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Abstract In longitudinal randomised trials and observational studies within amedical
context, a composite outcome—which is a function of several individual patient-
specific outcomes—may be felt to best represent the outcome of interest. As in other
contexts, missing data on patient outcome, due to patient drop-out or for other rea-
sons, may pose a problem. Multiple imputation is a widely used method for handling
missing data, but its use for composite outcomes has been seldom discussed. Whilst
standard multiple imputation methodology can be used directly for the composite
outcome, the distribution of a composite outcome may be of a complicated form and
perhaps not amenable to statistical modelling. We compare direct multiple imputation
of a composite outcome with separate imputation of the components of a composite
outcome. We consider two imputation approaches. One approach involves modelling
each component of a composite outcome using standard likelihood-based models.
The other approach is to use linear increments methods. A linear increments approach
can provide an appealing alternative as assumptions concerning both the missingness
structure within the data and the imputation models are different from the standard
likelihood-based approach.We compare both approaches using simulation studies and
data from a randomised trial on early rheumatoid arthritis patients. Results suggest that
both approaches are comparable and that for each, separate imputation offers some
improvement on the direct imputation of a composite outcome.

B Aidan G. O’Keeffe
a.o’keeffe@ucl.ac.uk

1 Department of Statistical Science, University College London, Gower St., London WC1E 6BT,
UK

2 Institute of Primary Care and Public Health, Cardiff University School of Medicine, Neuadd
Meirionnydd, Heath Park, Cardiff CF14 4YS, UK

3 MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way,
Cambridge Biomedical Campus, Cambridge CB2 0SR, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12561-016-9146-z&domain=pdf


Stat Biosci (2016) 8:310–332 311

Keywords Composite outcome · Linear increments · Longitudinal data · Missing
data · Multiple imputation

1 Introduction

When study patients are followed longitudinally, many patient-specific outcomes may
be collected over time. A composite measure that combines these outcomes is often
used to provide an overall assessment of a patient’s condition. For example, for clinical
trials in rheumatoid arthritis, the American College of Rheumatology 20 % composite
outcome, denoted ACR20, combines information on several variables concerning dis-
ease severity into a binary indicator based on which and how many of these variables
have demonstrated 20 % reductions over time. Whilst it is recommended that all the
separate components of the ACR20 be reported in trial results, a focus on ACR20 is
common.

Some or all of the outcome variables that contribute to a composite outcomemay be
missing at certain time points. Whilst it is simple to focus solely on a ‘complete case’
analysis, based only on data for patients who have completely observed data at one or
more time points, multiple imputation is widely recognised as useful to guard against
biased inferences, particularly those owing to unrepresentative complete case data
[10,14,17,18,20]. Multiple imputation, first introduced by Rubin [15] and described
extensively in [12], generally involves the assumption of a structure for the relationship
between the observed and the missing data, the fitting of this model to the ‘complete
case’ responses and the use of the fitted model to predict outcomes where missing
values exist. The model from which imputations are drawn is usually fully parametric
and can be fitted using maximum likelihood (ML) methods.

In this work, we examine models for the multiple imputation of missing com-
posite outcomes in longitudinal studies, where the time points at which observations
are made are fixed by design. Standard multiple imputation procedures are inves-
tigated for directly imputing the composite outcome and for indirect imputation of
the composite outcome through imputation of its component measures. In addition,
we introduce methods to base multiple imputation on linear increments estimation
[6]. Linear increments (LI) methods for imputation are compared with more standard
multiple imputation procedures. To our knowledge, no work has explored multiple
imputation in longitudinal data using an LI modelling approach.

For illustration, we focus on imputation of the ACR20 based on data from the
CARDERA longitudinal randomised trial. The trialwas designed to provide 24months
of follow-up and therefore we take the parameter of inferential interest to be the
probability of the event {ACR20 at 24months = 1}. This paper is organised as follows:
in Sect. 2 we outline the CARDERA trial and provide a definition of ACR20. Section
3 provides a description of the two types of multiple imputation that we consider: an
ML-based method and an LI method. In Sect. 4, we outline the multiple imputation
processes for the CARDERA trial data. In Sect. 5, we perform comparisons of the
imputation approaches based on various simulated missingness scenarios within the
CARDERA trial dataset. A short example applying the imputation methods to the
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actual missing data in the CARDERA trial is presented in Sect. 6. A discussion is
provided in Sect. 7.

