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We propose a numerical methodology for the numerical simulation of distinct, interacting 
physical processes described by a combination of compressible, inert and reactive forms 
of the Euler equations, multiphase equations and elastoplastic equations. These systems 
of equations are usually solved by coupling finite element and CFD models. Here we 
solve them simultaneously, by recasting all the equations in the same, hyperbolic form 
and solving them on the same grid with the same finite-volume numerical schemes. The 
proposed compressible, multiphase, hydrodynamic formulation can employ a hierarchy 
of five reactive and non-reactive flow models, which allows simple to more involved 
applications to be directly described by the appropriate selection. The communication 
between the hydrodynamic and elastoplastic systems is facilitated by means of mixed-
material Riemann solvers at the boundaries of the systems, which represent physical 
material boundaries. To this end we derive approximate mixed Riemann solvers for each 
pair of the above models based on characteristic equations. The components for reactive 
flow and elastoplastic solid modelling are validated separately before presenting validation 
for the full, coupled systems. Multi-dimensional use cases demonstrate the suitability of 
the reactive flow-solid interaction methodology in the context of impact-driven initiation of 
reactive flow and structural response due to violent reaction in automotive (e.g. car crash) 
or defence (e.g. explosive reactive armour) applications. Several types of explosives (C4, 
Detasheet, nitromethane, gaseous fuel) in gaseous, liquid and solid state are considered.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The accurate numerical simulation of a wide range of industrial, automotive, aerospace and defence processes necessi-
tates the consideration of gaseous or condensed-phase explosives initiated by the impact by and their interaction with fluid 
or elastoplastic solid materials. Examples include accidental fuel initiation in a car crash and fuel tank containment in the 
context of safety studies and explosive reactive armour (ERA). This article is concerned with the development of numeri-
cal methods for the simultaneous solution of multiphase, reactive, inert fluid and elastoplastic solid equations suitable for 
the numerical modelling of such problems. The methodology can also be used as part of the manufacturing process for 
optimising car (or other device) compartments in terms of shapes and materials.

An integrated numerical methodology for this kind of simulation has three elements; the formulation describing the 
elastoplastic solid (impactor and/or confiner), the formulation describing the gaseous or condensed phase fuel or explosive, 
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including the explicit capturing of the reaction zone and the transition from reactants to products and the communication 
between the two systems through material coupling. By explicit capturing of the reaction zone we mean that the reactants 
and products are described by distinct equations of state and transition between them occurs in a numerically mixed zone 
leading to the generation of the reaction front and detonation wave. This is in contrast to programmed burn approaches 
where assumptions are made with regards to the location of the front and the energy deposed behind it. Here we present 
a summary of the models/methods we use for each of the three components and a brief literature review on work done for 
each one.

In this work, we present the coupling of fuel/explosive formulations with fluid and solid models suitable for a range 
of automotive and defence applications. We use the terms fluid and hydrodynamic interchangeably as well as the terms 
solid and elastoplastic. The complete explosive–inert fluid–solid system is represented in an Eulerian frame and both the 
hydrodynamic (for fuel/explosive and inert fluid) and elastoplastic systems of equations are solved with finite volume tech-
niques, employing high-resolution, shock-capturing methods (e.g., MUSCL Hancock with HLLC). The communication between 
the different systems is achieved by employing the Riemann ghost fluid method and the mixed-material Riemann solvers 
presented here.

The mathematical description of the elastoplastic system has been traditionally done in a Lagrangian framework. The 
original Lagrangian form of the solid equations has been reformulated into a conservative form of equations in the Eulerian 
frame by Godunov and Romenskii [1], Kondaurov [2] and Plohr and Sharp [3]. This has the advantage of allowing the 
solution of the elastoplastic solid formulation in the same framework as the explosives hydrodynamic formulation, using 
the same (or the same family of) high-resolution, shock-capturing methods. This led to the development of high-order, 
shock capturing schemes for the numerical solution of such systems. For example, Miller and Colella [4] and Barton et al. 
[5,6] have developed linearised Riemann solvers as part of a high-order numerical scheme to capture the seven waves in 
the (1D) solid system, while Gavrilyuk et al. [7] have presented the adaptation of the classic HLLC solver to the solid system. 
Centred numerical schemes and linearised Riemann solvers for the solid systems have also been presented by Titarev [8], 
while approximate and exact Riemann solvers for the conservative elastic system have been presented by Miller [9] and 
Barton et al. [5]. The class of visco-plastic should also be mentioned, as presented, for example, in the work by Simo [10], 
Ortiz and Stainier [11], Favrie and Gavrilyuk [12] and Peshkov and Romenski [13].

Inclusion of plasticity in the solid system has been presented using different approaches, as for example by Miller and 
Colella [4], who evolve the plastic deformation gradient (Fp) in addition the total inverse deformation gradient (G = F−1) 
and include an elastic predictor step followed by a ‘plastic’ corrector step to correct any over-estimated elastic deformation 
that pushes the state outside the yield surface. The predictor–corrector approach allows for solving both for perfect and 
time-dependent plasticity models. Another approach is followed by Barton et al. [6] who only evolve the elastic deformation 
gradient (Fe) and include plasticity as source terms for the elastic deformation tensor equations.

In this work, we use the elastic deformation evolution model by Barton et al. [5] to describe the elastic behaviour of the 
solid material. Inelastic deformation is following the Miller and Colella approach of predictor–corrector method based on 
the principle of maximum dissipation and is applied in combination with perfect plasticity and time-dependent plasticity 
models.

The mathematical description of the fuel/explosive could vary in complexity, depending on the physical degree of inho-
mogeneity of the material or of the physical properties of the material that are dominant in the application of consideration. 
These models can be divided in two broad classes, depending on the description details of the reactive material and hence 
on whether the mathematical model is based on some augmented form of the Euler equations or on a multiphase approach.

Formulations of the augmented Euler class (e.g. [14–19]) evolve the conservation equations for mass, momentum and 
energy and describe the distinct components of a mixture by means of one or more additional evolution equations, for 
example for the mass fraction of one of the constituents. Due to the nature of the limited physical information that is 
conveyed by these models, they assume mechanical and often thermal equilibrium between the components. This type or 
formulation works well for gaseous fuel materials.

Formulations of the multiphase class (e.g. [20–23]) can be considered to be forms (full or reduced) of the Baer–Nunziato 
(BN) system, which have separate mass, momentum and energy conservation laws for each component (phase). Addi-
tional advection equations are necessary to differentiate between the components, and exchange between them takes place 
through source terms. Their mathematical (and hence numerical) complexity and the computational cost increases with 
the number of phases. Reduced versions of this system, which capture more physical information as compared to the aug-
mented Euler approach, at a lower complexity and CPU cost than the full BN system have previously been proposed (e.g. 
[21–25]). They do not assume thermal equilibrium and, depending on their assumptions, they may or may not assume 
mechanical equilibrium and exchanges between the different components are allowed. Obviously, any approximation of a 
complete mathematical description of a physical system is likely to come with its own limitations or/and undesirable side 
effects. This type or formulation works well for condensed-phase porous materials.

In this work we consider a formulation (MiNi16) presented by Michael and Nikiforakis [26], which integrates the ad-
vantages of augmented-Euler and BN-type formulations while allowing for the interaction of an inert component with the 
reactant–product mixture, through a diffused interface approach. This would allow, for example, for the inclusion of an air 
gap between the explosive stick and the metal confiner. Reduced versions of this formulation are also presented to model 
cases when the inert component is not present, or when the explicit modelling of the products of reaction is not required 
or even when the phases are all non-reacting and could form free-surfaces.
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There are various approaches for the numerical solution of coupled solid–fluid problems. Traditionally, Lagrangian tech-
niques are followed. These, however, present difficulties for large deformations of the materials as these are inherently 
translated to large deformations in the underlying mesh. Others include Smoothed Particle Hydrodynamics (SPH) and arbi-
trary Lagrangian–Eulerian (ALE). Also, traditionally, the modelling of solid–fluid problems is using one-way coupled finite 
element codes for modelling the solid part and CFD codes to model the fluid part. As a result, the two processes are solved 
in a ‘co-simulation’ environment, each on it’s own grid with a distinct numerical method. This may lead to discretisation 
errors passing from one method to the other. Even though each class has its merits and shortcomings, in this work, we 
retain a regular, Cartesian mesh (and data) structure, as this is relatively easy to implement in our existing structured, 
hierarchically adaptive mesh refinement (AMR) framework.

Studies including solid–reactive coupling in the Eulerian frame include work by Miller and Colella [27] and Barton et al. 
[28]. The solid material in these studies is described by a full elastoplastic system, while the explosive system considered 
incorporates either a single-phase Euler formulation or program burn. Although these are suitable for gaseous combustion, 
they are not adequate for more complex or condensed phase explosives. Schoch et al. [29] couple the full elastoplastic sys-
tem to a two-phase, five-equation model for condensed explosives, which is more complex and as a result more restrictive 
than the model used in this work. Examples of inert Euler–solid coupling can also be found, as for example in [30,31]. 
Other examples of solid–fluid coupling include Monasse [32] who achieves the coupling between a compressible fluid and 
a deformable structure using embedded boundaries, as well as Favrie et al. [33] and Favrie and Gavrilyuk [34] who use a 
diffuse interface approach to achieve the communication between the materials.

The coupling in multi-material simulations (including fluid–fluid, solid–solid or fluid–solid interaction) can follow in-
herently from the Lagrangian framework, as for example by Howell and Ball [35] who apply the coupling in solid–solid 
applications. In the Eulerian framework, interface fitting approaches can be followed, such as Volume of Fluid (VOF) and 
Ghost Fluid Methods (GFM) as in the work by Barton et al. [36] who use the modified GFM and Schoch et al. [29] who use 
the ‘real GFM’. We define as multi-material the framework where material interfaces are tracked rather than captured. This 
includes different sets of equations being solved on either side of the material interface and special methods used to apply 
‘boundary conditions’ across the material interface. In this work we consider the Riemann ghost fluid method as presented 
by Sambasivan and Udaykumar [37], based on the pioneering work by Fedkiw et al. [38] and we provide the coupling by 
deriving mixed-material Riemann solvers to be used at material interfaces. To this end, we derive characteristic equations 
that lead to the formulation of a linearised mixed Riemann solver, applied to the one side of the material interface for the 
full hydrodynamic formulation by Michael and Nikiforakis [26] and its reduced models. Depending on the application or the 
fuel/explosive in consideration, the full or the reduced versions of the model is employed.

