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Abstract

The application of biomarkers for ‘recent’ infection in cross-sectional HIV incidence surveillance 

requires the estimation of critical biomarker characteristics. Various approaches have been 

employed for using longitudinal data to estimate the Mean Duration of Recent Infection (MDRI) – 

the average time in the ‘recent’ state. In this systematic benchmarking of MDRI estimation 

approaches, a simulation platform was used to measure accuracy and precision of over twenty 

approaches, in thirty scenarios capturing various study designs, subject behaviors and test 

dynamics that may be encountered in practice. Results highlight that assuming a single continuous 

sojourn in the ‘recent’ state can produce substantial bias. Simple interpolation provides useful 

MDRI estimates provided subjects are tested at regular intervals. Regression performs the best – 

while ‘random effects’ describe the subject-clustering in the data, regression models without 

random effects proved easy to implement, stable, and of similar accuracy in scenarios considered; 
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robustness to parametric assumptions was improved by regressing ‘recent’/‘non-recent’ 

classifications rather than continuous biomarker readings. All approaches were vulnerable to 

incorrect assumptions about subjects’ (unobserved) infection times. Results provided show the 

relationships between MDRI estimation performance and the number of subjects, inter-visit 

intervals, missed visits, loss to follow-up, and aspects of biomarker signal and noise.
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1 Introduction

The reliable estimation of HIV incidence is essential for monitoring the epidemic and 

targeting and assessing interventions. The cross-sectional estimation of HIV incidence using 

biomarkers for ‘recent’ infection has attracted much interest since its introduction in 1995 

(Brookmeyer and Quinn 1995). Over the last two decades, numerous biomarkers have been 

developed and applied in incidence surveys, and various working groups and funding 

opportunities have been established to support data generation and accelerate 

implementation of the surveillance approach (Busch, Pilcher & Mastro 2010; Centers for 

Disease Control and Prevention, United States Department of Health and Human Services 

2015; Kassanjee, Pilcher & Keating 2014; Laeyendecker, Brookmeyer & Cousins 2013; Le 

Vu, Pillonel & Semaille 2008; Mastro, Kim & Hallett 2010; Murphy & Parry 2008; Parekh, 

Kennedy & Dobbs 2002; Sharma, Schito & Welte 2012; The Consortium for the Evaluation 

and Performance of HIV Incidence Assays (CEPHIA) 2015; WHO Technical Working 

Group on HIV Incidence Assays 2015). Despite considerable progress, questions remain 

around how best to analyze data at various stages along the pathway from biomarker 

discovery to surveillance application.

The principle behind cross-sectional incidence surveillance is that a particular weighted 

average of past incidence can be estimated from (i) a single survey’s counts of HIV-negative, 

‘recently’ infected and ‘non-recently’ infected subjects, and (ii) a small number of well-

defined parameters describing the properties of the test for recent infection (TRI) in the 

population of interest. Under a general framework for incidence estimation, two parameters 

are required (Kassanjee, McWalter & Barnighausen 2012): The Mean Duration of Recent 

Infection (MDRI) – the average time subjects spend ‘recently’ infected within some time T 
post infection; and the False-Recent Rate (FRR) – the probability that a subject who is 

infected for longer than T will return a ‘recent’ result. While the FRR should ideally be zero, 

it is non-negligible for many currently available TRIs and is understood to vary by time and 

place (Busch, Pilcher & Mastro 2010; Hallett, Ghys & Barnighausen 2009; Kassanjee, 

Pilcher & Keating 2014; Le Vu, Pillonel & Semaille 2008; Longosz, Mehta & Kirk 2014; 

Mastro, Kim & Hallett 2010; Murphy & Parry 2008). The MDRI, typically required to be at 

least half a year for a TRI to begin to show promise (Incidence Assay Critical Path Working 

Group 2011), should ideally remain constant so that a once-calibrated TRI would be useful 

when transferred to other contexts. This work focuses solely on estimation of the MDRI.
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Conventionally, the MDRI is estimated using longitudinal data, which captures biomarker 

measurements at multiple times after infection for each of a number of subjects. 

