary to ensure model identifiability, the model does provide
a structure that clearly reflects the observed data and allows full use to be made of
them. Explanatory variables are easily incorporated and estimation of various quanti-
ties of interest is possible. Importantly, the association between the risks and potentially
informative LTF is introduced in a rather general way.

The next section presents another example of joint modelling through a multi-state
structure but where the focus is more specifically on the relationship between processes
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(a) (b)

(c) (d)

Fig. 2 Comparison of time-to-first event Cox cumulative incidence curves with those from sensitivity
analyses for the multi-state (M-S) model by different grade levels and restricted to males aged 45–49 years.
a Curves are estimated with k=1

and where a specific form of measurement error is a particular concern. It, and all our
subsequent examples, will derive from the analysis of data from psoriatic arthritis
(PsA) patients.

3 An expanded multi-state model for joint modelling

Time-dependent explanatory variables arise commonly in medical applications. Cox’s
seminal paper (Cox 1972) provided a practical approach to their incorporation in time-
to-event models but, when observation is not made in continuous time, many pragmatic
issues must be addressed. Notably important is the effect of infrequently updating time-
dependent variables which typically leads to attenuation of regression effects in the
standard survival analysis context (Raboud et al. 1993; Andersen and Liestøl 2003).
Because of the intermittent nature of recording of explanatory variable information,
the modelling of such data is akin to the the modelling of survival data subject to
covariate measurement error to which Prentice has made significant contributions
(Prentice 1982; Pepe et al. 1989; Wang et al. 1997).
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To illustrate the usefulness of multi-state models in this regard, we consider a
longitudinal investigation of quality of life in 600 PsA patients. PsA is an inflammatory
arthritis associated with the skin disease psoriasis. Due to the combination of joint
and skin manifestations of the disease, PsA can have a substantial impact on patient
function, well being and health-related quality of life (Gladman et al. 2007; Sokoll
and Helliwell 2001; Mease 2009). At the University of Toronto PsA Clinic, patients
are scheduled to be seen at approximately 6-month intervals and physical functional
disability, as measured by the health assessment questionnaire (HAQ) (Fries et al.
1980), has been assessed on an approximately annual basis (median time between
HAQ administrations 1.08 years; inter-quartile range (1.00, 1.42) years) since 1993.

The focus of this investigation was on the relationship between physical functioning
and other factors. For example, sex as a time-independent variable and the number of
permanently damaged joints, a time-dependent measure of disease progression, were
of interest. However, physical functioning is known to correlate significantly with
current disease activity, reflected in the number of tender or effused joints at any point
in time. Thus there is interest in controlling for disease activity when studying the
relationship between functional disability and other explanatory variables.

To reflect this situation, consider that an outcome (e.g. HAQ) at any continuous time
t, Y (t), can take m possible ordered states from the set {1, . . . , m}, where transitions
are allowed in both directions between adjacent states but direct transitions are not per-
mitted between non-adjacent states. This constraint on the transitions is in continuous
time, and therefore is not as restrictive as it first appears since an observed transition
between non-adjacent states over two successive visits in the data would necessarily
have been via the unobserved “adjacent” states in the period between these visits. In
addition, we assume, without any real loss of generality, that there is one potentially
rapidly fluctuating time-dependent ordinal variable (e.g. disease activity), denoted by
W (t), which is allowed to take n possible distinct values from the set {1, . . . , n}, and
that there are two other explanatory variables which are of direct interest; one a less
changeable time-dependent explanatory variable, X (t) (i.e. damage), and the other a
time-independent variable, Z (i.e. sex). For ease of exposition, we describe a model
for the i th of N subjects.

Assume the outcome, Yi (t), and the predictable vector, Vi (t) = (Wi (t), Xi (t), Zi )
T,

of the three explanatory variables for this i th subject are recorded intermittently at
pi + 1 observation/visit times 0 = ti0 < ti1 < · · · < tipi (assumed ignorable (Grüger
et al. 1991)), and that the evolution of Yi (t), can be described in terms of a multi-state
model with the transition rate from state j to state k (denoted by j → k) defined by a
proportional rate of the form:

λi jk(t; vi (t)) =
{

λ0 jk(t) exp(αT
jkwI i (t) + β jk xi (t) + γ jk zi ) if | j − k| = 1

0 otherwise,
(1)

where λ0 jk(t) represents the baseline rate function for the j → k transition, α jk =
(α2 jk, . . . , αnjk)

T is the vector of regression coefficients associated with the vector
of dummy variables, wI i (t) = (I (wi (t) = 2), . . . , I (wi (t) = n))T, and β jk and γ jk

are the regression parameters associated with the two variables of interest, x(t) and z,
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(a)

(b)

Fig. 3 Three-state and nine-state multi-state diagrams for functional disability states of Y and for combined
states of [Y, W ] (Y functional disability, W disease activity)

respectively. Figure 3a illustrates such a multi-state model for Y (t) representing three
functional disability states.

Because the Toronto PsA HAQ data are based on annual assessments, i.e. represent
panel data based on intermittent observation, fitting of (1) is difficult, without at least an
additional assumption, since the times at which time-dependent variables change val-
ues are not observed. The most common simplifying assumption is that the transition
rate matrix, Λ(t), is piecewise-constant. This is usually achieved by approximating
time-dependent variables as piecewise-constant functions, where these variables are
assumed constant between the times/visits for which they are available, and by spec-
ifying the baseline rate functions either to be time homogeneous (i.e. constant) or
piecewise-constant.

For explanatory variables that change rather slowly over time, as assumed for X (t),
the assumption of piecewise constancy between visits may be a reasonable approx-
imation. However for some variables, such as the more rapidly varying W (t), this
assumption may be highly questionable. Subsequently, we will refer to the simplified
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multi-state model obtained by making the piecewise-constancy assumption for both
X (t) and W (t) as the misspecified model.