2 The CARDERA Trial

The Combination Anti-Rheumatic Drugs in Early Rheumatoid Arthritis (CARDERA)
trial recruited patients with early rheumatoid arthritis, seen at routine rheumatology
outpatient clinics across England and Wales. The trial is described extensively in
Choy et al. [2] and was devised as a two-year double-blind randomised controlled
trial with the aim of determining the relative benefits of various combinations of
disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticoids. Patients
were randomised to one of four treatment groups in a 2× 2 factorial design and were
followed up every 6 months for two years. Baseline information was collected, and
outcomesweremeasured at baseline and at each follow-up visit. The trial recruited 467
patients (142 males and 325 females). The aim of the trial was to examine whether or
not combining methotrexate with glucocorticoids and/or ciclosporin in early rheuma-
toid arthritis reduced the proportion of patients who developed new radiological joint
damage within two years. Here, for illustration, we focus on a secondary composite
outcome, ACR20, which the trial reported as not differing significantly amongst the
treatment groups after 24 months.

The ACR20 takes a value of 0 or 1 at any time point, depending on the changes in
the values of various patient-specificmeasurements from baseline. Twomeasurements
of primary importance are the tender joint count (TJC) and the swollen joint count
(SJC), each being a count of joints across 28 joint locations. The ACR20 takes the
value 1, representing patient improvement, if at 20 % reductions in both TJC and SJC
are observed, together with at least a 20 % reduction in at least three of the following
five variables:

– Erythrocyte sedimentation rate (ESR);
– Physician global assessment of disease activity (AGA)—a visual analogue scale
(VAS) ranging from 0 to 100 where 0 and 100 represent the least and greatest
activities, respectively;

– Patient global assessment (PGA) of disease activity—a VAS from 0 to 100 where
0 and 100 represent the least and greatest activities, respectively;

– Patient assessment of pain (Painscore)—a VAS from 0 to 100 where 0 and 100
represent the least and greatest pains, respectively.

– Health Assessment Questionnaire (HAQ)—ameasure of functional disability pro-
viding a score from 0 to 3, where 3 represents the most severe disability.

Having described the CARDERA trial and our composite outcomes of interest, we
turn our attention to statistical models that might be used for the ACR20 outcome at
24 months.
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3 Statistical Models for Patient Outcomes

We consider suitable statistical models that may be used for the multiple imputation
of ACR20. Specifically, we focus on the modelling of each component used in the
calculation of ACR20, using two methods: maximum likelihood estimation (MLE)
and LI modelling.

ACR20 is a composite outcome and, as such, it may perhaps be more appealing
to investigate its individual components and therefore specify the distributions of its
component outcomes rather than rely on a single binarymodel. However, we recognise
that researchers will usually be interested in making inferences for the composite
outcome ACR20 as well as for the component outcomes. The separate imputation
of both missing ACR20 values and missing component outcome values, which, in
combination, specify another imputed ACR20 value, may lead to conflicting imputed
composite outcomes. In addition, specification of correct functional forms or models
for component outcomes might sometimes be easier, conceptually, than assuming a
particular functional form or model for a composite outcome. We outline models that
may be used for the patient-level prediction of components at 24months. The predicted
values of components may then be combined to produce an overall estimate of ACR20
at 24 months.

WedefineYi j to be a directly recorded (non-composite) single outcome of interest in
theCARDERA trial for the i th patient at time points t j ∈ {t1, t2, t3, t4, t5}, representing
baseline and four 6 monthly follow-up times, such that Yi is a vector of outcomes
across all time points for the i th patient and Y denotes the complete set of outcomes
across all patients with deaths ignored for notational convenience. We aim to model
Y based on complete case data from each time point (i.e. those patients for whom
Yi j is known at time t j ) and impute data as appropriate. As we shall discuss, for
convenience, we assume initially that the individual outcomes at the same time point
are independent. Furthermore, we assume that the distribution ofYi j is amember of the
exponential family of distributions, the probability density/mass function of which is
given by

fYi j (yi j |νi j , φ) = exp

{
(yi jνi j − b(νi j ))

φ
− c(yi j , φ)

}
, (1)

with dispersion parameter φ ∈ � ⊆ (0,∞), canonical parameter νi j and known
functions b(.) and c(., .). Usually, we assume that E(Yi j ) = μi j and that μi j is
a function of νi j only. To model a dependence of μi j on xi j , a vector of known
explanatory variables for the i th patient available at the time point t j , we assume that
there exists a link function h(.) such that

h(μi j ) = βT
j xi j .