In the remainder of this article, we first present the distinct mathematical formulations describing the explosive (in-
cluding the reduced versions) and the elastoplastic solid. The coupling technique is then presented and derivations of the 
mixed Riemann solvers for fluid–fluid and fluid–solid coupling are presented for each explosives model considered. Then, 
we validate separately the solid and explosives components by invoking solid-only and explosive-only test problems with 
known solutions. The explosive–solid coupling is first tested in one dimension and then multi-material inert and reactive 
simulations are considered, illustrating the applicability of the coupling in impact-initiation of condensed-phase explosives 
in ERA examples and gaseous fuel in car-crash examples for fuel containment.

2. Mathematical models

In this section, the distinct mathematical formulations describing the materials involved in solid–fluid impact and in-
teraction applications are presented. To aid the description of the principal components and without loss of generality, 
we use as a reference configuration. As the accidental impact of a fuel tank in a car crash scenario involves a com-
plex tank geometry, we chose that for explaining the mathematical formulations and numerical methods to use the 
simpler sandwiched-plate impact in an ERA configuration as illustrated in Fig. 1. An explosive (yellow) is residing be-
tween two steel plates (grey) and a steel projectile (grey) impacts this sandwiched configuration from below. The whole 
system could be surrounded by air or vacuum making this a solid–explosive–fluid or solid–explosive–vacuum configura-
tion.

The choice of the explosives model depends on the physical complexity of the material (e.g. porous, homogeneous, etc.) 
and the dominant timescales in the mechanical and thermodynamic properties of the scenario considered. The explosives 
model could therefore range from the simple single-EoS augmented Euler formulation (e.g. suitable for gaseous combustion) 
to the full Baer–Nunziato formulation (e.g. suitable for porous materials), with the possibility of using a model of inter-
mediate complexity like the ones proposed by Banks et al. [14], Kapila et al. [22] and Saurel et al. [21]. In this work, the 
formulation proposed by Michael and Nikiforakis [26] (henceforth referred to as MiNi16) is used for the mathematical de-
scription of the explosive. This formulation additionally captures the air gap that can be included in between the explosive 
and the front plate (zoom in Fig. 1). The steel plates and the steel projectile are described mathematically by an elasto-
plastic model in the Eulerian frame, as presented by Barton et al. [5]. The plates and projectile are treated numerically as 
separate materials in the multi-material framework. This would allow easily for the physical material of one or both plates 
as well as of the projectile to be changed. The surrounding material can be vacuum or air. If it is air, this is described by 
the compressible inert Euler equations.
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Fig. 1. Schematic of a sandwich-plate impact and the mathematical models used to describe each component. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

2.1. The explosives model (Case 1)

In this section, we summarise the MiNi16 formulation [26] based on the Case 1 example illustrated in Fig. 1 (zoom) of a 
sandwiched-plate impact scenario with an air gap. In this configuration, the explosive reactant is described as phase α, with 
density, velocity vector and pressure (ρα, uα, pα) and the products of reaction as phase β with (ρβ, uβ, pβ ) equivalently. 
These are assumed to form a homogeneous mixture, which we will hereafter call interchangeably the ‘explosive mixture’ or 
the ‘reactant–products mixture’ and denote this as phase 2 with mixture density, velocity vector and pressure (ρ2, u2, p2). 
We can then denote by λ the mass fraction of the reactants, such that λ = 1 denotes fully unburnt material and λ = 0
denotes fully burnt material. The air gap (or any other inert material that could confine the explosive mixture) is denoted 
as phase 1 with density, velocity vector and pressure (ρ1, u1, p1).

We denote by z a colour function, which can be considered to be the volume fraction of the air with respect to the 
volume of the total mixture of phases 1 and 2, with density ρ . Equivalently, the volume fraction of the reactant–product 
mixture with respect to the volume of the total mixture is given by 1 − z. For convenience, we denote z by z1 and 1 − z
by z2. Then, the closure condition z1 + z2 = 1 holds.

Velocity and pressure equilibrium applies between all the phases, such that uα = uβ = u1 = u2 = u and pα = pβ = p1 =
p2 = p. Temperature equilibrium is only assumed between the phases of the explosive mixture, i.e. Tα = Tβ , although other 
closure conditions can be found to be more suitable for other applications (see for example Stewart et al. [39]).

Then, the MiNi16 system is described as in [26] by:

∂z1ρ1

∂t
+ ∇ · (z1ρ1u) = 0, (1)

∂z2ρ2

∂t
+ ∇ · (z2ρ2u) = 0, (2)

∂

∂t
(ρui) + ∇ · (ρuiu) + ∂ p

∂xi
= 0, (3)

∂

∂t
(ρE) + ∇ · (ρE + p)u = 0, (4)

∂z1

∂t
+ u · ∇z1 = 0, (5)

∂z2ρ2λ

∂t
+ ∇ · (z2ρ2uλ) = z2ρ2 K , (6)

where u = (u, v, w) denotes the total vector velocity, i denotes space dimension, i = 1, 2, 3, ρ the total density of the 
system and E the specific total energy given by E = e + 1 ∑

i u2, with e the total specific internal energy of the system.
2 i
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K is a function giving the rate of conversion of reactants to products and for numerical purposes, it is considered a 
source term to the hyperbolic part of the system. In this work, depending on the reaction rate law form, term K usually 
depends on the temperature or pressure of the phases, as well as the total density, the density of phase 2 and λ. The model 
is not restrictive with the reaction rate law, therefore other types of reaction rates can also be used.

In this work, all fluid components described by the MiNi16 model are assumed to be governed by a Mie–Grüneisen 
equation of state, of the form:

p = pref i
+ ρi�i(ei − eref i

), for i = 1,α,β. (7)

Material interfaces between the three phases are described by a diffused interface technique. Hence, mixture rules need to 
be defined for the diffusion zone, relating the thermodynamic properties of the mixture with those of the individual phases. 
The mixture rules for the specific internal energy, density and adiabatic index (γ ) are:

ρe = z1ρ1e1 + z2ρ2e2 = z1ρ1e1 + z2ρ2(λeα + (1 − λ)eβ), (8)

ρ = z1ρ1 + z2ρ2 with
1

ρ2
= λ

ρα
+ 1 − λ

ρβ

, (9)

ξ = z1ξ1 + z2ξ2 with γ2 = 1 + 1

ξ2
= λγαC vα + (1 − λ)γβ C vβ

λC vα + (1 − λ)C vβ

, (10)

where e1, eα , and eβ denote the specific internal energies of phases 1, α and β , ξ = 1/(γ − 1), and C vα and Cvβ denote the 
specific heat at constant volume for phases α and β .

The model in this form can solve multi-component problems involving two miscible phases (phase α and phase β) 
forming a mixture represented as phase 2 and one inert, immiscible component (phase 1). Only one of the phases α and β
can be reactive.

The soundspeed also follows a mixture rule given as:

ξc2 =
∑

i

yiξic
2
i , (11)

where ci are the individual soundspeeds of phases 1 and 2 and c2 depends on averaging procedures of energy and density 
derivatives of phases α and β . For more information on this as well as for the numerical evaluation of the total equation of 
state the reader is referred to [26].

The temperature of each phase is given as:

Ti = p − prefi (ρi)

ρi�icvi

− Trefi , for i = 1,α,β, (12)

where the reference temperature depends on the type of reference curve. For an isentrope reference curve like the ones 
used here, Trefi = T0(

ρ
ρ0

)� . For more information on temperature recovery the reader is referred to [40] and [41].
It should be noted that the model reduces to the model by Allaire et al. [42] across material interfaces. This model 

lacks the term accounting form the different compressibility of materials in mixture zones as presented in Schoch et al. 
[25]. Thus, we only use it across material interfaces and not material mixtures. Nonetheless, the diffused-interface nature of 
these types of models defines an artificial mixing zone across material interfaces, which is, however, generally accepted as 
a fictitious zone that does not influence the rest of the simulation.

2.1.1. Reduced MiNi16 reactive model (Case 2)
Suppose that the explicit modelling of the combustion products is not necessary and the fluid system comprises of 

the reacting explosive and an inert phase, as illustrated in Case 2 of Fig. 1. The full model then reduces to a two-phase, 
reacting, five-equation interface model as given by Michael and Nikiforakis [43]. In this case, phase β is dropped and the 
system comprises of phase 1 and phase 2 = phase α (effectively quantities ( )2 = ( )α ). Moreover, a source term of the form 
z2ρ2 K Q is added to the energy equation, where Q is the heat of detonation. This source term along with the source term 
of Eq. (6) are responsible for the chemical energy release.

2.1.2. Reduced MiNi16 inert model (Case 3)
Suppose that phase 2 does not comprise a homogeneous mixture of reactant and products, but instead it represents a 

single, inert constituent (i.e. λ = 0 or λ = 1 and K = 0 everywhere), as illustrated in Case 3 of Fig. 1. Then, the full model 
reduces to the inert five-equation interface model, as given by Allaire et al. [42] (effectively quantities ( )2 = ( )α = ( )β and 
equation (6) becomes inactive):



6 L. Michael, N. Nikiforakis / Journal of Computational Physics 367 (2018) 1–27
∂zρ1

∂t
+ ∇ · (zρ1u) = 0 (13)

p
∂(1 − z)ρ2

∂t
+ ∇ · ((1 − z)ρ2u) = 0, (14)

∂

∂t
(ρui) + ∇ · (ρuiu) + ∂ p

∂xi
= 0, (15)

∂

∂t
(ρE) + ∇ · (ρE + p)u = 0, (16)

∂z

∂t
+ u · ∇z = 0. (17)

The mixture rules of the full model also reduce to the ones given by Allaire et al. [42].

2.1.3. Augmented reactive Euler model (Case 4)
Suppose that the reactant–product mixture is not confined by an inert material (in the limit of z1 → 0) and it is consid-

ered its own entity, as illustrated in Case 4 of Fig. 1. The mixture rules then reduce to the mixture rules found in [14] and 
the system reduces to the two-component fluid-mixture model (or two-phase, in the context of this work), as described in 
the same work:

∂ρ

∂t
+ ∇ · (ρu) = 0, (18)

∂

∂t
(ρui) + ∇ · (ρuiu) + ∂ p

∂xi
= 0, (19)

∂

∂t
(ρE) + ∇ · (ρE + p)u = K Q , (20)

∂(ρλ)

∂t
+ ∇ · (ρuλ) = K . (21)

The chemical energy is released by the source term K Q and the chemistry is described by the source terms in 
Eqs. (20)–(21).