To recognise explicitly the intermittent observation of W (t), the structure of the
multi-state model given in (1) can be expanded by jointly modelling the outcome
of interest, Y (t), and the time-dependent variable of concern, W (t), through a larger
multi-state model with m×n states. However, in this new combined process, [Y, W ](t),
it is important to retain the distinction between Y (t) as the outcome of primary interest
and W (t) as a predictable time-varying explanatory variable given in (1). To do this
it is necessary to assume that W (t + h)⊥⊥Y (t)|W (t),∀h > 0, where A⊥⊥B|C means
A is conditionally independent of B given C (Didelez 2007; Dawid 1979). However
note that this does not imply that W (t + h)⊥⊥Y (t + h)|[Y, W ](t).

The states in the new model are defined by the unique combinations of the states of
Y (t) and the levels of W (t). This is illustrated in Fig. 3b for n = 3 levels of W (t). For
this structure, standard multi-state software (e.g. the msm package (Jackson 2011) in
R (R Development Core Team 2010)), that accommodates panel data, can be used with
interval censored observation of transition times between the states of Y (t) and the
intermittent observation of the explanatory variable, W (t). This approach, although
more general in principle, can be made consistent with (1) through constraints on the
regression coefficients and baseline rates.

Formally, the correspondence between the multi-state model (1) and the expanded
multi-state representation can be made explicit when any two expanded states are
denoted by ( j, r) ≡ jr = j +m(r −1) and (k, s) ≡ ks = k+m(s−1) (( j, r) �= (k, s))
and where the transition rates between these states of the joint process [Y, W ](t) are
written as

λi jr ks (t; xi (t), zi ) =
{

λ0 jr ks (t) exp(β jr ks xi (t) + γ jr ks zi ) if | jr − ks | = 1 or m
0 otherwise.

(2)

As outlined in more detail in Tom and Farewell (2011), to ensure correspondence
between models, it is necessary to place constraints on the baseline rates, λ0 jr ks (t), and
the regression parameters, β jr ks and γ jr ks . These constraints will force the regression
coefficients in the rates for all upward transitions between the same two Y states to be
same and, similarly, for downward transitions. Additionally, transition rates, specified
by the baseline transitions rates and the regression coefficients, between the same two
W states are constrained to be identical. These latter constraints are required since
model (1) specifies the distribution of (Y (t)|W (t−), X (t−), Z) and thus we need to
model the “marginal” distribution of (W (t−)|X (t−), Z) to get at the joint distribution.
Note that in (2) we do not allow the two sub-processes Y (t) and W (t) to change states
at the same time but, as mentioned earlier, this is not much of a restriction when
modelling in continuous time. We refer to the multi-state model corresponding to (2)
with the aforementioned imposed constraints as the expanded model.

The constraints placed on the regression parameters in (2) allow them to be inter-
preted in exactly the same way as the corresponding regression parameters in the
simpler multi-state model defined by (1). The baseline transition rates corresponding
to movements between states of the Y (t) sub-process are unconstrained to model the
dependence of Y (t)process on W (t−).Finally note that we have permitted explanatory
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variables to have modifying effects on the baseline transition rates relating to move-
ment between the levels of the W (t) sub-process. This is practically important if these
variables confound the relationship between W (t) and Y (t) and, more generally, mim-
ics the usual regression formulation where no assumption of independence between
explanatory variables is made.

3.1 Illustrative HAQ results

Table 1 presents selected results from fitting two multi-state models to the Toronto PsA
data. The first fits the misspecified three-state model for physical functioning (HAQ)
alone with updating of both disease activity and damage only at the times of clinic
visits. The second fits the expanded multi-state model of Fig. 3b where the fluctuating
nature of disease activity is reflected. Both models included age and arthritis duration
as explanatory variables but results are only presented for sex and damaged joint count,
along with the estimated disease activity effects on fatigue transitions derived from the
logarithms of ratios of baseline rates for the expanded model and from the regression
coefficients for the misspecified three-state model.

Table 1 Multi-state modelling results for sex and damage effects on transitions between disability states,
controlling for the levels of disease activity, as well as age and arthritis duration (results not show)

Variable Disability
transition

Multi-state representations

Misspecified model Expanded model
Estimate (95 % CI) Estimate (95 % CI)

Sex

Male vs. female 1 → 2 −0.7578(−1.0350,−0.4801) −0.6444(−0.9315,−0.3573)

Male vs. female 2 → 3 −0.1977(−0.6329, 0.2376) −0.2483(−0.6911, 0.1945)

Male vs. female 2 → 1 0.0931(−0.1749, 0.3610) 0.1640(−0.1110, 0.4391)

Male vs. female 3 → 2 0.1506(−0.2506, 0.5518) 0.07219(−0.3393, 0.4837)

Number of damaged joints

1 → 2 0.0106(−0.0019, 0.0231) 0.0103(−0.0025, 0.0230)

2 → 3 0.0036(−0.0112, 0.0183) 0.0086(−0.0070, 0.0242)

2 → 1 −0.0166(−0.0273,−0.0058) −0.0201(−0.0307,−0.0095)

3 → 2 −0.0116(−0.0244, 0.0013) −0.0168(−0.0302,−0.0033)

Number of active joints

[1,5] vs. 0 1 → 2 0.4892 (0.1774, 0.8009) 1.0283 (0.4972, 1.5594)

[1,5] vs. 0 2 → 3 0.2943(−0.3530, 0.9416) 1.1029(−0.2906, 2.3491)