To estimate the parameter β j , we consider MLE and LI methods.
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3.1 Maximum Likelihood Estimation

Based on the probability density/mass function of Yi j (Eq. 1), a likelihood function can
be defined and maximised using iterative optimisation methods to provide parameter
estimates β̂ j together with their associated standard errors. A ML model, fitted on
complete cases, may be used as a model from which imputed values may be drawn
at random, transformed using the inverse function h−1(.) and imputed in place of
missing observations. Such models are fully parametric.

3.2 Linear Increments Estimation

LI methodology was introduced by Farewell [6,7]. An LI approach makes different
assumptions about the dropout process than those in traditional missing at random-
based analyses [13]. In particular, dropout can depend on an unobserved random
walk random effect (a martingale), but not on future events (dropout is a predictable
process). Another important difference is that LI only specifies a model for the mean
of the outcomes, and no further assumptions at all are needed regarding the dropout
process.

Suppose we define

�Yi j = Yi j − Yi j−1

to be the increment for the outcome Yi (for the i th patient) between the time points t j−1
and t j . We think of the successive observations Yi1,Yi2, . . . ,Yi5 as realised values of
a continuous time stochastic process {Yit , t ∈ T } for an ordered time set T . We define,
for each patient, two further stochastic processes over T :

– A multivariate explanatory variable process: {Xit , t ∈ T }
– A mean-zero martingale error process: {εi t , t ∈ T }

and denote Ft− to be the history of of the outcome, explanatory variable and error
processes up to time t .

The expected value of the incremental changes in Yi from t j−1 to t j , conditional
on the history Ft j−, that includes previous responses and covariate history, may be
written

E(�Yi j |Ft j−) = XT
i, j−1β j .

with β j denoting a suitable vector of explanatory variable effects and intercept term.
Despite the specification of a form for the expected value of the outcomes Y, an

MLE-based method is not used to fit LI models. Instead, a non-parametric method is
used. Although not necessary for LI methods generally, we make an assumption of
monotonic missingness. In other words, once an outcome is missing at one time point,
it is also missing at all subsequent time points. Thus, we assume missingness arises
through patient drop-out/withdrawal.

We define Ȳ (l)
j to be the sample mean of the outcome Y at time t j calculated using

observed values of the outcome from those patients who have at least l non-missing
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observations (l ≥ j). Using this notation, the LI estimate of the population mean
outcome, μ j , at time t j is:

μ̃ j =
j∑

l=2

(
Ȳ (l)
l − Ȳ (l)

l−1

)
+ Ȳ (1)

1 (2)

where these estimatesmay be allowed to depend on patient-level explanatory variables
through a regression formulation.Here, μ̃ j is constructed as the average outcome value
at the first time point plus the sum of the average incremental outcome changes up to t j .
Thus, themain requirement for the LImethod is that incrementsmust be representative
of the general population which is a weaker assumption that that for a complete case
analysis which requires that observed outcomes must be representative.

Generalised estimating equation (GEE) [21] software can be used to fit the mod-
els in cases where the number of time points at which measurements are made is
relatively small [8]. Essentially, the LI method is implemented by adopting a fixed
working correlation structure such that Corr(Yih,Yi j ) = min(h, j). This covariance
structure corresponds to setting the working correlation matrix to be a generalised
inverse of the singular matrix of ones (i.e. the n × n singular matrix such that all
entries of the matrix are equal to one). At first sight it may appear that an LI analysis
is analogous to the analysis of change scores, commonly used in randomised trials
[19]. With both methods, a difference in expected outcomes is modelled, although
the linear increments approach involves the modelling of successive changes between
subsequent time points whereas a change score analysis typically involves modelling
a change since baseline.