Constructing such datasets requires the costly and difficult collection of specimens from 

(initially HIV-negative) subjects regularly over time until becoming infected and for some 

time after. A number of approaches have been utilized for analyzing the resulting data 

(Braunstein, Nash & Kim 2011; Brookmeyer, Konikoff & Laeyendecker 2013; Curtis & 

Hanson 2013; Duong, Kassanjee & Welte 2015; Duong, Qiu & De 2012; Hargrove, 

Eastwood & Mahiane 2012; Hargrove, Humphrey & Mutasa 2008; Janssen, Satten & 

Stramer 1998; Keating, Hanson & Lebedeva 2012; Mahiane, Fiamma & Auvert 2014; 

McDougal, Parekh & Peterson 2006; Parekh, Hanson & Hargrove 2011; Parekh, Kennedy & 

Dobbs 2002; Sommen, Commenges & Le Vu 2011; Sweeting, De Angelis & Parry 2010; 

Wang & Lagakos 2009).

Unbiased incidence estimation requires unbiased estimates of TRI characteristics, and 

therefore robust and widely accepted methods for estimating the MDRI are essential. It is 

also important to be able to distinguish between variation in a chosen TRI’s MDRI estimates 

caused by true study population differences (such as HIV subtype), or different testing or 

laboratory conditions, from that caused by differences in MDRI estimation approaches. 

Also, to design studies for reliably characterizing TRIs, the relationships between data 

features (such as sample sizes and frequencies of specimen draws) and the performance of 

MDRI estimation need to be understood.

Consequently, in 2012, the HIV Modelling Consortium, funded by the Bill and Melinda 

Gates Foundation, requested that an international collaboration be established to investigate 

and compare the performances of MDRI estimation approaches (HIV Modelling Consortium 

Work Package on Characterisation of Tests for Recent Infection 2015). The resulting 

benchmarking exercise is presented below. A defining feature of this project is the use of a 

simulation platform: not only is the true underlying MDRI computable (against which 

MDRI estimates can be compared), but experiments can be replicated thousands of times. 

Through this replication, the accuracy and precision of a large number of MDRI estimation 

methods were measured in a number of modelled scenarios that capture essential features of 

what could be encountered in practice, namely different study designs, subject behaviors and 

underlying biomarker dynamics.

Due to the large scope and complexity of this benchmarking exercise, only summaries of the 

methodology and results are provided below. More thorough documentation is available in 

the Web Appendix.

2 Methods

The MDRI estimation approaches were assessed in a base case scenario and each of a 

number of comparison scenarios. For each scenario, 1,000 datasets were generated and each 

MDRI estimation method was applied to each dataset – other than for the computationally 

expensive ‘mixed effects’ models, which were each applied to a common subset of 250 

datasets per scenario. Data generation and MDRI estimation are each discussed below. All 

technical details required to reproduce the work are provided in Web Appendix A and B.
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For each scenario and each estimation method, a distribution of MDRI point estimates was 

obtained. Two statistics are presented to summarize this distribution (and its relationship to 

the true MDRI): (i) accuracy is reported as the relative bias – the difference between the 

average MDRI estimate and true MDRI, divided by the true MDRI, and (ii) precision as the 

relative standard error – the standard deviation of estimates, divided by the mean estimate.

The simulation platform was developed (in Python, R and MySQL) to automate the data 

generation, application of the estimation methods (in the form of Matlab or R scripts) and 

storage of results. Due to the large run times involved, computing resources were procured 

from Amazon Web Services.

A central concept is that of ‘infection’: throughout this work, infection refers to detectable 
infection, which depends on the specific diagnostic algorithm used in any real-world setting. 