[1,5] vs. 0 2 → 1 0.1004(−0.2576, 0.4584) 0.1429(−0.3331, 0.6188)

[1,5] vs. 0 3 → 2 −0.1865(−0.8610, 0.4879) −0.2847(−1.2181, 0.6486)

>5 vs. 0 1 → 2 0.7924(0.4269, 1.1580) 1.6063(1.1409, 2.0716)

>5 vs. 0 2 → 3 0.7286 (0.1158, 1.3410) 1.7995 (0.6943, 2.9047)

>5 vs. 0 2 → 1 −0.0045(−0.3605, 0.3515) −0.9484(−1.4376,−0.4592)

>5 vs. 0 3 → 2 −0.5073(−1.1490, 0.1344) −1.0239(−1.7621,−0.2858)
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While attenuation of activity effects from this misspecified model is quite marked
and would be expected based on earlier work (Raboud et al. 1993; Andersen and
Liestøl 2003), this will not necessarily be the case for other explanatory variables.
For example, consider the effect of gender on the 1 → 2 transition corresponding to
an upward move from none or low disability to moderate disability and the effect of
the number of clinically damaged joints on the 3 → 2 transition corresponding to
a downward move from high disability to moderate disability. For the former, even
though it is a time-independent variable, we observe an 18 % inflation in the absolute
effect size for being male compared to female when we use the misspecified model
instead of the expanded model, with the statistical significance of this effect becoming
stronger (Z -statistic = 5.36 vs. 4.40). For the latter, we observe a 31 % reduction in
the absolute effect of a one clinically damaged joint increase on the instantaneous
transition from high disability to moderate disability, with a somewhat larger p-value
(p = 0.077 vs. 0.014). The possibility of both attenuation and strengthening of effects
has also been demonstrated in simulation studies (Tom and Farewell 2011).

3.2 Remarks

Intermittent observation of time-varying explanatory variables is common and, to
a large extent, pragmatic assumptions are made to deal with this. However, many
regression analyses of longitudinal data can be configured in terms of a multi-state
model. If panel data is available for the estimation of the model and, in addition,
there is one key time-varying explanatory variable which is reasonably represented
by an ordinal variable, then the use of an expanded multi-state model may be useful.
Minimally, it could act as the basis for a sensitivity analysis with respect to the potential
impact of the more commonly made simplifying assumptions with respect to the
pattern of the explanatory variable over time. Moreover an advantage, as opposed to
other joint modelling approaches to coping with measurement error, is that it allows
for the uncertainty in this key explanatory variable without explicitly having to model
the rapid changes between visits.

The next section returns to the introduction into a multi-state model of unobservable
or partially observable states and illustrates how the incorporation of a misclassification
structure can allow the fitting of such a model.

4 A model for remission in psoriatic arthritis

As indicated in the previous section, a basic measure of disease activity for patients
with psoriatic arthritis is the number of tender or effused joints. These counts may
vary considerably across clinic visits and zero counts are not uncommon. However,
an extended period of time with no active joints is expected for patients who are in
remission and the identification of factors associated with remission is of interest. For
example, in Gladman et al. (2001), patients were defined to be in remission if they
were observed to have no evidence of disease activity for at least three consecutive
clinic visits.
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Fig. 4 Three-state model for remission in PsA (S1 active disease, S2 early stage of remission, S3 established
stage of remission)

In this situation, and more generally for time-to-event analysis of any event which
is operationally defined by some condition being true for a prolonged period of time,
defining the time to an event is problematic. Multi-state models offer an alternative to
the use of simple but possibly inappropriate definitions of the time to an event.

4.1 A three-state model

To begin, we regard remission as a conceptual disease state with those patients not
in remission assumed to be in an active disease state. Operationally however, we link
remission to the active joint count as follows. If a patient has one or more active joints
at some time point, then their disease state is active. Thus any patient in remission
must have no active joints and this can be regarded as a structural zero. If a patient
has had three consecutive clinic visits when no active joints were observed, then the
patient is regarded as being in remission at the last clinic visit during this period. Note
that this consistent observation is not taken to define remission but is taken to confirm
that the patient has entered remission at some point prior to the third visit. Given the
intended pattern of clinic visits, three consecutive clinic visits will usually take place
over a period of at least a year, and must be greater than 6 months given the definition
of visits for the purposes of data collection. A patient with no active joints at a clinic
visit that is not preceded by at least two other such visits may be in remission but it
cannot be confirmed. They may also have active disease with the observed zero joint
count being a sampling zero.

A three-state model that reflects this structure is given in Fig. 4. Suppose that S(t)
represents the state for a patient at time t, where t denotes the years since diagnosis of
PsA. In this model, state 1 (S(t) = S1) corresponds to active disease, state 2 (S(t) =
S2) corresponds to the early stage of remission and state 3 (S(t) = S3) corresponds
to an established stage of remission. It should be noted that a patient in either S2
or S3 is regarded as in remission. These are conceptual, not observed, states that are
introduced in order to give all remissions some duration. This is achieved by the further
assumption that patients in S2 can only move to S3. Transitions back to active disease,
S1, can only occur from S3.

This model can be further specified by three transition rates. Associated with the
S1 → S2 transition, the first is the instantaneous rate of progression to S2, conditionally
on occupying S1 at t :

λ12 (t; x(t)) = λ012(t) exp
(
βT

12x(t)
)

, (3)
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where λ012(t) is a baseline transition rate, x(t) represents a vector of (possibly time-
dependent) explanatory variables and β12 is the corresponding unknown vector of
regression coefficients. Typically, this transition rate, (3), into S2 would be the tran-
sition of greatest interest as it would provide a model for the distribution of time to
remission from an active disease state.