2.2. The elastoplastic model

In this work, we use the elastic solid model described by Barton et al. [5] based on the formulation by Godunov and 
Romenskii [44]. The plasticity is included following the work of Miller and Colella [27].

Consider the steel plate of Fig. 1 in isolation. In an Eulerian frame, which we employ here, there is no mesh distortion 
that can be used to describe the solid material deformation. Thus the material distortion needs to be accounted for in a 
different way. Here, this is done by defining the total deformation gradient tensor as:

Fij = ∂xi

∂ X j
, (22)

which maps the initial configuration (coordinate X) to the deformed configuration (coordinate x). Following the proposition 
by Rice [45] we introduce an intermediate configuration describing only plastic deformations described by Fp such that the 
total deformation is decomposed multiplicatively into elastic and plastic components as F = FeFp .

The state of the solid is characterised by the elastic deformation gradient, velocity ui and entropy S . Following the work 
by Barton et al. [5], the complete three-dimensional system forms a hyperbolic system of conservation laws for momentum, 
strain and energy:

∂ρui

∂t
+ ∂(ρuium − σim)

∂xm
= 0, (23)

∂ρE

∂t
+ ∂(ρum E − uiσim)

∂xm
= 0, (24)

∂ρ F e
i j

∂t
+ ∂(ρ F e

i jum − ρ F e
mjui)

∂xm
= −ui

∂ρ F e
mj

∂xm
+ Pij, (25)

∂ρκ

∂t
+ ∂(ρumκ)

∂xm
= ρκ̇, (26)

with the vector components ·i and tensor components ·i j . The first two equations along with the density-deformation 
gradient relation:



L. Michael, N. Nikiforakis / Journal of Computational Physics 367 (2018) 1–27 7
ρ = ρ0/detFe, (27)

where ρ0 is the density of the initial unstressed medium, essentially evolve the solid material hydrodynamically. Here, σ is 
the stress, E the total energy such that E = 1

2 |u|2 + e, with e the specific internal energy and κ the scalar material history 
that tracks the work hardening of the material through plastic deformation. We denote the source terms associated with 
the plastic update as Pij .

The system is closed by an analytic constitutive model relating the specific internal energy to the deformation gradient, 
entropy and material history parameter (if applicable):

e = e(Fe, S, κ). (28)

Restricting this work to isotropic materials, e(Fe) = e(I1, I2, I3), with I1, I2, I3 are the invariants of the Finger tensor given 
by C = F −T F . The stress tensor is given by:

σi j = ρ F e
im

∂e

∂ F e
jm

(29)

or equivalently,

σ = −2ρ

[
∂E
∂ I3

I3 I +
(

∂E
∂ I1

+ I1
∂E
∂ I2

)
C − ∂E

∂ I2
C 2

]
. (30)

For F to represent physical, continuous deformations, it must satisfy three compatibility constraints:

∂ρ Fkj

∂xk
= 0, j = 1,2,3, (31)

which hold true for t > 0 if true for initial data. This is based on the fact that F is defined as a gradient.
The deformation is purely elastic until the stress state is evolved beyond the yield surface ( f > 0), which in this work is 

given by the Von Mises criterion:

f (σ ) = ||devσ || −
√

2

3
σY = 0, with devσ = σ − 1

3
(trσ )I, (32)

where σY is the yield stress and the matrix norm ||.|| the Shur norm (||σ ||2 = tr(σ T σ )).
As this identifies the maximum yield allowed to be reached by an elastic-only step, a predictor–corrector method is 

followed to re-map the solid state onto the yield surface. Assuming that the simulation timestep is small, this is taken to 
be a straight line, using the associative flow rate (ε̇p = η ∂ F

∂σ ), satisfying the maximum plastic dissipation principle (i.e. the 
steepest path). In general, this is re-mapping procedure is governed by the dissipation law:

ψplast = � : ((Fp)−1Ḟp), (33)

where � = Gσ F and : is the double contraction of tensors (e.g. σ : σ = tr(σ T σ )). The initial prediction is F = Fe and 
Fp = I, where F is the specific total deformation tensor and Fp the plastic deformation tensor that contains the contribution 
from plastic deformation. This is then relaxed to the yield surface according to the procedure of Miller and Colella [27].

The explosive and solid mathematical formulations described in this section are solved numerically using high-resolution, 
shock-capturing, Riemann-problem based methods and structured, hierarchical adaptive mesh refinement, as described in 
previous work [29,25,26,43,46,47].

3. The multi-material approach

Ghost fluid methods, in combination with level set methods, provide a robust and efficient technique for tracking in-
terfaces and boundaries, such as the material interfaces between solid and fluid materials. In this work, we use level set 
methods to track the solid–explosive1 interface. Each component, e.g. the solid or the explosive is called a material in this 
framework. Such methods only give the location of the interface; they do not affect the evolution of the material compo-
nents. The behaviour of the material components at the interface is modelled by the implementation of dynamical boundary 
conditions with the aid of the Riemann ghost fluid method and the devise of mixed-material Riemann solvers to solve the 
interfacial Riemann problems between materials. We note that the level-set methods are known to be non-conservative. It 
should be stressed, however, that this work does not use the original reinitialisation method presented in the original ghost 
fluid method work and hence there is no iterative procedure that would artificially move the interface.

1 Note that by explosive we refer to any hydrodynamic system modelled by MiNi16 or its reduced systems, including the simultaneous modelling of the 
reactant, the products and the air in the air-gap scenario.
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A signed distance function φ(x, y), called the level set function is used, with the zero contour given by � =
(x, y)|φ(x, y) = 0. The sign of φi , where i is the cell index, determines which material is present in that cell. The evolution 
of φ(x, y), assuming no mass transfer and continuous velocity across the interface, is given by the advection equation:

∂φ

∂t
+ u · ∇φ = 0. (34)

The Riemann ghost fluid method by Sambasivan and Udaykumar [37,48] is utilised to model the behaviour of the mate-
rial component at the interface. This method, in contrast to the original ghost fluid method [38] uses a Riemann solver to 
predict ghost-cell states adjacent to the interface. For every cell i adjacent to the interface the following procedure is used:

1. locate the interface within the cell at the point P = i + φ∇φ

2. project two probes into the adjacent materials, reaching the points P1 = P + n · �x and P2 = P − n · �x
3. interpolate states at each point using information from the surrounding cells
4. solve a mixed Riemann problem (as described in Sec. 3.1) between the two states to extract the state of the real-material 

cells, adjacent to the interface (left star state W∗
L , in Fig. 2)

5. replace the state in cell i by the computed star state.

After the above procedure is followed for each material, a fast-marching method is used to fill in the ghost cells for each 
material.

3.1. Mixed Riemann solvers

In this section we describe how the mixed-material Riemann problem at material interfaces is solved (step 4 in the 
procedure described above). As we are considering five hydrodynamic models and one elastoplastic model, there are a lot of 
ways of combining them. In these section, we derive mixed Riemann solvers for each pair that can be encountered, although 
some extensions of the different combinations are straightforward. The Riemann solver at the material interface takes as 
input two states from the two different materials that are modelled by different mathematical models, providing one-sided 
estimations of the interface-adjacent (star) states. These estimations are based on the characteristic equations deduced from 
the mathematical system describing the left material and by invoking appropriate ‘boundary conditions’ between the two 
materials at the interface. That is why for each model described in Sec. 2 to be coupled with another fluid or solid model, 
a new mixed Riemann solver has to be derived. In this section, we first describe how the full MiNi16 model and the reduced 
versions of it are coupled with a simple Euler system and then with a full elastoplastic solid system (including how the 
elastoplastic system is coupled with the Euler equations). The remainder combinations should be directly deductible from 
these.

3.1.1. Reactive MiNi16 model coupled with the Euler model
Consider a cell which contains a material boundary. Without loss of generality, we assume that on the left side of the 

interface lies the material governed by the MiNi16 model of Sec. 2.1 (hereby called the MiNi16 material) and on the right 
side of the interface lies a material governed by the Euler equations. Hereforth we assume that we are currently solving 
for the MiNi16 material (in GFM terminology, the ‘real’ material). At the material boundary a Riemann problem is solved 
between the left MiNi16 and the right Euler system to provide the star state for the real material. We use a Riemann solver 
that takes into account the two different materials and all the wave patterns in the MiNi16 system, as described in this 
section.

We write the MiNi16 model described in Sec. 2.1 by equations (1)–(6) in primitive form as:

Wt + A(W)Wx = 0, (35)

where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ
Y
u
w
p
z
λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, A(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u 0 ρ 0 0 0 0
0 u 0 0 0 0 0
0 0 u 0 1/ρ 0 0
0 0 0 u 0 0 0
0 0 ρc2 0 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Recall that ρ = ρ1z1 + ρ2z2, z1 + z2 = 1 and Yk = ρk zk
ρ is the mass fraction2 of material k, k = 1, 2, with respect to the 

mixture of phases 1 and 2 (i.e. the total fluid).

2 Note that Yk is not the same as λ, which is mass fraction of material α with respect to phase 2.
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Fig. 2. The Riemann problem at the material interface between any combination of fluid hydrodynamic and solid elastoplastic materials. The shaded region 
represents the initial ghost region and the white region the initial ‘real’ material region in GFM terminology. We are solving for the material in the white, 
left region. If this is a fluid, the one-sided solution consists of one or more degenerate and hence overlapping waves (left) and if it is a solid, the solution 
can consist of more than one non-overlapping waves (right).

The Jacobian matrix A(W) has eigenvalues μ1 = μ2 = μ3 = μ4 = μ5 = u, μ6 = u − c and μ7 = u + c.