For example, if utilizing a Western Blot assay, a subject’s infection time is when she begins 

to test positive (or seroconverts) on Western Blot.

The scope of this benchmarking exercise is potentially very wide, and was therefore 

carefully limited to provide a feasible investigation focused on the most immediate needs of 

analysts in the field.

Firstly, only TRIs based on single biomarkers were considered, where the ‘biomarker’ 

measurement may itself be a complex summary metric of multiple measurements. A 

measurement below a chosen classification threshold is interpreted as indicating ‘recent’ 

infection, as in currently used ‘incidence assays’.

Secondly, a single HIV diagnostic test is used in the simulated longitudinal study, and 

provides no information beyond distinguishing HIV-positive from HIV-negative subjects. 

Therefore, each subject’s infection time is simply known to lie in the interval from his last 

HIV-negative visit to first HIV-positive visit, called the infection interval.

Thirdly, to limit the number of comparison scenarios, only a single aspect of the data 

generation process was varied at a time.

Lastly, confidence intervals were not explicitly investigated. For each estimation method, a 

number of approaches could be used to obtain confidence intervals. Within this simulation 

study, the accuracy and precision of point estimates could be directly measured, which 

inform the coverage and widths of confidence intervals that could be produced (and would 

be reported in real-world studies).

2.1 Data generation

The underlying processes that produce a real-world dataset for MDRI estimation can be 

considered in two parts. Firstly, the study design and subject behavior produce the observed 

visit and unobserved infection times of subjects. Secondly, particulars of the biological 

signal over time since infection, and noise around the signal arising from fluctuations within 

the host or imperfect measurement, govern the observed biomarker readings for the visits. In 

all scenarios considered, a subject’s adherence to the study design is independent of his 

biomarker values. Stochastic models were constructed for generating visit times, infection 
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times and biomarker readings of subjects. The models draw on the experience of the team, 

and rely on few input parameters while providing sufficient flexibility for this investigation. 

The structures underlying the data generation models are represented in Figure 1.

The base case scenario was defined by specifying values for the data generation parameters 

(Figure 1), based on an ideal adherence to an optimistic study design, and insights into 

existing biomarkers. Within each investigation – comprising a set of comparison scenarios – 

one aspect of the data generation process was systematically varied, such as the number of 

subjects (a list of investigations and scenarios is contained in the tables in Results). To 

quantify the bias, the true MDRI was computed using the parameters fed into the data 

generation models – more specifically, the parameters defining the behavior of the 

biomarker with time after infection, as summarized by (A) to (D) in Figure 1.

The timing of infection within the infection interval will depend on both the study design 

and subject behavior. For example, as in the base case scenario, if visit times are strictly 

controlled by the study, it is reasonable to assume that a subject is equally likely to have 

been infected at any time in the interval. However, in other settings, subjects may exhibit 

test-seeking or test-deferring behaviors (Burchell, Calzavara & Ramuscak 2003; Centers for 

Disease Control and Prevention 2004; Schreiber, Glynn & Satten 2002), and therefore a Beta 

distribution (scaled to span the interval) was used to generate infection times from a skew 

distribution in the relevant modelled scenarios.

To explore the impact of the functional form of the biomarker signal, an alternative model 

for generating biomarker readings was also implemented. For the base case scenario (Figure 

1), the biological signal follows a sigmoidal curve – namely, a three-parameter log-logistic 

curve starting at zero and defined by shape, scale and asymptote parameters. In the 

alternative model (the ‘power function’), the biomarker signal remains zero for some period 

after infection, and then experiences rapid growth that slows down over time. In this case, 

the signal equals some power, between zero and one, of time since signal growth.

Further technical details on the data generation and the parameter values for the scenarios 

are provided in Web Appendix A.