A transition rate for the S3 → S1 transition, λ31(t; x(t)), can be defined analogously
and corresponds to a model for transitions from remission back to active disease. The
final transition, S2 → S3, will have a rate of the same form but this conceptual
transition is unlikely to be of clinical interest.

In fitting the model, the uncertainty regarding a patient’s state at some time point can
be made explicit through the introduction of misclassification probabilities. Suppose
that S(t) = r (r = S1, S2, S3) represents the true underlying state of a patient at
time t, and O(t) = s (s = O1, O2, O3) represents the corresponding observed state
at time t based on active joint counts. Specifically, let O1 denote the observation of
a non-zero active joint count at a visit, O2 denote the observation of a zero active
joint count at a visit not preceded by at least two other such visits, and O3 denote the
observation of the third or subsequent zero active joint counts in a sequence of such
visits. Then, based on the assumptions about active joint counts outlined earlier and
the assumption that the misclassification probabilities are independent of time t, we
can specify Pr{O(t) = s | S(t) = r} as follows:

(1) Pr(O1 | S1) = 1 − Pr(O2 | S1), Pr(O2 | S1) = logit −1(γ Tz), Pr(O3 | S1) = 0,

where z is a vector of explanatory variables that might be informative about the
true state of the patient at time t, and γ is the corresponding unknown vector of
regression coefficients;

(2) Pr(O1 | S2) = 0, Pr(O2 | S2) = 1, Pr(O3 | S2) = 0;
(3) Pr(O1 | S3) = 0, Pr(O2 | S3) = 0, Pr(O3 | S3) = 1.

Essentially, only S1 is allowed to be misclassified. Thus, at some time point t, a patient
with a clinic visit and an associated zero active joint count not preceded by at least two
other such visits can either be in active disease (S1) or be in early stage of remission
(S2). A logistic model is used to investigate the influence of explanatory variables z
on Pr(O2 | S1). Specifically, for illustration, a binary explanatory variable, Z , will be
included. It is coded one for the first visit with a zero joint count not preceded by any
other such visits and zero for visits with a zero active joint count only preceded by one
such visit. The variable is defined only for visits corresponding to observed state O2.

Multi-state models with misclassification have been discussed in Jackson et al.
(2003) and can be fit using themsmR package under the assumption that transition rates
are constant (i.e., time-independent) or piece-wise constant over time. Because the
(O1, O2, O3) classification is only observed at clinic visits, the maximum likelihood
estimation is based on the panel data arising from this intermittent observation pattern
and the interval censoring option of the msm package must be used.

For comparison, two other approaches can be used to define remission in the PsA
data. The first treats a patient as in remission at the end of a time period with three
consecutive clinic visits with no active joints, while in the second approach, a patient is
considered in remission at the beginning of such a period. Following Farewell and Su
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(2011), the three-state model can be denoted as Model A and the two other possibilities
outlined here as Models B and C respectively.

4.2 Illustrative remission result

A detailed analysis of data from 790 patients entering the Toronto PsA Clinic in the
years 1973–2006 can be found in Farewell and Su (2011). The time scale t is taken to
be time since diagnosis of PsA. Typically patients will come to clinic at some time after
diagnosis so likelihood estimation must incorporate left truncation of observation and
this is also implemented in the R package msm. After exploratory analyses, baseline
rates were taken to be piecewise constant in the two intervals [0, 15] and [15, 40].

Models B and C would both have only two alternating states, corresponding to S1
and S3 in the three-state model, and no misclassification. In Model B, it is assumed
that patients were in remission only at the third of three or more consecutive clinic
visits with zero active joint counts (either from enrollment or following a visit with a
non-zero active joint count). That is, a transition to remission had occurred between
the second and third clinic visits of a time period with three consecutive visits with
zero active joint counts. In Model C, it is assumed that remission had occurred by the
first visit of such a period and after the previous visit at which a non-zero count was
observed.

Two explanatory variables were included in the transition rate models for λ12(t)
and λ31(t). Regression coefficients and standard errors for these variables for Models
A, B and C are given in Table 2.

The models can also be compared when used to estimate the total length of stay in
various states over a fixed time period. If a period of 40 years after PsA diagnosis is
considered, then the estimated time with active disease is 30.6, 32.5 and 29.5 years in
Models A, B and C, respectively. Correspondingly, the time in remission (time spent
in either S2 or S3 in Model A) for the same patients follows the reverse ordering. The
results for female patients who were 35 years old at PsA diagnosis are different with

Table 2 Regression coefficients and 95 % confidence intervals for remission models

Sex Age at PsA diagnosis

Model A

S1 → S2 0.61 (0.34, 0.88) 0.18 (0.05, 0.31)

S3 → S1 −0.20 (−0.52, 0.13) 0.46 (0.30, 0.62)

Model B

S1 → S2 0.75 (0.45, 1.05) 0.06 (−0.09, 0.20)

S3 → S1 −0.32 (−0.64, 0.00) −0.07 (−0.24, 0.09)

Model C

S1 → S2 0.83 (0.54, 1.12) 0.10 (−0.04, 0.24)

S3 → S1 −0.21 (−0.54, 0.10) 0.08 (−0.09, 0.24)
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the estimated time with active disease being 34.6, 37.0 and 35.5 years in Models A, B
and C, respectively.