The right eigenvectors are

r1 = (0,0,0,0,0,0,1)T , r2 = (0,0,0,0,0,1,0)T , r3 = (1,0,0,0,0,0,0)T , r4 = (0,0,0,1,0,0,0)T ,

r5 = (0,1,0,0,0,0,0)T , r6 =
(
ρ,0,−c,0,ρc2,0,0

)T
, r7 =

(
ρ,0, c,0,ρc2,0,0

)T
, (37)

and the left eigenvectors are

l1 = (0,0,0,0,0,0,1) , l2 = (0,0,0,0,0,1,0) , l3 =
(
−c2,0,0,0,1,0,0

)
, l4 = (0,0,0,1,0,0,0) ,

l5 = (0,1,0,0,0,0,0) , l6 = (0,0,−ρc,0,1,0,0) , l7 = (0,0,ρc,0,1,0,0) . (38)

As we are solving for the MiNi16 model, we only look for the left star state, W∗
L (see Fig. 2). To obtain star values on the 

left of the interface, we use characteristic equations.
Characteristics define directions dx

dt = μ j , in which

l(i) · dW = 0, where dW = (dρ,dY ,du,dw,dp,dz,dλ)T . (39)

So, along dx
dt = μ1 = u:

β1 (0,0,0,0,0,1) · (dρ,dY ,du,dw,dp,dz)T = 0, (40)

giving,

dλ = 0. (41)

Applying the same along dx
dt = μ j = u for j = 2, 3, 4, 5 we obtain, respectively:

dp − c2dρ = 0, (42)

dw = 0, (43)

dY = 0, (44)

dz = 0. (45)

Finally, along dx
dt = μ6 = u − c and dx

dt = μ7 = u + c, we obtain:

dp − ρc du = 0, (46)

dp + ρc du = 0. (47)

For a single phase described by the ideal gas or stiffened gas equation of state, the characteristic equations can be 
integrated directly, as the expressions for the sound speed are simple. However, for more complex equations of state or 
MiNi16 formulations where the sound speed is the ‘mixture’ of the individual phase sound speeds (see equation (11)) this 
might not be possible. In such case, one can obtain an approximate mixed Riemann solver by replacing the differentials 
with the difference of the initial and the final state without integrating (i.e. across the characteristics), as presented below.

Using dp + ρc du = 0, we connect the states W∗
L and WL to obtain:

p∗
L − pL = −ρLcL(u∗

L − uL). (48)

Using dp − ρc du = 0, we connect the states W∗
R and WR to obtain:

p∗
R − pR = ρR cR(u∗

R − uR). (49)
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Pressure and velocity don’t change across the material interface, hence p∗
L = p∗

R = p∗ and u∗
L = u∗

R = u∗ . Applying these 
conditions to (48) and (49) we obtain two expressions for p∗ and u∗:

p∗ = pL − ρLcL(u∗ − uL) and u∗ = p∗ − pR

ρR cR
+ uR . (50)

Solving the above two simultaneously, we obtain an expression for the pressure in the star region:

p∗ = C R pL − CL pR − C R CL(uR − uL)

C R + CL
, (51)

where CL = ρLcL and C R = ρR cR .
To calculate the left MiNi16 fluid state, connect states W∗

L and WL , using equation (48) and dp − c2dρ = 0 to obtain:

u∗ = pL − p∗

ρLcL
+ uL and (52)

ρ∗
L = p∗ − pL

c2
L

+ ρL . (53)

Using the remaining characteristic equations we obtain:

w∗ = w L, (54)

λ∗ = λL, (55)

Y ∗
1 = Y1L , (56)

z∗ = zL . (57)

Using the above and the definition for Y1 = z1ρ1
ρ we get Y ∗ = z∗ρ∗

1L
ρ∗

L
and so:

ρ∗
1L

= Y1L ρ
∗
L

zL
, (58)

ρ∗
2L

= Y2L ρ
∗
L

1 − zL
. (59)

Equations (51)–(59) give the full state in the left star region. The values of CL , C R and c2
L in equations (51)–(53) are constant 

approximations of the ( )L value. Alternatively, an iterative method as described in Sec. 3.1.2 can be used to compute p∗ and 
extract the parameters for the remaining variables thereafter, using equations (51)–(59).

If the real fluid is described by the reduced two-phase reactive system given in Sec. 2.1.1 then the same procedure as 
here is used, as the same governing equations (and hence characteristic equations) hold.

3.1.2. Iterative extension
To improve accuracy of all of the explosive–solid mixed Riemann solvers, in the expressions for p∗, u∗ and ρ∗ , the 

expressions for c2
L and ρLcL (denoted now as cL

2 and ρLcL ) can approximated not just by the ( )L state but by an average 
between the original and predicted star states, i.e. cL

2 = 1
2 (c2

L + c∗2
L) and ρLcL = 1

2 (ρLcL + ρ∗
L c∗

L). This can be considered as 
an average between the material interior state and the interface state. For other options for constructing the ( ) state see 
Schoch et al. [29].

This, however, generates an implicit problem; the unknown interface state now depends on itself, i.e. W = W(WL,W∗
L). 

A predictor–corrector method is used to iterate through and repeatedly update the star states until convergence (based 
on p∗). The initial guesses for the iteration process are the primitive states of the two materials.

3.1.3. Reduced MiNi16 inert model coupled with the Euler model
Suppose now that the material on the left side of the interface is governed by the MiNi16 inert model of Sec. 2.1.2 (the 

‘real’ material), using two phases only for demonstration purposes, while the material on the right side is governed by the 
Euler equations.

We write the two-phase, inert fluid model in primitive form as given by equation (35), with

W =

⎡
⎢⎢⎢⎢⎢⎣

ρ
Y
u
w
p
z

⎤
⎥⎥⎥⎥⎥⎦ , A(W) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u 0 ρ 0 0 0
0 u 0 0 0 0
0 0 u 0 1/ρ 0
0 0 0 u 0 0
0 0 ρc2 0 u 0
0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎠

. (60)
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The Jacobian matrix A(W) has eigenvalues μ1 = μ2 = μ3 = μ4 = u, μ5 = u − c and μ6 = u + c.

The right eigenvectors are

r1 = (0,0,0,0,0,1)T , r2 = (1,0,0,0,0,0)T , r3 = (0,0,0,1,0,0)T , r4 = (0,1,0,0,0,0)T ,

r5 =
(
ρ,0,−c,0,ρc2,0

)T
, r6 =

(
ρ,0, c,0,ρc2,0

)T
, (61)

and the left eigenvectors are

l1 = (0,0,0,0,0,1) , l2 =
(
−c2,0,0,0,1,0

)
, l3 = (0,0,0,1,0,0) , l4 = (0,1,0,0,0,0) ,

l5 = (0,0,−ρc,0,1,0) , l6 = (0,0,ρc,0,1,0) . (62)

Thus, the new system is directly reduced from the full MiNi16 system and the same procedure can be used to derive 
characteristic equations and connect states across characteristics to obtain left star values. As the reduced system does not 
contain a λ-equation, the characteristic equations are given by equations (42)–(47) and the left star states by equations 
(51)–(54) and (56)–(59). The iterative method can be used as before for better approximations of CL , C R and c2

L .

3.1.4. Augmented Euler reactive model coupled with the Euler model
Suppose now that the material on the left side of the interface is governed by the augmented Euler reactive model of 

Sec. 2.1.3, while the material on the right side is governed by the Euler equations.
We write the reactive fluid model in primitive form as given by equation (35) with

W =

⎡
⎢⎢⎢⎣

ρ
u
w
p
λ

⎤
⎥⎥⎥⎦ , A(W) =

⎛
⎜⎜⎜⎜⎝

u ρ 0 0 0
0 u 0 1/ρ 0
0 0 u 0 0
0 ρc2 0 u 0
0 0 0 0 u

⎞
⎟⎟⎟⎟⎠ . (63)

The Jacobian matrix A(W) has eigenvalues μ1 = μ2 = μ3 = u, μ4 = u − c and μ5 = u + c.

The right eigenvectors are

r1 = (1,0,0,0,0)T , r2 = (0,0,1,0,0)T , r3 = (0,0,0,0,1)T ,

r4 =
(

1,−c,0,ρc2,0
)T

, r5 =
(

1, c,0,ρc2,0
)T

, (64)

and the left eigenvectors are

l1 =
(
−c2,0,0,1,0

)
, l2 = (0,0,1,0,0) , l3 = (0,0,0,0,1) ,

l5 = (0,−ρc,0,1,0) , l6 = (0,ρc,0,1,0) . (65)

Thus, the new system is directly reduced from the full MiNi16 system and the same procedure can be used to derive 
characteristic equations and connect states across characteristics to obtain left star values. As the reduced system does not 
contain a z-equation, the characteristic equations are given by equations (41)–(43) and (46)–(47) and the left star states by 
equations (51)–(55) and (58)–(59).

3.1.5. Solving for the Euler system
When we are solving for the Euler system (i.e. the Euler fluid is the ‘real’ fluid), irrespective of which system is on the 

right side of the interface, we repeat the above process and only compute the quantities (p∗, u∗, w∗ and ρ∗
L ).

3.1.6. MiNi16 model coupled with the elastoplastic solid model
Consider a cell which contains a material boundary. Without loss of generality, we assume that on the left side of 

the interface lies the material governed by the MiNi16 equations (the multi-phase material) and on the right side of the 
interface lies a material governed by the elastoplastic solid equations (the solid material). We develop a Riemann solver that 
takes into account the two different materials to determine the star state in the fluid material.

We follow a similar procedure to that in Sec. 3.1.1. Referring to Fig. 2, WL corresponds to the original MiNi16 state, WR

to the original elastoplastic state and W∗
L to the MiNi16 star state that we are looking to compute in this Riemann solver. 

Since we are solving for the fluid as the real material, the Riemann problem still has three types of waves (two non-linear 
and four overlapping linear). The same characteristic relations (41)–(47) are defined as before and we use the approach of 
representing the differentials with the state difference. Connecting fluid states W∗

L and WL using dp + ρc du = 0 and solid 
states W∗ and WR using dp − ρc du = 0 we obtain a mixed-material expression for p∗:
R
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p∗ = uS − uF + 1
ρS

(Q−1D−1Q)S
11σ

S
11 + pF

ρF cF

1
ρF cF

− 1
ρS

(Q−1D−1Q)S
11σ

S
11

, (66)

where Q is an orthogonal matrix and D is the diagonal matrix of positive eigenvalues for the solid system, such that the 
elastic acoustic tensor is defined by:

�i j = 1

ρ

∂σ1i

∂ F e
jk

Fe
1k = Q−1D−1Q. (67)

Considering pR = σ S
11, (Q−1D−1Q)S

11 = 1/cR and C R = ρR cR and CL = ρLcL we obtain equation (51).
Then, using dp + c2dρ = 0 to connect states W∗

L and WL we obtain equations (52)–(53) and values for u∗
L and ρ∗

L , 
using the remaining characteristic equations we obtain equations (54)–(57) and values for w∗, λ∗, Yk∗ and z∗ and using the 
definition of Yk we obtain ρ∗

k via equations (58)–(59). At the interface, we apply conditions

p∗
L = σ ∗

R,11, u∗
L = u∗

R . (68)

To improve accuracy, an iterative approach as described in Sec. 3.1.2 is used.
If the real fluid is described by the reduced two-phase reactive system given in Sec. 2.1.1 then the same procedure as 

here is used, as the same governing equations (and hence characteristic equations) hold.