2.2 MDRI estimation approaches

The MDRI can be expressed mathematically as  dt, where PR (t) is the 

probability of being (alive and) ‘recently’ infected at time t after infection (Kassanjee, 

McWalter & Barnighausen 2012). Estimation of the MDRI therefore entails inferring PR (t), 
either (i) directly by fitting a chosen model for PR (t) to the dichotomous ‘recent’ and ‘non-

recent’ classifications, or (ii) indirectly by modelling the continuous biomarker 

measurements and then computing the probability of obtaining a measurement below the 

classification threshold. In the base case scenario, a subject’s biomarker signal increases 

from 0 at infection to an average asymptote of 85, and the classification threshold was set to 

40. Throughout this work, T = 1 year and negligible mortality within T after infection was 

assumed. In practice, T would be carefully chosen based on biomarker dynamics, 
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surveillance objectives and practical considerations (Kassanjee, McWalter & Barnighausen 

2012).

Numerous MDRI estimation methods were implemented, to represent those published and to 

explore extensions (Braunstein, Nash & Kim 2011; Brookmeyer, Konikoff & Laeyendecker 

2013; Curtis & Hanson 2013; Duong, Kassanjee & Welte 2015; Duong, Qiu & De 2012; 

Hargrove, Eastwood & Mahiane 2012; Hargrove, Humphrey & Mutasa 2008; Janssen, 

Satten & Stramer 1998; Keating, Hanson & Lebedeva 2012; Mahiane, Fiamma & Auvert 

2014; McDougal, Parekh & Peterson 2006; Parekh, Hanson & Hargrove 2011; Parekh, 

Kennedy & Dobbs 2002; Sommen, Commenges & Le Vu 2011; Sweeting, De Angelis & 

Parry 2010; Wang & Lagakos 2009). The methods, captured in Figure 2, fall into three 

categories: (i) interpolation, (ii) survival analysis, and (iii) parametric regression. A number 

of statistical groups contributed the MDRI estimation tools used in this benchmarking 

exercise, at times apparent by the subtle differences in analysis design and implementation – 

all thoroughly documented in Web Appendix B. A brief summary of the approaches follows.

A challenge faced when estimating the MDRI is the unknown infection times. In studies 

where visit times are stipulated, it is reasonable to assume that the infection time is 

uniformly distributed in the infection interval. Therefore, the expected infection time lies at 

the midpoint of the interval. Unless otherwise stated, the approaches below treat this 

‘midpoint infection time’ as a proxy for the (unobserved) infection time.

Interpolation (Methods 1–4)—These methods provide a basic, informal analysis 

approach. For each subject, biomarker readings between visits are obtained using linear or 

nearest neighbor interpolation (assuming a zero reading at infection). The approach either (i) 

uses data as is, allowing multiple transitions between the ‘recent’ and ‘non-recent’ states, or 

(ii) assumes that once a subject’s reading moves above the classification threshold, it will 

remain above it, thus enforcing a single exit from the ‘recent’ state, as in some of the 

literature (Braunstein, Nash & Kim 2011; Duong, Qiu & De 2012; Hargrove, Eastwood & 

Mahiane 2012; Janssen, Satten & Stramer 1998; Keating, Hanson & Lebedeva 2012; Parekh, 

Hanson & Hargrove 2011; Sweeting, De Angelis & Parry 2010; Wang & Lagakos 2009). 

The function PR (t) is then estimated as the proportion of measurements that are below the 

threshold at time t.