With the most conservative approach of defining remission, Model B always gives
the least time spent in remission. Model A allows the possibility that, at the visits
with zero active joint counts but not preceded by at least two other such visits, the
patients were actually in early stage of remission. Therefore the estimated time spent
in remission in Model A is expected to be longer than in Model B. In Model C, we
allow the patients to be in remission exactly two clinic visits earlier than in Model
B, which also makes the estimated time spent in remission longer. The ranking of
the corresponding estimates from Models A and C will depend on specific scenarios.
Model A allows a patient to possibly be in remission at visits with zero active joint
counts but not preceded by at least two other such visits, regardless of the observed
states at the following visits. In Model C, patients could be in remission as early as at
the first visit of a sequence of three visits with zero counts. However, no possibility is
given to remission at those one or two visits with zero active joint counts not preceded
by at least two other such visits and immediately being followed by a visit with non-
zero active joint count or reaching the study cut-off date. Thus a trade-off between
these factors determines the estimated lengths of stay from Models A and C.

The fit of Model A is further characterized by the estimated misclassification prob-
abilities. While Pr {O(t) = O2 | S(t) = S1, Z} is directly modelled here, the quantity
Pr {S(t) = S1 | O(t) = O2, x, Z} , corresponding to the probability that patients were
actually in active disease when observed at clinic visits with zero active joint counts
not preceded by at least two other such visits, given the explanatory variables, is more
relevant. The latter probability can be calculated via Bayes’ rule if Pr {S(t) = S1 | x}
and Pr {S(t) = S2 | x} are approximated by the proportions of estimated total length
of stay in S1 and S2 for the time periods t ∈ [0, 15) and t ∈ [15, 40], given the
explanatory variables.

This calculation, for male patients diagnosed at age 35, gives misclassification
probabilities, Pr {S(t) = S1 | O(t) = O2} , of 0.938 and 0.322 for the first (Z = 1)
and second consecutive visits (Z = 0) with zero counts during the first 15 years
of disease and values of 0.810 and 0.118 subsequently. For females, the comparable
numbers are 0.965 and 0.468 in the first time period and 0.887 and 0.199 in the second.
As expected, the misclassification probabilities at the second visit with a zero count
are much smaller than at the first.

4.3 Remarks

The benefit of using this three-state model for remission is that it avoids ad hoc def-
initions of time to remission. However, to do this a “hypothetical” transition must be
introduced to allow a plausible time in remission. Nevertheless, because misclassifi-
cation is included in the model formulation, the assignment of observed states known
to be problematic is avoided. Minimally, the use of the three-state model could be
seen as a check on the robustness of findings from more simplistic approaches which
might be adequate for some purposes and is another example of a multi-state model
providing an approach to sensitivity analyses.
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In the next section, we consider the joint modelling of many processes. This will
involve the fitting of many correlated multi-state models, and in the particular applica-
tion, each of these models will represent two separate processes as well. In addition,
we will consider the extent to which causal arguments can be linked to results from
estimation of these models.

5 Correlated multi-state processes and causality

Previous sections have dealt with a variety of multi-state models but, in all cases,
observed transitions for an individual have been assumed independent of those for
all other individuals. However, this independence assumption is neither necessary nor
sensible for some potential applications. We illustrate this with reference to an analysis
of individual joint data from PsA patients.

Disease progression in PsA, as with rheumatoid arthritis (RA), is often taken to be
reflected in the accumulation and severity of damaged joints. The damage process is an
irreversible one, therefore once a joint is damaged it will remain so. Disease activity, on
the other hand, is a reversible process, and is reflected in part by joints being described
as either tender only or effused (joint swelling with or without tenderness); with the
latter representing a more severe level of activity than the former. For both PsA and RA
there is a strong belief amongst clinicians that active inflammation results in or causes
joint damage. A number of research groups have repeatedly shown an association
between disease activity and progression to damage. For example, in an investigation
of the link between activity and damage in PsA, based on the Toronto PsA data (Bond
and Farewell 2009), negative binomial regression models for the increase in the total
damaged joint count between visits were fitted, with previous damage incorporated
as a dynamic explanatory variable in the models to account for the within-patient
correlation. Disease activity was initially included into these models both in terms of
total active joint counts at clinic entry and as time-dependent explanatory variables,
with the total joint counts updated at clinic visits. These models found that time varying
activity (both effused and tender total joint counts) was associated with the progression
of damage, but that activity variables at clinic entry were not, when their time varying
counterparts were known.

Because total joint counts were used in these investigations, the relationships iden-
tified were essentially systemic. If we can examine the link between activity and
damage at the individual joint level then this would further understanding of the bio-
logical processes and strengthen causal arguments. In addition, disease patterns, such
as symmetry, can be investigated.

5.1 A damage model for individual joints

There are 28 hand joints in total (excluding the wrists) and we consider a model for
the 14 pairs of comparable joints on the left and right hands.

A four-state model for damage in each of the 14 pairs of hand joints is depicted in
Fig. 5. The four states of this multi-state model are defined as
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Fig. 5 Diagram of the multi-state model for damage at a joint location, with random effect

S1: Damage in neither hand, (D̄L , D̄R),

S2: Damage in the right hand, (D̄L , DR),

S3: Damage in the left hand, (DL , D̄R), and
S4: Damage in both hands, (DL , DR).

Note that this is a multi-state model at a specific joint location in both left and right
hands.

Schweder (1970) introduced the concept of local (in)dependence between compo-
nents of a composable finite Markov process. He felt that many studied phenomena can
be realistically described by time-continuous finite Markov processes. If, in addition,
the Markov process representing the phenomenon under study could be defined to be
composable (i.e. represented as a vector of distinct sub-processes, whereby no two sub-
processes or components can change state ‘simultaneously’), then (in)dependencies
between sub-processes can be explicitly expressed through the transition rates of the
original Markov process. The model in Fig. 4 is composable, comprising separate dam-
age sub-processes for the left and right hands at the specific joint location, and local
dependencies between the sub-processes will be reflected in relationships between the
transition rates of this multi-state model. In addition, this model does not allow tran-
sitions directly from S1 to S4. This is a necessary constraint to ensure composability
but is not very restrictive for models with transitions in continuous time. Transi-
tions between S2 and S3 are not allowed since damage is irreversible. Furthermore,
because the 14 multi-state processes within a patient should be more similar than across
patients, we introduce subject-specific random effects into the model. These act mul-
tiplicatively on the baseline transition rates of the 517 patients. The random effects,
Uk, k = 1, . . . , 517, are assumed to be distributed as independent Gamma random
variables with unit mean and variance θ which we denote by Uk ∼ Gamma(1/θ, 1/θ).