3.1.7. Reduced MiNi16 inert model coupled with the elastoplastic solid model
Suppose now that on the left side of the interface lies the material governed by the MiNi16 inert equations of Sec. 2.1.2

(here we use two phases only here for convenience) and on the right side of the interface still lies a material governed by 
the elastoplastic solid equations. We follow a similar procedure to that in Sec. 3.1.6 to determine the star state (W∗

L ) in the 
fluid material.

The characteristic relations for this system are defined by equations (42)–(47). By connecting the appropriate states we 
obtain the mixed material expression for p∗ given by equation (66) and the remaining star states by equations (52)–(54)
and (56)–(59). The difference now is that the ( )L quantities come from the two-phase inert model rather than the full 
MiNi16 model. At the interface, we apply the conditions given by (68) as before.

As with the MiNi16-elastoplastic coupling, the expressions for cF
2 and ρF cF can be taken to be averages of the original 

and predicted star states and hence a predictor–corrector method is required to update the star states until convergence 
(based on p∗).

3.1.8. Augmented reactive Euler model coupled with the elastoplastic solid model
If now on the left side of the interface lies the material governed by the augmented reactive Euler equations of Sec. 2.1.3

and on the right side of the interface still lies a material governed by the elastoplastic solid equations, we follow a similar 
procedure to that in Sec. 3.1.6 to determine the star state (W∗

L ) in the fluid material.
The characteristic relations for this system are defined by equations (41)–(43) and (46)–(47). By connecting the appropri-

ate states we obtain the mixed material expression for p∗ given by equation (66) and the remaining star states by equations 
(52)–(55) and (58)–(59). The difference now is that the ( )L quantities come from the reactive augmented Euler model rather 
than the full MiNi16 model. At the interface, we apply the conditions given by (68) as before.

As with the MiNi16-elastoplastic coupling, the expressions for cF
2 and ρF cF can be taken to be averages of the original 

and predicted star states and hence a predictor–corrector method is required to update the star states until convergence 
(based on p∗).

3.1.9. Solving for the elastoplastic solid model
Suppose we again have a cell interface which is a material boundary but on the left side of the interface lies an elasto-

plastic solid material. On the right side of the interface lies a fluid material which can be a MiNi16 material or any of its 
reduced versions (including the inert Euler equations). We follow a similar procedure as with the explosive–fluid mixed 
Riemann solvers. We give a brief outline on the derivation of the solid approach and refer the reader to Barton et al. [28]
for more details.

The aim here is to determine the star state for the solid cell adjacent to the solid–fluid interface. The elastoplastic solid 
model can be written in primitive, quasilinear form for primitive variables W = (u, FeT

, S):

Wt + A(W)Wx = 0, (69)

where

W =

⎡
⎢⎢⎢⎢⎢⎣

u

FeT
e1

FeT
e2

FeT
e3

S

⎤
⎥⎥⎥⎥⎥⎦ , A(W) =

⎛
⎜⎜⎜⎜⎜⎝

u1 I −Aα1 −Aα2 −Aα3 −Bα

−FeT
E11 uα I 0 0 0

−FeT
E12 0 uα I 0 0

−FeT
E13 0 0 uα I 0

0 0 0 0 uα I

⎞
⎟⎟⎟⎟⎟⎠ , (70)
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Table 1
Romenskii equation of state parameters the elastoplastic solid materials used in this work.

Hyperelastic and shear parameters ρ0

[kg m−3]
cv

[J kg−1 K−1]
T0

[K]
α
–

�0

–
b0

[m s−1]
c0

[m s−1]
β

–

Aluminium 2710 900 300 1 2.088 3160 6220 3.577
Copper 8930 390 300 1 2 2100 4600 3

where Eij represents the unit dyads Eij = ei × eT
j , I is the identity matrix and

Aαβ

i j = 1

ρ

∂σαi

∂ F e
β j

, Bα
i = 1

ρ

∂σαi

∂ S
. (71)

The eigenvalues and corresponding right and left eigenvectors are computed and used to obtain characteristic relations, 
allowing for the computation of the primitive elastic star state (the plastic deformation gradient Fp is not computed at this 
point):

W∗
L = WL + 1

ρL

∑
μk>uL

(σ ∗
L,1i − σL,1i)r̂Lek, (72)

where r̂ are the right eigenvectors of the elastic system.
At the material interface, slip conditions are used which specify the continuity of the normal components of velocity and 

traction and zero tangential stresses in the solid:

σ ∗
L,11 = −p∗

R , u∗
L = u∗

R , σ ∗
L,12 = σ ∗

L,13 = 0. (73)

A more accurate star state can be determined if an iterative procedure is used. Starting with initial guesses for the left 
and right star states the primitive solid and the primitive fluid states, the star state computation described above is iterated 
until convergence of p∗ .

4. Validation of the elastoplastic component

In this section, the implementation of the solid–solid formulation is validated in isolation, without the influence of the 
fluid formulation or solid–fluid mixed Riemann solvers.

4.1. Aluminium plate impacting an aluminium target

In this test, a projectile block of aluminium moving at 400 m/s impacts a stationary target block of aluminium. This 
was originally presented by Howell and Ball [35]. A domain of size [−0.6, 2.4] cm ×[−2, 2] cm is considered. The projectile 
initially spans (x, y) ∈ [−0.5, 0.0] cm ×[−0.6, 0.6] cm and the target plate (x, y) ∈ [0, 2.2] cm ×[−1.7, 1.7] cm. The remain-
der of the domain contains vacuum to allow for unrestricted free surface movement. Both plates are made of the same 
type of aluminium, modelled by the Romenskii hyperelastic equation of state [8], consisting of a two-term hydrodynamic 
component and a one-term shear deformation component. The full equation is given by:

ε(I1, I2, I3, S) = K0

2α2

(
Iα/2
3 − 1

)2 + cv T0 Iγ /2
3

(
eS/cv − 1

)
+ B0

2
Iβ/2
3

(
I2
1

3
− I2

)
, (74)

where I1, I2, I3 are the invariants of the Finger tensor, K0 = c2
0 − 4

3 b2
0 is the squared bulk speed of sound, B0 is the reference 

shear wave speed, cv is the specific heat capacity at constant volume, T0 is the reference temperature, α, γ are exponents 
determining the non-linear dependence of the sound speed and temperature on density respectively and β an exponent 
determining the non-linear dependence of this shear wave speed on density.

The constitutive model parameters for the aluminium considered here are given in Table 1. Perfect plasticity is assumed, 
with a yield stress of 0.4 GPa. Between the two aluminium plates, a slip condition is assumed. The simulation is performed 
at an effective resolution of �x = �y = 50 μm up to a final time of 5 μs.

Fig. 3 illustrates the computed wave structure in the two plates at times t = 0.5, 1, 3 and 5 μs. Upon impact, shock 
waves are generated that travel upwards into the projectile and downwards into the target, as seen in Fig. 3(top left). 
These waves are of the same strength since the impact is symmetric (projectile and target plate are made of the same 
material). In Fig. 3(top right), the shock wave travelling in the target plate is seen to have split into an elastic precursor and 
a trailing plastic wave. The shock wave travelling into the projectile reaches the rear end of the plate, where it interacts 
with the solid/vacuum interface. This interaction generates a release wave travelling backwards into the projectile. It then 
crosses into the target plate generating a region of high tensile stress in the x-direction. This weakens the plastic wave 
traversing the target (Fig. 3(bottom left)). By t = 4 μs, the elastic wave reaches the rear of the target plate, generating a 



14 L. Michael, N. Nikiforakis / Journal of Computational Physics 367 (2018) 1–27
Fig. 3. Pressure contours in the aluminium projectile and aluminium target at times t = 0.5,1,3 and 5 μs, for the test problem described in Sec. 4.1.

downwards-moving release wave. Subsequently, this release wave interacts with the still rightward-travelling plastic wave, 
producing a new set of waves that travel upwards and downwards and continue reflecting on the rear end of the target 
plate. The deformation of the two plates is also apparent in the sequence of Fig. 3.

An excellent match is seen between our results and the computation by Howell and Ball [35]. To compare further with 
their results we consider gauges embedded in the originally stationary target block to detect strain, velocity, pressure, and 
density. These gauges are allowed to move with the flow as the target block deforms. Five equally spaced gauges are placed 
along the centreline of the target plate. The first one is placed at 1.8125 mm from the original impact position and a 
distance of 3.625 mm is allowed between consecutive gauges. The time histories for each gauge for the x-wise velocity, 
pressure, density and x-wise stress are seen in Fig. 4. The arrival times of the waves and their amplitude compare well with 
the results of Howell and Ball [35], for all gauges. The split of the shock wave generated at impact is clearly seen in the 
target and the two waves appear to be steeper in our results. We choose to run the simulation longer than Howell and Ball, 
to capture the reflection of the elastic wave at the end of the target plate and the interaction of the reflected wave with the 
travelling elastic wave. These phenomena are also seen in the time-histories.

5. Validation of the reactive, hydrodynamic component

In this section, the implementation of the MiNi16 formulation is validated in isolation, without the influence of the 
elastoplastic formulation or elastoplastic–hydrodynamic (or simply also referred to as solid–fluid) mixed Riemann solvers. 
The tests are based on C4, as this is the explosive used in the later solid–fluid configurations.

5.1. Equation of state and reaction rate

In this work, C4 and its products are modelled by the JWL equation of state, with parameters as given in Table 2. The 
JWL equation of state is a Mie–Grüneisen equation of state, with general form given by

p(ρ, e) = pref(ρ) + ρ�(ρ)[e − eref(ρ)], (75)

with reference pressure and energy curves given by:
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Fig. 4. Time histories recorded at the five gauges along the centreline of the target plate, for the test problem described in Sec. 4.1. A good agreement is 
observed when comparing our results to the ones by Howell and Ball [35] in terms of arrival times and amplitude of the waves.

Table 2
Scaled JWL parameters for C4 and its detonation products (left) and scaled Ignition and Growth parameters for C4 
(right) [51].