Survival analysis (Methods 5–10)—These techniques model the time from entering to 

exiting a state of interest (here ‘recent’ infection). The techniques easily accommodate data 

censoring (unknown event times) and have been applied in this area (Curtis & Hanson 2013; 

Duong, Qiu & De 2012; Hargrove, Eastwood & Mahiane 2012; Keating, Hanson & 

Lebedeva 2012; Parekh, Hanson & Hargrove 2011; Sweeting, De Angelis & Parry 2010; 

Wang & Lagakos 2009). However, many of the existing survival analysis approaches ignore 

fluctuations between states that can result from either non-monotonic evolution of the 

biomarker signal or simply measurement noise. To utilize a single continuous sojourn 

framework, all data points beyond a subject’s first ‘non-recent’ result were discarded. When 

there is no ‘non-recent’ visit, exit occurs at some subsequent time.
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Three parametric distributions (Weibull, Gamma and Lognormal) for the time spent ‘recent’ 

were fitted to the data by maximum likelihood (ML) and under double interval censoring 

(the entry time lies uniformly in the infection interval, and then the exit time lies uniformly 

in an appropriately defined ‘exit interval’).

For non-parametric ML estimation, a Kaplan-Meier estimator was used (Kaplan & Meier 

1958), using a midpoint infection time and an exit time obtained by linear or nearest 

neighbor interpolation. The MDRI estimate will equal that produced by the corresponding 

single-exit interpolation method when there are no right censored exit times within T after 

infection. To eliminate the use of proxy entry and exit times, Turnbull’s extension of the 

Kaplan-Meier estimator (Turnbull 1976) was also applied. Here, a subject’s time spent 

‘recent’ is uniformly distributed between the minimum and maximum possible times 

implied by the data. This is theoretically inconsistent with the double interval censoring 

occurring – which would imply a non-uniform distribution – but reproduces a previous 

application (Duong, Qiu & De 2012).

Parametric regression (Methods 11–23)—An appropriately parameterized functional 

form for the expected response (either the dichotomous classification or continuous 

biomarker reading), as a function of predictors (time since infection), is fitted to the data. 

Three classes of models were employed (each discussed below), namely (i) linear binomial 

regression, (ii) non-linear (normal-response) mixed effects models using ML estimation and 

(iii) non-linear (normal-response) mixed effects models using a Bayesian framework and 

allowing for uncertainty in infection times through prior distributions

The linear binomial regression models (Methods 11–14) are fitted using the ‘recent’/‘non-

recent’ classifications and were of the form g (PR (t)) = βT x (t), where g (.) is the link 

function, and η = βT x (t) is the linear predictor. The linear predictor contains both the model 

parameters in β (estimated by ML) and the predictors in x (t), which are functions of time 

since infection t. These models neglect the subject-level clustering of data points. Four forms 

of the model were implemented, using the link functions and linear predictors indicated in 

Figure 2. In practice, based on the density of data, not all forms may be appropriate.

In the non-linear mixed effects models, a parametric form is chosen for the biomarker signal 

as a function of time since infection, as well as the measurement noise structure. Subject-

level clustering of data manifests as subject-specific deviations (random effects) of signal 

parameters from some average parameter values (fixed effects). The parameters to be 

estimated are the noise specification parameters, fixed effects and covariance matrix for the 

random effects, which are normally distributed around 0. Three forms for the signal and two 

forms for the noise were used (Figure 2).

In the classical model implementation (Methods 15–17), a Markov Chain Monte Carlo 

(MCMC) approach was used to search for the ML parameters using Matlab’s ‘nlmefitsa’ 

function. For a real dataset, convergence criteria would be carefully assessed; however, the 

present estimation was performed for several thousands of datasets. Based on initial 

investigations into run times and stability of results, three MCMC chains were used, of 

different starting points and 1,000 steps each.
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The Bayesian implementation of the mixed models (Methods 18–23) makes use of the 

MCMC approach provided by WinBUGS to derive the posterior distribution of the unknown 

parameters, as described elsewhere (Sweeting, De Angelis & Parry 2010). The models use 

either a midpoint infection time or a uniform prior distribution for infection times. The 

estimated MDRI corresponds to the mean of the posterior distribution for the MDRI – 

appropriately modifying the methodology in earlier work (Sweeting, De Angelis & Parry 

2010) to utilize the MDRI definition above.

Each method of estimation above provides an estimate of PR (t). The MDRI estimate equals 

the area under this curve, from t = 0 to t = T, either analytically or numerically.