This multi-state model is a generalization of Schweder’s model to incorporate random
effects and is similar to the one proposed by Cook et al. (2004) for clustered progres-
sive multi-state processes and is in the same spirit as earlier work done by Self and
Prentice (1986) for multivariate failure time data. Nevertheless, this model still allows
us to examine local dependencies through the transition rates.

To investigate the relationship between damage and the dynamic course of disease
activity at the individual joint (location) level we define binary indicators of joint-
level activity, AL(t), AR(t) for the left and right joints respectively in a pair at time t.
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Here, we make no distinction between activity in the form of tenderness and effusion.
However, where a joint makes a transition into a state of damage, we are interested in
assessing a possible dose–response relationship between joint activity and the rate at
which damage occurs. Thus we also define dynamic binary indicators for joint-level
tenderness, TL(t) and TR(t), and joint-level effusion (with or without tenderness but
usually tender), EL(t) and ER(t), for the left (L) and right (R) hands at time t. Hence,
assuming that no previous damage has occurred to either joint (S1), models for the
transition rates out of S1 are given by:

λ
(l)
12k(t) = ukλ

(l)
012exp

(
αL12 A(l)

L (t) + τR12T (l)
R (t) + εR12 E (l)

R (t)
)

λ
(l)
13k(t) = ukλ

(l)
013exp

(
αR13 A(l)

R (t) + τL13T (l)
L (t) + εL13 E (l)

L (t)
)

. (4)

We further assume that the baseline transition rates are constrained to be the same
across the 14 hand-joint locations. That is, λ

(l)
012 = λ012 and λ

(l)
013 = λ013, ∀l. For

simplicity, we do not explicitly denote the dependence of the rates on explanatory
variables in the left hand side of the defining equations.

When forming models for the transition rates into S4, we choose not to include
information (in the form of explanatory variables) on the activity process in the oppo-
site (damaged) joint at time t because of the dominant effect of symmetrical damage
to be discussed later. Hence, our models for the transition rates into S4 are given by:

λ
(l)
24k(t) = ukλ024exp

(
τL24T (l)

L (t) + εL24 E (l)
L (t)

)

λ
(l)
34k(t) = ukλ034exp

(
τR34T (l)

R (t) + εR34 E (l)
R (t)

)
(5)

and, once again, we assume that the baseline transition rates are constrained to be the
same across the 14 joint locations.

Here, we focus on the relationship between observed transitions in the damage
process and the value of these activity variables (represented by activity or joint ten-
derness and swelling on both the left and right hands) at the last clinic visit. That is,
we assume AL(t), AR(t), TL(t), TR(t), EL(t) and ER(t) to be piecewise constant
between clinic visits. As is done in Sect. 3, this assumption could be relaxed and is
further discussed in O’Keeffe et al. (2011). We additionally assume that these activity
variables can only change ‘state’ immediately after the time of a clinic visit when
damage information becomes available.

It is ‘biologically’ conceivable that this model, given by (4) and (5), can be further
constrained to allow αL12 = αR13, τR12 = τL13, τL24 = τR34, and similarly, εR12 =
εL13, εL24 = εR34. These constraints are used in the interest of parsimony.

We also include additional binary explanatory variables (for joints on the left and
right hands) that indicate whether a joint was ever observed active (either swollen or
tender) at the present visit or any of the previous protocol visits. We constrained the
associated regression coefficients to be the same for transitions in the left and right
hands and allowed only prior activity in the undamaged joint to have an effect on the
corresponding transition into S4. These binary variables attempt to incorporate more
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of the history of disease activity (i.e. the persistence) in the hand joints of patients into
the four-state damage model.

A symmetrical damage pattern in arthritis implies that the tendency for a joint
at a specific location to become damaged is increased if the contralateral joint on
the other hand is earlier damaged, and this applies at all joint locations. To investigate
the extent of disease symmetry in the hands, it is useful to re-parameterize some of the
baseline transition rates in terms of others. That is, we specify λ

(l)
024 = λ

(l)
013 exp(γ24)

and λ
(l)
034 = λ

(l)
012 exp(γ34), with no constraints placed on the baseline transition rates.

Therefore a symmetric pattern would correspond to λ
(l)
012 < λ

(l)
034 and λ

(l)
013 < λ

(l)
024, or

equivalently that γ24 > 0 and γ34 > 0.

Maximum likelihood estimation of the parameters of the four-state damage model
can be implemented and details are given in O’Keeffe et al. (2011).

5.2 Illustrative damage results

To illustrate the use of the four-state damage model, we use data extracted from 517
of the 790 patients in the Toronto PsA clinic who entered before January, 2007. These
517 patients correspond to those who at clinic entry had no clinical damage in any of
the hand joints on either the left or right hands and therefore information on all these
patients is comparable.

Based on these data, and with no explanatory variables introduced into the transition
rate models, the parameters, γ24 and γ34 defined above to characterize symmetry
are estimated to be 1.82 and 1.39 respectively with corresponding 95 % confidence
intervals of (1.49, 2.14) and (1.01, 1.78). Both of these confidence intervals indicate
substantial departures from zero to the right, and therefore present strong evidence for
symmetry. This symmetry, in turn, implies that there are local dependencies in both
direction between the two damage sub-processes (i.e. the left and the right) of the
composable multi-state joint location process.