JWL parameter C4 reactant C4 products I&G parameter

� 0.8938 0.25 I[s−1] 4 × 106 g 0.667
A [Mbar] 778.1 6.0977 G1[(1011 Pa)−y s−1] 149.97 x 7.0
B [Mbar] −0.05031 0.1295 G2[(1011 Pa)−z s−1] 0 y 2.0
R1 11.3 4.5 a 0.0367 z 3.0
R2 1.13 1.4 b 0.667 φIGmax 0.022
ρ0 [kg m−3] 1601 – c 0.667 φG1max 1.0
cv [105 Mbar K−1] 2.487 1.0 d 0.33 φG2max 0.0
Q [Mbar] – 0.09 e 0.667

Fig. 5. Inert shock Hugoniot of C4 using the JWL equation of state (red), reactive Hugoniot curve (green) for the same material, and Rayleigh line, as 
described in Sec. 5.1.

pref (ρ) = Aexp
(−R1ρ0

ρ

)
+ Bexp

(−R2ρ0

ρ

)
, (76)

eref (ρ) = A
ρ0R1

exp
(−R1ρ0

ρ

)
+ B

ρ0R2
exp

(−R2ρ0

ρ

)
(77)

and Grüneisen coefficient given as:

�(ρ) = �0. (78)

The JWL equation of state is usually used to model reaction products but it has been extensively used to model the unre-
acted phase of explosives as well [49,50].

Fig. 5 illustrates the inert shock Hugoniot of the reactant in red and the fully reacted Hugoniot of the products in green. 
The dotted line represents the Rayleigh line. The intersection of the Rayleigh line with the inert shock Hugoniot gives the 
value of the von Neumann pressure predicted by the equation of state of the material. Similarly, the predicted CJ point 
is given by the point at which the Rayleigh line becomes tangent to the product Hugoniot. The value of the CJ pressure 
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Fig. 6. Validation of the C4 material model: (a) Pressure profiles of a detonation in C4, reaching steady state, as described in Sec. 5.2. Dashed lines denote the 
CJ and von Neumann pressure; (b) Run distance to detonation vs input pressure Pop-plot, as described in Sec. 5.3. The filled circles represent experimental 
data and the crosses numerically calculated data.

corresponding to the equations of state for C4 and its products used in this work is 27.5 GPa and the von Neumann 
pressure is 31.2 GPa.

Examples of reported values for the CJ pressure of C4 at densities 1480–1600 kg m−3 in the literature [52] are: 27.5 GPa, 
22.36 GPa, 24.91 GPa, 22.55 GPa, 25.09 GPa and 22.36 GPa. It should be noted that in general the values for the von 
Neumann pressure are published considerably less frequently than the CJ pressures. For this specific explosive we could not 
find data in the literature reporting the von Neumann pressure.

To describe the conversion of reactants to products we use the Ignition and Growth model developed by Lee and Tarver 
[53] and given by:

dφ

dt
= −K = I(1 − φ)b(ρ − 1 − α)x H(φIGmax − φ) (79)

+ G1(1 − φ)cφd p y H(φG1max − φ)

+ G2(1 − φ)eφg pz H(φ − φG2max),

where φ = 1 − λ is the mass fraction of the products, H is the Heaviside function and I, G1, G2, a, b, c, d, e, g, x, y and z
are constants chosen for a particular explosive and a specific regime of the detonation process (i.e. initiation or propagation 
of established detonation). The constants φIGmax, φG1max and φG2max determine for how long each of the three terms is 
dominant.

The form of this reaction rate was constructed so that each term represents one of the three stages of reaction observed 
during the shock initiation and detonation of pressed solid explosives. The three terms can be interpreted differently de-
pending which regime of the detonation process is studied. For shock initiation modelling, the first term represents the 
amount of reaction due to the formation and ignition of hot-spots which are generated by several mechanisms in hetero-
geneous explosives but mainly by void compression. The second term then describes the reaction due to the growth of the 
hot-spots and the third term the completion of reaction and transition to detonation. For detonation modelling, the first 
term still describes the amount of reaction at the initiation stage, due to the generation of hot spots. The second term 
describes the fast growth of the reaction as the reactant is converted to products. The third term describes the relatively 
slow diffusion-limited process of carbon formation [49]. The reaction rate law parameters for C4 are given in Table 2 which 
have been rendered non-dimensional using the CJ state for the explosive.

5.2. C4 ZND

Consider a one-dimensional slab of C4 at ambient conditions, initiated by a booster with pressure of 30 GPa. We model 
this computationally in a domain that spans [0, 6.432] cm and the booster resides in the region [0, 0.0402] cm. An effective 
resolution of �x = 33.5 μm is used. The initial data in the ambient region are:

(ρreactant,ρproduct, u, p, λ) = (1590 kg m−3,1590 kg m−3,0 m s−1,1 × 105 Pa,1)

and in the booster region are:

(ρreactant,ρproduct, u, p, λ) = (1590 kg m−3,1590 kg m−3,0 m s−1,30 × 109 Pa,0)

The explosive transits very quickly to detonation, which in-turn settles down to steady state. The steady detonation 
structure is shown in Fig. 6(a).

The computed CJ and von Neumann pressure values agree with the values predicted in the previous section and fall 
within the range of values found in the literature.
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Fig. 7. Comparison of our numerical solutions for total density and tangential xy and xz stress against the exact solution for the solid–fluid test problem 
described in Sec. 6.1, with an initially moving and stressed copper (green) and quiescent PBX9404 at ambient pressure (red). The material interface between 
the solid and fluid component is captured as a discontinuity, low numerical diffusion is generally observed and the solution is free from any spurious 
oscillations.

5.3. C4 Pop-plot

In this section we validate the explosives model against Pop-plot data of run distance to detonation versus input pressure. 
This is equivalent to overtake time versus input pressure that is usually used as, for Pop-plot purposes, detonation is defined 
to be the overtake of precursor shock wave by the generated reactive wave.

In Fig. 6(b) we compare our numerical results for run distance to detonation to experimental data by Urtiew et al. [51]
for different input pressures, where a very good match is observed.

6. Validation of the hydrodynamic–elastoplastic coupling

The final step towards simulating the non-linear, two-way interaction of explosives and elastoplastic materials is the 
validation of the solid–explosive coupling for one-dimensional and cylindrically symmetric test cases. Thereafter, the coupled 
system is used to demonstrate example applications.

6.1. Stressed copper impacting quiescent PBX 9404

This test considers a stressed copper component for x ∈ [0, 0.005] m, impacting an initially quiescent, reacted PBX9404 
gas for x ∈ [0.005, 1.0] m, as described in [28]. The PBX9404 is modelled by the ideal gas equation of state, with γ = 2.83
and the copper by the elastic Romenskii equation of state (74) with parameters as given in Table 1. A domain spanning 
[0, 0.01] m is considered and an effective resolution of �x = 20 μm is used.

The initial conditions for this test are:

L: ρ = 1840 kg m−3, u =
⎛
⎝ 2000

0
100

⎞
⎠ m s−1, S = 0 J kg−1 K−1,F =

⎛
⎝ 1 0 0

−0.01 0.95 0.02
−0.015 0 0.9

⎞
⎠

R: ρ = 1840 kg m−3, u = 0 m s−1, p = 105 Pa.

The numerical and the exact solutions for density and tangential stress components σxy and σxz at t = 0.9 μs are given 
in Fig. 7, where good agreement for all quantities is demonstrated. A small density error at the interface can be seen, which 
is, however, visibly smaller than the error in [28].

6.2. Sandwich-plate impact: inert Detasheet confined by steel, impacted by steel

The next validation is in cylindrical symmetry for an elastoplastic–elastoplastic–hydrodynamic configuration and we com-
pare our results against existing numerical solutions. The test considers a cylindrical flyer plate impact and the subsequent 
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Fig. 8. Schematic of the sandwich-plate impact setup described in Sec. 6.2.

response of the explosive residing behind the target plate. Specifically, a steel projectile of 18 mm diameter and 50 mm
length impacts a steel target plate of thickness 3.18 mm and diameter 100 mm. Behind the target plate sits a block of 
Detasheet explosive with the same diameter as the target plate. Two explosive thicknesses are considered; 6.35 mm and 
3.18 mm. Another steel plate is considered to sit behind the explosive, with the same diameter and thickness as the front 
plate. The simulation is done in axial symmetry. Initially the projectile and target plate are separated by 1 mm. A schematic 
of the setup is shown in Fig. 8, residing in vacuum.

The Detasheet is modelled by the linear Hugoniot equation of state [54], which is of Mie–Grüneisen form (75), with 
reference functions given by:

pref (ρ) = p0 + ρ0ρc2
0(ρ − ρ0)

ρ − s(ρ − ρ0)
, (80)

eref (ρ) = e0 + [pref (ρ) + p0]ρ − ρ0

2ρρ0
(81)

and Grüneisen coefficient given as:

�(ρ) = �0

(ρ0

ρ

)a
. (82)

The equation of state parameters for this explosive is:

(�, c0[m s−1], s,ρ0[kg m−3]) = (0.3,1850,2.32,1480). (83)

The hydrodynamic, elastic and plastic behaviour of the steel is described by a linear Hugoniot equation as well, in 
combination with a constant shear model with G = 95.4 ×109 Pa and the Johnson–Cook plasticity model [55]. The Hugoniot 
parameters for steel are:

(c0[m s−1], s,ρ0[kg m−3], T0[K]) = (4610,1.275,7860,298). (84)

The Johnson–Cook plasticity model assumes yield stress given by:

σY = (A + Bεn)

(
1 + C ln

ε̇

ε̇0

)(
1 −

(
T − T0

Tm − T0

)m)
, (85)

with A the base yield stress, B the hardening constant multiplier, C the strain rate dependence constant multiplier, n the 
hardening exponent, m the temperature dependence exponent, ε the accumulated plastic strain, equivalent to the evolved 
parameter κ , ε̇0 the reference strain rate, T0 the reference temperature and Tm the reference melt temperature.

For this test, the Johnson–Cook parameters for steel are:

A = 0.53 × 109 Pa, B = 0.229 × 109 Pa, C = 0.027,n = 0.302,m = 1.0, ε̇0 = 1.0 s−1, (86)

T0 = 298 K, Tm = 1836 K.