3 Results

The MDRI estimates for the base case scenario are plotted in Figure 3, and performance 

statistics for the various investigations are provided in the tables. The impact of the study 

protocol and subject behavior (which determine visit and infection times) is explored in 

Figure 4 and Figure 5, and that of the biomarker dynamic (which governs biomarker 

readings) is considered in Figure 6. In Figure 4, Figure 5 and Figure 6: Methods 17, 20 and 

23 are excluded (explained below). Investigations about the number of subjects and the 

mean inter-visit intervals, while HIV-negative or HIV-positive, are summarized in Figure 4 

(Investigations 1–3); and about the extent of missed visits, loss to follow-up and non-

uniformity of infection times in Figure 5 (Investigations 4–6). In Figure 6, the magnitude of 

noise, extent of inter-subject variability and form of the biomarker signal are varied 

(Investigations 7–9). More detailed results are provided in Web Appendix C.

In the tables, the observed relative bias and relative standard error are reported, based on 

1,000 experiment replications (or 250 for the mixed effects models). In the base case 

scenario, a 95 % confidence interval for the relative bias would extend out by about 0.5 % 

(or 1 %) to each side of the observed measure, in absolute terms (treating estimates as 

normally distributed, based on the asymptotic behavior of the estimates).

Base case scenario findings

For the base case scenario, in which 50 subjects are visited monthly for two years post 

infection and the infection interval is three months, all classes of estimation approaches can 

provide reasonable accuracy (Figure 3). However, results are sensitive to the parametric 

assumptions underlying biomarker regression (Methods 15–23).

Parametric assumptions for biomarker regression (Methods 15–23)

It is important to understand the relationship between the true biomarker dynamic which 

generates the data and the assumed biomarker dynamic when analyzing the data using 

biomarker regression (Methods 15–23, see Figure 2). The models assume three different 

biomarker signals: Signals 1 and 2 are both flexible sigmoidal curves, where Signal 1 

matches the true form (although the regression model uses a subtly different distribution to 

capture inter-subject variability) and Signal 2 does not; Signal 3 is much more restrictive 

form of Signal 1. None of the assumed noise structures exactly match the true noise 

structure, as would be expected to occur in practice.
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Biomarker Signal 3, which is concave downwards and does not allow for an initial period of 

little growth, produces substantial bias (Figure 3). The corresponding computationally 

expensive Methods 17, 20 and 23 were therefore eliminated from subsequent investigations. 

A more general comparison of the results for Signal 1, which matches data generation, and 

Signal 2, which does not, suggests that similar inferences can be made by choosing a 

reasonable and sufficiently flexible model form. Ironically, allowing for a movable infection 

time through a uniform prior has the potential to substantially increase the bias caused by the 

wrong parametric assumptions (for example, Investigation 2, 3 and 9). The way the model is 

fitted to the data, and therefore the biases from incorrect parametric assumptions, also 

depends on factors such as visit gaps, frequency of missed visits and magnitude of noise.

Single sojourn assumptions

Methods that assume a single continuous sojourn in the ‘recent’ state (Methods 1 and 3, 5–

10) underestimate the MDRI. The bias increases with more frequent visits and greater 

measurement noise as there is a greater chance of ‘early’ upward fluctuations of readings 

above the classification threshold (Investigations 3 and 7). Given these limitations, 

interpretations below focus on the remaining approaches.

Variability of estimates

In a given scenario, the methods exhibit similar precision; therefore, in the tables, the 

precision of MDRI estimation for each scenario is summarized by the minimum, median and 

maximum relative standard errors of the different methods. The standard deviation is 

approximately inversely proportional to the square root of the number of subjects 

(Investigation 1), and proportional to the standard deviation of individual durations in the 

‘recent’ state (Investigation 8 and Web Appendix B). Larger visit gaps, more missed visits, 

increased loss to follow-up, and greater measurement noise increase variability in more 

nuanced ways (Investigations 2–5 and 7).