Table 3 highlights estimation results related to the explanatory variables in the
multi-state model defined in Subsect. 5.1 to investigate the relationship between dis-
ease activity and damage progression. Seven patients were excluded due to missing
information on disease activity. In this table ‘transitive’ joint refers to the joint under-
going the transition to a state of damage (i.e. to S2, S3 or S4) and ‘opposite’ joint refers
to the same joint in the opposite hand. From this table, where there is no previous dam-
age in either joint (i.e. the model is currently in S1), we observe increases in the rates
of transitions into a state of damage when there is current activity (in the form of both
tenderness and effusion) and when there has been some past activity in the transitive
joint, compared to when no activity has been seen. We note that effusion shows a larger
positive effect on transition to damage than tenderness in this situation. Conversely,
activity in the opposite joint appears not to significantly affect the transition rate to
damage.

In the situation where the opposite joint is already damaged, we again see an
increase in the transition to damage both where there is current tenderness and where
there is current effusion as well as where past activity has occurred in the transitive
joint. We note that the effects of tenderness and effusion are similar; we no longer see
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Table 3 Log-rate ratio and rate ratio (RR) estimates for activity at the individual joint level, together with
associated 95 % confidence intervals (CI)

Effect on transition to damage Estimate (95 % CI) RR (95 % CI)

No previous damage in either joint
Tenderness in the transitive joint 1.01 (0.72, 1.31) 2.76 (2.06, 3.70)

Effusion in the transitive joint 1.50 (1.22, 1.77) 4.47 (3.38, 5.90)

Activity in the opposite joint 0.17 (−0.10, 0.44) 1.18 (0.90, 1.55)

Transitive joint active in the past 0.76 (0.52, 1.00) 2.14 (1.68, 2.71)

Opposite joint active in the past 0.10 (−0.15, 0.35) 1.10 (0.86, 1.41)

Effect on transition to damage Estimate (95 % CI) RR (95 % CI)

Opposite joint damaged
Tenderness in the transitive joint 0.81 (0.41, 1.20) 2.24 (1.51, 3.32)

Effusion in the transitive joint 0.78 (0.34, 1.23) 2.19 (1.40, 3.41)

Transitive joint active in the past 0.31 (0.01, 0.62) 1.37 (1.00, 1.86)

an apparent dose–response relationship for the covariates representing activity in the
transitive joint. Presumably this is related to the additional effect of symmetrical joint
damage.

The log-rate ratios of the six transitive association effects described previously,
are all positive and large, with probable differential effects observed between the
comparable transitions for tender only and the more severe effused (usually also tender)
joints, ipsilaterally, where no damage has occurred to the opposite joint. The effects
corresponding to effusion tend to be larger than the comparable ones for tender only,
ipsilaterally, where no damage has occurred to the opposite joint. These six association
effects are all the statistically significant ones found and the four corresponding to
current activity suggest that the link between activity and damage is local/specific to
the joint on the particular hand being considered. These four associations are what we
would consider as a local dependence/influence of activity on damage at a joint. The
two significant associations corresponding to past activity in the transitive joint may
indicate that the persistence of activity is also important in predicting future damage
progression. We do not observe any statistically significant association, or evidence
of a possibly substantive effect, of having or not having activity in a joint on one hand
with having or not having damage on the contralateral joint of the other hand.

5.3 Causal inference

Schweder (1970) regarded his concept of local (in)dependence as a potential aid in
addressing causal questions and it is closely linked to the concept of Granger causality
(Granger 1969). We note that Granger causality was initially defined in the context of
discrete time series, and local (in)dependence may be viewed somewhat as an exten-
sion of the Granger causality/non-causality concept to processes in continuous time.
The asymmetry of the local independence concept makes it particularly attractive,
as having one sub-process locally influencing a change in another, but the other not
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having any influence on the first, is precisely how we would like to characterize a
causal effect of one sub-process on another. However, a one-sided local dependence
relationship between two sub-processes of a composable Markov process is not suf-
ficient to imply causation. Aalen (1987), when extending the concept, stressed that
local (in)dependence was a dynamic statistical approach which, by incorporating time
explicitly, offers a natural way to model potential causal relationships.

Mathematical formalization of the causality concept, in itself, is not enough to
allow a causal relationship to be inferred from an observed association. From an
epidemiological viewpoint, Hill (1965) discussed aspects of an association that should
be considered when attempting to infer causation. These are known as the Bradford
Hill criteria and are (i) strength of association; (ii) consistency; (iii) specificity; (iv)
temporality; (v) biological gradient; (vi) biological plausibility; (vii) coherence; (viii)
experimental evidence (when available); and (ix) analogy. Hill stressed that these are
only ‘viewpoints’ to be considered however and are not necessary and/or sufficient
conditions to declare causation from an observed association, although temporality is
a necessary condition as a cause must precede its effect.

Analysis of the Toronto PsA data provided evidence of a symmetric pattern of
joint damage. For a pair of joints at the same location in the two hands, local depen-
dencies were identified in both directions between the damage sub-processes in the
left and right hands. While these results represent an important finding, these local
dependencies do not immediately warrant a causal explanation, as they do not pro-
duce a one-sided (local dependence) asymmetric relationship between the two damage
sub-processes. It is quite plausible that the same underlying biological mechanism is
driving these two damage sub-processes, although a robust biological explanation for
damage symmetry has not yet been established.