A domain (x, y) ∈ [−50, 50] mm × [0, 65] mm is considered, with effective resolution �x = �y = 0.5 mm. The region out-
side the plates and explosive contains vacuum. To compare directly with the results by Lynch [54], the Detasheet explosive 
is taken to be inert and an impact velocity of uz = 1800 m s−1 is considered.

The initial data for this test are:

Steel Projectile: ρ = 7860 kg m−3, ur = 0 m s−1, uz = 1800 m s−1, S = 0 J kg−1 K−1, F = I.

Steel Plates: ρ = 7860 kg m−3, ur = uz = 0 m s−1, S = 0 J kg−1 K−1, F = I.

Detasheet: ρ = 1400 kg m−3, ur = uz = 0 m s−1, p = 105 Pa.
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Fig. 9. Wave diagram observed in the sandwich-plate impact application of Sec. 6.2. Solid black lines show the paths of shock waves, solid red lines show 
the paths of rarefaction waves, and dashed lines show the motion of material interfaces.

Fig. 10. Pressure time-histories for explosives of thickness 6.35 mm and 3.18 mm for the test problem of Sec. 6.2. These match well with the results by 
Lynch [54]. The station numbers in the parentheses correspond to the station numbers in the reference.

The wave pattern in this scenario is complex so a wave diagram is included as Fig. 9 to keep track of the waves generated. 
The solid black lines denoted by ‘S’ represent the shock waves, the pairs of red lines denoted by ‘R’ the rarefaction fans and 
the black dotted lines the impulsively accelerated material interfaces. Upon impact, two shocks are generated; one travelling 
in the target plate (S1) and one travelling back into the projectile (S2). As a result of the impulse, the face of the plate is 
accelerated. The shock S1 reaches the front plate/explosive interface, a high impedance/low impedance interface (HI–LI), 
where it is transmitted in the explosive as a shock (S3) and reflected back into the front plate as a release wave (R1). Again, 
the material interface is accelerated. The shock S3 reaches the end of the explosive and encounters a low impedance–high 
impedance interface (LI–HI). Hence, it is transmitted into the rear plate as shock S4 and reflected into the explosive as shock 
S5. It should be noted that if there was no rear plate, the wave diagram would stop after the generation of S3 and no other 
waves would have affected the explosive. The shock S5 reaches the rear end of the explosive, now a LI–HI interface, where 
two shocks are generated; S6, which is reflected back into the explosive and S7, which is transmitted into the front target 
plate. In the meantime, shock S4 reaches the end of the rear plate and, since there is vacuum on the other side of the plate, 
the shock is reflected as a rarefaction wave (R2) only, into the plate. The release wave R2 reaches the rear plate/explosive 
interface which is now a HI–LI interface where it is reflected as a shock (S8) back into the plate and transmitted as a 
rarefaction wave (R3) into the explosive. The release wave (R3) interacts with the shock (S6) within the explosive, leading 
to its weakening and making the wave pattern much more complex from here on. It is worth noting that if the rear plate 
was infinitely thick there would be no release waves coming into the explosive and a series of shock reflections would occur 
(like for S5 and S6), continuously increasing the pressure in the explosive. This is the general one-dimensional behaviour 
along the centreline of the experiment. Additional effects are generated due to the deformation of the solid materials and 
the weld assumption between the solid components.

Pressure gauges are placed at the point of impact (station 1), at the front plate/explosive interface (station 2), at equally 
spaced points in the body of the explosive (stations 3–5) and at the explosive/rear plate interface (station 6). The pressure 
at each of these gauges over time is seen in Fig. 10 for both explosive thicknesses and we compare our results to the results 
by Lynch [54]. The station 1 curve (station 4 in [54]) shows the shock (S1) as it is generated at the front plate/explosive 
interface, increasing the pressure at 40 GPa. The wave S3 is seen traversing the explosive in the stations 2–5 (stations 6–10 
in [54]), followed by release waves. In the meantime, the release wave R1 in the front plate lowers considerably the pressure 
in the steel and the weld condition allows the pressure (or rather, stress) to go as low as −10 GPa. The wave S5 is seen in 
stations 5 and 6. The release wave R3 travels behind the shock S5 within the explosive leading to its weakening.
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Fig. 11. The pressure distribution for all materials (left part of domain) and mass fraction of the reactants (right part of domain), at times t = 2.4 and 
4.9 μs, for the configuration of an explosive confined by one (right figures) or two (left figures) steel plates and impacted by steel projectile, as described 
in Sec. 6.3.

A similar behaviour is seen for the explosive of thickness 3.18 mm, though the several features are seen to happen a lot 
faster (of course the gauges have also been moved). Moreover, the strength of the shock S5 is greater than before and also 
the minimum stress achieved in the front plate is higher than before.

For both thicknesses our results agree well with the results by Lynch [54]. We note that in the results by Lynch [54]
some oscillations are seen that are attributed to the numerical scheme used therein.

6.3. Sandwich-plate impact: reactive C4 confined by steel, impacted by steel

The previous test is repeated with a different explosive, namely C4, which is now chemically active. The explosive has 
been tested and validated individually in Sec. 5. We use the JWL equation of state as given by equations (75)–(78) and the 
ignition and growth reaction rate model (79) to represent the explosive. The parameters for these are found in Table 2.

The initial data for steel are as in the previous section, with the exception of the impact velocity which here is taken to 
be uz = 700 m s−1. The initial data for the explosive are:

C4: ρ = 1590 kg m−3, ur = uz = 0 m s−1, p = 105 Pa, λ = 1.0. (87)

In Fig. 11 (top), the mass fraction of the reactants is seen on the left and the pressure distribution on the right, at times 
t = 2.4 and 4.9 μs. At t = 1.4 μs, minimal reaction, of the order of λ = 0.91, is observed due to the shock wave generated 
at impact (S3). The effect of the shock S5 on the reaction is larger, leading to λ = 0.65 at t = 2.4 μs at the ignition site near 
the explosive/rear plate interface and to λ = 0.55 at t = 4.9 μs in the same site.

The same test is repeated with the rear plate removed and the explosive extended to have thickness of 10.82 mm to 
demonstrate the effect of the rear plate on the ignition of the explosive. In Fig. 11 (bottom), the mass fraction of the 
reactants is seen on the left and the pressure distribution on the right, at times t = 2.4 and 4.9 μs. At t = 1.4 μs, minimal 
reaction, of the order of λ = 0.91, is observed due to the shock wave generated at impact (S3). This is the same amount 
of reaction observed in the previous case as well, as up to this point, no waves have reached the rear plate. As mentioned 
earlier, if the rear plate is not present, only the wave S3 affects the ignition process. At time t = 2.4 μs, reaction of the 
order λ = 0.85 is seen and at t = 4.9 μs reaction of the order λ = 0.83. The combination of the results of these two cases 
demonstrates the effect of the rear plate on accelerating the reaction.

7. Multidimensional use cases

7.1. Sandwich-plate impact with front air gap

The same test as in Sec. 6.3 is repeated with the inclusion of an air gap initially at atmospheric conditions (modelled 
as ideal gas with γ = 1.4) of width 3.18 mm between the front plate and the explosive. This demonstrates the full use 
of the MiNi16 model (air is phase 1, the explosive reactant is phase α and the explosive products is phase β; the last 
two form phase 2) coupled with the elastoplastic formulation. This problem is difficult to handle numerically, due to the 
big differences in the properties of the materials (reactants, products, air, solid) and the strong conditions involved. In this 
scenario we demonstrate how the presence of the air gap affects the ignition of the explosive so a direct comparison to 
the results of Sec. 6.3 is carried out. In both scenarios the impact generates a wave that travels in the front plate. In the 
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Fig. 12. The mass fraction of the reactants (left) and the pressure distribution for the solid plates, the explosive and air (right) are presented at times 
t = 2.6 and 4.6 μs, for the steel-confined explosive with an air gap, impacted by a steel problem of Sec. 7.1. Note that the figures have been stretched in 
the y-direction by a factor of 2, to allow for a clear view of the air gap.

air gap scenario, this reaches the air gap where a shock of the order of p = 0.5 MPa is transmitted in the air. After a short 
propagation in the air, at t = 1.5 μs this wave reaches the explosive-air interface where it is transmitted in the explosive 
as a shock of the order of p = 0.5 MPa. The strength of this shock is considerably lower than the strength of the wave 
generated upon impact on the no-air gap case (p = 2.1 GPa). As a result, this wave does not generate any reaction at all in 
the explosive. At t = 2.3 μs the deformed front plate has squeezed away the air gap and reaches the lower explosive face. 
Upon impact a new shock wave is generated in the explosive (and an opposite one in the front target plate) of the order 
of p = 2.5 GPa. The strength of this wave is comparable to the strength of the wave generated upon impact on the no-air 
gap case. Comparing the air-gap and non-air-gap cases, at 1 μs after the first wave impacts the explosive, a reaction of the 
order of λ = 0.91 is observed in the non-air-gap case, whereas no reaction is seen in the air-gap scenario. At 2 μs after the 
first wave impacts the explosive, a reaction of the order of λ = 0.65 is observed in the non-air-gap case, and of the order of 
λ = 0.71 in the air-gap scenario, demonstrating how the air gap hinders the reaction process (Fig. 12).

7.2. Rod impact leading to detonation in a copper vessel

In this section, we present another showcase as a high-speed impact example involving multiphase reactive flow (ex-
plosive), elastoplastic structural (solid) response and inert air response. Consider a copper can of outer diameter of 14 cm, 
inner diameter 10 cm (resulting in a 2 cm wall thickness) and height of 49.2 cm. The can is filled with a nitromethane 
charge of diameter 10 cm and height of 45.2 cm (i.e. no air gaps between the charge and the confiner). The can is impacted 
by a copper projectile travelling at 2000 m s−1 with the same diameter as the explosive charge and a semi-infinite length, 
starting with length 6 cm but extending also out of the domain. The configuration resides in air, of outer diameter 18 cm
and height 59.2 cm. All materials are initially at atmospheric conditions.

This test is similar to the confined explosion tests by Miller and Colella [27], Barton et al. [28] and Schoch et al. [29]. 
However, these tests describe the initiation of the explosive with a booster whereas here we consider directly the impact 
resulting to the initiation and detonation of the explosive. Moreover, in the aforementioned studies the explosive was either 
simpler and described with simpler EoS and/or the entire configuration resided in vacuum.