Loss to follow-up (Investigation 5)

When no subjects are followed until T after infection, only approaches that extrapolate 

beyond the latest data can be used (note the failure of Methods 2 and 4). When there is drop-

out, those subjects observed to transition out of ‘recent’ will over-represent shorter sojourns, 

and therefore biases arise when naïvely averaging the data (Methods 1 and 3).

Binomial regression models versus biomarker mixed effect models (Methods 11–14 versus 
Methods 15–23)

While binomial regression does not account for the subject-level clustering of data, it was 

easy to implement, stable, relatively insensitive to parametric assumptions, and generally 

performed on par (or better) than the mixed models, which account for the clustering, in the 

scenarios considered.

HIV-negative visit gaps /missed visits

All methods performed poorly when there were some very large infection intervals relative 

to the duration of ‘recent’ infection (Investigation 4), with the exception of the biomarker 
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mixed model that used the correct signal parametric form and a uniform prior for infection 

times (Method 21).

HIV-positive visit gaps /missed visits

The number of HIV-positive visits can be decreased by increasing the intended visit gap or 

increasing missed visits. The interpolation methods were vulnerable to high missed visit 

probabilities because interpolation between widely separated data points is unreliable. For 

parametric regression, it is desirable to have sufficient data at different times after infection 

to reliably fit the model to the data.

Unknown infection times

All methods performed poorly when the model assumptions about infection times were at 

odds with the data generation process (Investigation 6).

Data exclusion

For some of the parametric approaches above (Methods 5–7, 11–17), data points that were 

beyond T plus some margin after infection were discarded before model fitting (see Web 

Appendix B for details). In practice, biomarker dynamics may become less predictable years 

after infection, and therefore care should be taken in choosing data to train models intended 

to describe only early biomarker dynamics, also based on a strong understanding of the 

specific modelling approach used.

4 Discussion

This work presents a systematic benchmarking of currently used methods to estimate the 

critical Mean Duration of Recent Infection, as required for the application of a test for 

‘recent’ infection in cross-sectional HIV incidence studies. The benchmarking uses a 

simulation approach, which could now be used to perform further MDRI estimation 

investigations, or even, with deeper adaptations, explore other aspects of incidence 

surveillance such as the performance of estimation of context-specific False-Recent Rates or 

the power to detect trends in incidence.

The results highlight the danger of using estimation procedures that assume single 

continuous sojourns in the ‘recent’ state. Simplistic approaches, such as the interpolation of 

biomarker readings, allowing for multiple transitions between states, are useful for obtaining 

‘quick and dirty’ estimates provided the times between visits are sufficiently small.

Regression approaches performed well. While non-linear mixed models for the biomarker 

readings captured the subject-specific evolutions of the biomarker, they are complex and 

computationally demanding. Importantly, when analyzing any dataset, parametric 

assumptions should be carefully chosen and formally assessed to mitigate bias. While not 

fully capturing the data structure, the linear binomial regression models proved useful – 

algorithms were stable, and results were accurate in the scenarios considered and less 

sensitive to parametric assumptions. However, the extension of the binomial regression 

methods to include random effects would generally improve precision. Also, analysts should 
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be warned against using the model-derived standard errors, which necessarily underestimate 

variability by incorrectly treating observations as independent, to construct confidence 

intervals, and subject-level bootstrapping could instead be adopted (Brookmeyer, Konikoff 

& Laeyendecker 2013). The performance of these models when including random effects 

could be investigated as part of further work, such as in the scenario when loss to follow-up 

is related to biomarker progression.

Uncertain infection times pose a particular challenge to MDRI estimation. Regardless of 

whether the unknown infection times are handled simplistically (using a proxy expected 

infection time) or formally accommodated (Brookmeyer, Konikoff & Laeyendecker 2013; 

Mahiane, Fiamma & Auvert 2014; Sommen, Commenges & Le Vu 2011; Sweeting, De 

Angelis & Parry 2010), incorrect assumptions about the underlying process will lead to bias. 