However, the analyses also suggest (i) joint-specificity of the relationship between
activity and damage; (ii) strong associations for the four statistically significant and
biologically plausible local effects obtained; and, where no previous damage has
occurred in either joint of a pair, (iii) a dose–response relationship of activity with
damage at the joint level (i.e. a biological gradient). These relationships represent
local dependence of activity on damage although the activity process is not formally
modelled. Here the determination of asymmetry of local dependence relationships is
not specifically addressed and is less critical because any influence of permanent dam-
age on subsequent activity in a joint is of less clinical interest or, at least, represents
a very different clinical question. However, as Aalen argues, the dynamic perspective
of Schweder’s work may be most important and these analyses, because of the longi-
tudinal nature of the data, do help to characterize the temporal relationship between
activity and damage.

These results are also consistent with the majority of the Bradford Hill Criteria:
specificity, strength of association, biological gradient, temporality and biological
plausibility, at the joint level. Others such as consistency and analogy have been
shown at the patient (systemic) level in other PsA populations and in RA populations
respectively. Moreover our results do not, in any way that we know of, conflict with
generally known facts regarding the biology and natural history of disease progres-
sion in PsA patients, thus suggesting coherence. Furthermore recent clinical trials
on biologic agents have shown the effectiveness of these therapies in slowing the
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disease progression. These agents calm the inflammation of arthritis by inhibiting
immunological pathways that trigger inflammatory response. Therefore these results
do provide support for a putative causal relationship between activity and damage.
Also, we believe that, from the perspective of both biological plausibility and tempo-
ral ordering, this demonstrated relationship at the joint level offers more support for a
causal link than the relationships at the patient level seen in previous investigations.

5.4 Remarks

The study of the progression of PsA using multi-state models provided an intuitive way
of examining the disease process from a dynamic perspective and afforded a straight-
forward way to assess local (in)dependencies in dynamic processes. The introduction
of random effects allowed a natural way to model correlated multi-state processes
so that individual joint data could be appropriately examined. Thus, it is possible
to consider the extent to which evidence of local dependence between the activity
and damage processes, together with the Bradford Hill Criteria, permits a causal link
between activity and damage in this observational setting. However as Prentice and
Thomas (1987) writes:

‘. . . any reported associations from an observational study will be subject to
some uncertainty concerning causality. Associations that are strong, that exhibit
“regular” dose–response relationships, and that can be replicated in a range of
study populations come, in time, to be regarded as causal.’

Therefore it is over time and with replication and mechanistic understanding that the
link between activity and damage will truly be regarded as causal.

6 Conclusion

In many ways multi-state models are the natural generalization of standard time-
to-event analysis and therefore it would be expected that the power and flexibility to
tackle a range of problems seen with survival analysis techniques to filter through or
even be amplified in the multi-state setting. This is indeed the case and the availability
of software to allow such models to be fitted has increased their use in recent times.

For the examples in Sects. 3 and 4, the use of the msm R package (Jackson et al.
2003) with its many options, made estimation of the models relatively straightforward.
For the examples of Sects. 2 and 5, bespoke R code was written and this did involve
considerable programming time. However, the availability of numerical optimisation
routines in R, as in many statistical packages, meant that the primary effort is directed
only at calculation of likelihood functions. In both examples, the task was consid-
erably simplified because the multi-state models are progressive. With intermittent
observation, reversible models may present considerable computational challenges
unless simplifying assumptions are made.

Unlike in the standard failure time setting where interest is on a random variable
(i.e. the time to experiencing the event of interest), the focus in the multi-state situ-
ation is on the modelling of stochastic processes. As a result of this process point of
view, many of the features of longitudinally observed data can be clearly and realis-
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tically reflected, and issues and problems that arise can be addressed quite naturally.
This flexibility to cope with problems arising from longitudinal data is exemplified
in the Whitehall II application when dealing with informative loss to follow-up in
a semi-competing risks setting and in the remission application when defining the
occurrence of an event based on prolonged observation and potential misclassification
of the event. In both these cases, a hypothetical or unobservable state was introduced
to reflect, in a clinically meaningful way, the inherent structures of the data-sets.
In contrast, attempts to apply standard survival analysis methodology to the time-
to-first CHD event and to an ad hoc operational definition of remission may result in
not only possibly unrealistic assumptions being made and the inefficient use of all the
data, but in misleading inference. At the least the multi-state modelling approach pro-
vides an opportunity to check the findings from these more simplistic approaches and
offers a credible approach for performing sensitivity analyses. However, even for the
purpose of sensitivity analyses, it is important to recognize that the use of “plausible”
assumptions to resolve non-identifiability should be viewed cautiously. The work of
Molenberghs et al. (2008) illustrates this in the case of informative missingness.

The utility of multi-state models is also apparent in handling intermittently updated
time-varying explanatory variables, especially those that may be internal covariates,
and in analysing clustered processes. Here a joint modelling approach can be adopted
as illustrated in our second and fourth applications. In these examples, the dynamic
nature of both the outcome processes (i.e. functional disability and damage) and the
activity process were apparent, with the activity process potentially carrying crucial
information about the times of transitions. Therefore it was important to appropri-
ately incorporate the activity process into the multi-state models’ structures. Addition-
ally, correlation could naturally be handled through the dynamicity of the multi-state
approach, by the incorporation of history of the processes or through introduction of
random effects.

Through the use of dynamic concepts such as composability, local independence
and local dependence, and with sound application of the Bradford Hill criteria, multi-
state models provide a powerful methodology for tackling important causal questions
as demonstrated with our application on individual joint damage in the hands.

We hope that, through the four applications presented, a convincing argument for
the versatility of multi-state models has been made.

Ross Prentice’s statistical career has been remarkable and he is equally remarkable
as a person. It was a great pleasure to be invited to contribute to this issue of Lifetime
Data Analysis published in his honour.
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