In this work, we consider the explosive to be nitromethane, described by the Cochran–Chan EoS, which is of a Mie–
Grüneisen form given by Eq. (75) with reference curves:

pref(ρ) = A
(ρ0

ρ

)−E1 − B
(ρ0

ρ

)−E2
, (88)

reference energy given by

eref(ρ) = −A
ρ0(1 − E1)

[(ρ0

ρ

)1−E1 − 1
]
+ B

ρ0(1 − E2)

[(ρ0

ρ

)1−E2 − 1
]

(89)
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Grüneisen coefficient �(ρ) = �0 and parameters �0 = 1.19, A = 0.819 GPa, B = 1.51 GPa, E1 = 4.53, E2 = 1.42, ρ0 =
1134 kg m−3, cv = 1714 J kg−1 K−1 and Q = 4.48 MJ kg−1. The chemical reaction follows a single-step, temperature de-
pendent reaction rate law:

K = dλ

dt
= −λCe−T A/T N M , (90)

with C = 6.9 × 1010 s−1 and activation temperature T A = 11350 K [40] and nitromethane temperature recovered as 
T N M = T2 = p−pref2 (ρ)

ρ2�2cv2
. We neglect the explicit description of products so the explosives model reduces to the reactive 

Euler equations augmented with a reaction-progress variable. The equations feature a source term −z2ρ2 K Q in the en-
ergy equation and a source term −z2ρ2 K in the reaction-progress variable equation. The copper is described by the elastic 
Romenskii equation of state with parameters as given in Table 1 and perfect plasticity with yield of 70 MPa. The entire 
configuration is residing in air, described as an ideal gas with γ = 1.4, so we are able to visualise the transmission of the 
waves from the explosive, to the solid and finally to the gas. The simulation is performed with a base spatial resolution 
of �x = �y = 1 mm and two levels of refinement each with refinement factor 2, resulting in an effective resolution of 
�x = �y = 0.25 mm.

Fig. 13 shows the pressure distribution in the explosive, the solid and the surrounding gas, as well as the AMR grids, 
at times t = 0, 15, 35 and 60 μs. At the start of the simulation, the explosive is at ambient conditions, with pressure at 
105 Pa. The impact sends a rightward-moving shock wave into the explosive and a leftward-moving wave in the projectile. 
Reflections of the waves in all materials also occur due to the confiner and the projectile not having the same width as the 
casing. The explosive is initiated and the reaction wave transits to a steady detonation. The detonation wave (red region 
in explosive) induces a shock wave in the solid (dark grey region in solid) which, upon reaching the copper–air boundary 
sends a shock wave in the air (dark blue region in air) and a release wave back into the solid. The repeated reflections at the 
material interfaces generate alternate regions of compression and tension in the solid and pressure waves in the explosive 
(often referred to as ‘ringing’). The effect of the detonation on the deformation of the can is seen by comparing the shape 
of the can in the early and late stages of the event.

7.3. Rod impact leading to fuel ignition in a car fuel tank

In this section, we present a final showcase as a low-speed impact example involving reactive flow (fuel), elastoplastic 
structural (solid) response and inert air response. Consider a fuel tank as presented in Fig. 14(a). The steel tank is filled with 
gaseous explosive and is impacted by a steel projectile travelling at 45 m s−1, which can be considered to be the speed of a 
head-on car collision. The steel rod has diameter 3 cm and a semi-infinite length, starting with length 5.5 cm but extending 
also out of the domain. The configuration resides in air, in a domain with dimensions 23 cm × 23 cm with reflective right 
boundary condition and transmissive conditions at all other boundaries. The simulation is performed with a base spatial 
resolution of �x = �y = 1 cm and one level of refinement with refinement factor 4, resulting in an effective resolution of 
�x = �y = 0.25 cm.

This use case aims to demonstrate the ability of the algorithm to handle low-speed impact scenarios involving mul-
tiple materials and combustion. The fuel is modelled by an ideal gas EoS with γ = 1.4, cv = 718 J kg−1 K−1 and Q =
0.497 MJ kg−1 and its combustion by a single-step Arrhenius law as per Eq. (90) with C = 9.1 × 1011 s−1 and activation 
temperature T A = 7974.68 K. The fuel tank casing and the projectile are both taken to be mild steel, described by the 
Hugoniot elastic equation of state with parameters:

(c0[m s−1], s,ρ0[kg m−3], T0[K]) = (4569,1.49,7870,298) (91)

and perfect plasticity with yield of 137 MPa. The entire configuration is residing in air, described as an ideal gas with 
γ = 1.4. All materials are initially at atmospheric conditions.

The left halves of the images in Fig. 14 show the pressure distribution in the fuel, in the casing and the impacting 
rod, while the right halves show the distribution of the AMR grids. Similarly, left halves of the images in Fig. 15 show the 
evolution of the reaction progress variable (λ) at late stages of the impact. After several reflections of the pressure waves 
at the casing walls, initiation of the gas is observed in the blue region of Fig. 15(a). The reaction region grows as depicted 
in Figs. 15(b)–(c). In Fig. 15(c) a secondary initiation zone is seen to be generated at the leftmost (and symmetrically 
rightmost) bottom part of the tank. In Fig. 15(d) the distinct reaction fronts coalesce and move to deplete the remaining 
fuel in the tank. It should be noted that the elastoplastic equations are solved both in the projectile and the fuel tank shell. 
In Fig. 15(e) we zoom in on the fuel tank shell to show waves that are travelling in this material. Being able to solve for the 
evolution of the fuel tank shell signifies that one can use this methodology to optimise the shape and material of the fuel 
tank shell for accident prevention. Similarly, as the impactor can be thought of as the car panel, our techniques can be used 
for optimising this car part as well.
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Fig. 13. The lower part of images (a)–(c) presents the two-dimensional pressure distribution in the explosive, the solid, the projectile and the surrounding 
gas while the top part presents the AMR grid distribution in all materials, at times t = 0, 15 and 35 μs of the showcase presented in Sec. 7.2. In image (d) 
the same quantities are shown in a three-dimensional view for t = 60 μs.
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Fig. 14. The pressure distribution (left) and the distribution of AMR grids (right) for early stages of the fuel tank impact simulation described in Sec. 7.3.

8. Conclusions

In this work we present a methodology for the numerical simulation of the two-way interaction of reactive flow and 
elastoplastic structural response for automotive and defence applications. We present the coupling of a MiNi16 formulation 
and reduced models suitable for modelling gaseous fuels and condensed-phase explosives, with fluid (compressible Euler) 
and elastoplastic solid formulations. The coupling utilises level set and Riemann ghost fluid methods to achieve commu-
nication between the materials described by different systems of equations. The fuel/explosive, solid and fluid models are 
all formulated as hyperbolic conservation laws and thus they can be solved by the same or similar numerical methods, 
facilitating the communication at material interfaces. The communication is achieved by solving mixed-material Riemann 
problems at the interfaces. To this end, we derive mixed Riemann solvers for each formulation pair considered in this work. 
These are based on the characteristic equations derived for each system pair, allowing for the computation of the star state 
in the ‘real’ material, by taking into account the two different systems on either side of the interface and applying appro-
priate interface boundary conditions. In a nutshell, our multi-physics methodology includes: (a) The MiNi16 model for the 
hydrodynamic part, (b) the elastoplastic equations in hyperbolic form for the solid part, (c) finite volume, shock-capturing 
methods, (d) the level set method, the Riemann ghost fluid method and the mixed-material Riemann solvers presented in 
this work for communication between materials and (e) hierarchical adaptive mesh refinement.

The elastoplastic solid model and the explosives model are in the first instance validated separately. This assesses the 
implementation of each model without the influence of the other formulation and the ghost fluid boundaries. The validation 
test chosen for the solid is at low enough speed to observe splitting of the elastic and plastic components of waves. The 
explosives model is validated for C4, as this is the explosive of interest in later applications. Pop-plots, as well as ZND and 
CJ conditions are demonstrated to match well with experiments.

The solid–explosive coupling is validated against several tests from the literature. Firstly, a one-dimensional mixed Rie-
mann problem is utilised. We compare our approximate solutions for this test against exact solutions and other numerical 
solutions found in the literature. Then, we validate the coupling in cylindrical symmetry, in the context of sandwich-plate 
impact tests. The tests consider a non-reacting Detasheet material or a reacting C4 explosive residing between two steel 
plates. The sandwiched configuration is impacted by a steel projectile. In the inert scenario, we present and analyse the 
generated wave pattern and wave interaction. Pressure gauges are placed in Detasheet and pressure histories are compared 
with gauge results found in the literature, observing a very good match between the two. In the reacting scenario (ERA), we 
study how the generated wave pattern leads to the ignition of C4. We compare ignition times between the sandwich-plate 
configuration and a configuration without a rear steel plate, illustrating the effect of the plate in accelerating the ignition 
process.

We demonstrate the capability of the methodology to simulate high- and low-speed impact leading to the initiation of 
fuel/explosive in three use cases. The first use case, extends the ERA scenario by including an air gap between the front plate 
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Fig. 15. The reaction progress variable (left) and the distribution of AMR grids (right) for late stages of the fuel tank impact simulation described in Sec. 7.3. 
The ignition of the fuel in a primary and secondary locations is seen, as well as the propagation and coalescence of the reaction fronts in the tank. A zoom 
on the tank shell is provided to demonstrate that the elastoplastic equations are solved both in the projectile and the tank shell simultaneous to the 
solution of the reactive flow equations in the fuel tank.

and the explosive and we demonstrate how the air gap hinders the initiation. The second use case is the impact of a copper 
can filled with reactive nitromethane. The impact initiates the nitromethane which transits to detonation. The detonation 
wave interacts with the confiner and shows wave-ringing in the confiner as reported in the literature. The deformation of 
the copper can is also highlighted, as well as the transmission of waves from the projectile to the explosive, to the confiner 
and finally to the surrounding air. The last use case is concerned with the accidental initiation of the fuel in the car fuel 
tank in crash scenarios. The speed of impact in this case is much lower than in the ERA scenario and it is demonstrated 
that the methodology and the code can succesfully simulate this often difficult to handle scenario. The impact generates 
waves that reflect multiple times on the fuel tank boundaries until the fuel cannot sustain the excess energy and ignites. 
Multiple ignition sites are seen. The multi-dimensional use cases illustrate the accurate implementation of mixed Riemann 
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solvers for the different systems considered in this work, describing explicitly explosive, fluid and elastoplastic materials. 
The methodology can also be used as part of the manufacturing process for optimising car (or other device) compartments 
in terms of shapes and materials.
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