The assumptions about, and flexibilities allowed in, infection times also interact with other 

aspects of the estimation, such as the assumed form of the biomarker signal, to determine the 

overall MDRI bias. Some groups have attempted to use the biomarker readings themselves 

to estimate infection times (Curtis & Hanson 2013; Hargrove, Humphrey & Mutasa 2008; 

Keating, Hanson & Lebedeva 2012; Parekh, Hanson & Hargrove 2011; Parekh, Kennedy & 

Dobbs 2002) (not explored in this work). Also, in this exercise, a single dichotomous HIV 

diagnostic test was used at all visits. In some studies, staging information may be available – 

for example, detectable p24 antigens and undetectable antibodies at a visit would suggest 

infection within the preceding few weeks (Brookmeyer, Konikoff & Laeyendecker 2013; 

Fiebig, Wright & Rawal 2003; Lee, Giorgi & Keele 2009). The large biases caused by 

incorrect assumptions about infection times highlights the need for such staging data to be 

collected, and the methodology for their use to be appropriately developed.

As the field moves towards recent infection tests that rely on multiple biomarkers 

(Brookmeyer, Konikoff & Laeyendecker 2013; Laeyendecker, Brookmeyer & Cousins 

2013), some methods for estimating the MDRI, such as those that utilize the dichotomous 

test classifications, may be more amenable to this extension than those that parametrically 

model biomarker evolution, in which parameters would proliferate. Also, novel biomarkers 

may represent complex processes that are not well-understood, and thus the selection of 

parametric assumptions may become more challenging. Another nuance is the assumption of 

guaranteed survival until T (typically a year or two) after infection implicit in most MDRI 

estimation approaches. In settings where early mortality is high, analyses to estimate the 

MDRI could incorporate data on survival.

The insights presented here contribute towards a deeper understanding of results already in 

the literature, future analysis decisions, nuances of MDRI estimation, and key choices 

needing to be made in the design of test characterization studies. The undertaking of this 

project has already led to a number of prominent research groups critically reviewing and 

improving their estimation tools. While limited resources will always create restrictions in 

fieldwork, useful MDRI estimates can clearly be obtained in a range of realistic scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representation of the data generation models. The visit and infection times are generated 

according to the parameters and distributions contained in (1) to (10) (grey box), while the 

subjects’ observed biomarker readings at visits are generated according to the specifications 

in (A) to (D). The values or distributional forms specified for (1) to (10) relate to the base 
case scenario.
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Figure 2. 
Mind map of analysis approaches for estimation of the MDRI. Each of the twenty three 

approaches benchmarked is numbered and labelled in bold (these identifiers are used in 

Results).
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Figure 3. 
Box-and-whisker plots of the Mean Duration of Recent Infection point estimates (days) for 

each estimation method, for the base case scenario. The box and dividing line indicate the 

central 50 % and median of estimates respectively, and whiskers and dots capture remaining 

estimates and outliers respectively (outliers are more than 1.5 times the box length away 

from the central box). The vertical line indicates the true MDRI. For Methods 15–23, fewer 

experiments were replicated (250 instead of 1 000).
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Figure 4. 
Relative bias (%) and relative standard error (%) of MDRI estimation in scenarios capturing 

various study designs (number of subjects and visit gaps).
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Figure 5. 
Relative bias (%) and relative standard error (%) of MDRI estimation in scenarios capturing 

varying subject behavior (missed visit probabilities, loss to follow-up and infection time 

distributions).
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Figure 6. 
Relative bias (%) and relative standard error (%) of MDRI estimation in scenarios capturing 

varying biomarker dynamics (magnitude of noise, inter-subject variability, form of signal).
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