Values may be drawn at random from models fitted by LI, transformed back to
the same scale as the outcome and then imputed in place of missing observations,
given a set of explanatory variables X . LI methods have been used to account for
multivariate missing outcomes in longitudinal data [1,9] although, to our knowledge,
no work has used LI methods for multiple imputation, generally or specifically for
missing composite outcomes.

4 Multiple Imputation

We fitted models using both MLE and LI based on the complete observations at each
time point for ACR20 and for each of the outcomes involved in its definition. The
outcomes used to calculate ACR20 would be expected to be correlated within the
same individual. Whilst a multivariate distribution for these seven outcomes could be
considered, given the differing nature of these outcomes, the specification of such a
multivariate distribution would be difficult. Alternatively, conditional distributions for
the individual outcomes over time (for example, a conditional distribution for PGA at
one time point given the change in TJC and SJC since the previous time point) could
be considered. More directly, multiple imputation with chained equations can be used
to reflect dependencies and this will be used in Sect. 6 for comparison purposes.
However, here we want to focus primarily on the comparison of ML- and LI-based
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multiple imputation methods. Therefore, for simplicity, we make the assumption that
the outcomes at the same time point, conditional on their respective histories, are
independent within an individual and use fitted models for the marginal distribution of
each outcome from which to draw imputations. Clearly, this assumption of indepen-
dence may not always be correct and not accounting for correlation amongst outcomes
may reduce the power of the multiple imputation approach. However, we aim for the
imputation approach to be easy to implement and understand, which may not be the
case if the modelling of putative correlation structures is introduced. All imputation
models account for the past history of the outcome.

Consistent with the majority of the CARDERA data, we assume that when one
outcome is missing at a particular time point, then all outcomes are missing. Thus,
it would not be the case that a known outcome value at a time point could provide
information on the likely value of a missing outcome at the same point for the same
individual. This assumption is consistent with the notion that missingness arises due
to patient drop-out or study withdrawal. We recognise that this assumption would not
always be appropriate but we adopt it for computational simplicity in our simulations.

We assumed that TJC and SJC, joint counts from 0 to 28, are binomially distributed,
which we model in terms of the empirical logit [5] with a normal approximation. The
other outcomes involved in the calculation of ACR20 (PGA, AGA, Painscore, ESR
and HAQ) are assumed, for simplicity, to be normal random variables, upon suitable
transformations. The distributions of AGA, PGA and Painscore were truncated to lie
in the interval [0, 100], HAQ to lie in the interval [0, 3] and ESR to lie in the interval
[1, 200]. For each outcome (other than TJC and SJC), a square root transformation
was used. This is because some of the variables contained a large number of values
close to the lower limit of zero and hence displayed positive skewness in their distrib-
ution. A square root transformation helped to make an assumption of normality more
appropriate for these variables.

For the multiple imputation process, models estimated by both MLE and LI are
used to predict the outcomes of interest. Where an outcome value is missing, a new
value is drawn from the appropriate model (conditioning on the explanatory variables
from the patient) M ∈ N times. In doing so, M ‘imputed’ datasets are created. The
quantities of interest (e.g. parameter estimates and associated standard errors) can
then be computed by combining analyses from each of the imputed datasets following
Rubin’s rules [16].

In the original CARDERA trial, the 467 patients were randomised to one of four
treatment groups: methotrexate (MTX) only (117 patients), ciclosporin (CSP) and
MTX (119 patients), prednisolone (PDN) and MTX (115 patients) and MTX, CSP
and PDN (116 patients). Henceforth, these treatment groups are known as ‘None’,
‘CSP’, ‘PDN’ and ‘Both’ with these names describing the combination of CSP and
PDN that each group was prescribed in addition to MTX.

We use treatment group as an explanatory variable along with the transformed
outcome at the previous time point. The ML and LI imputation models at time t j are
summarised as,

E(g(Yi j )) = α j + β j g(yi j−1) + γ T
j xi (3)
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and

E(g(Yi j ) − g(Yi j−1)) = δ j + η j g(yi j−1) + ωT
j xi

respectively where xi denotes the set of explanatory variables relating to treatment
group. The vectors (α j , β j , γ

T
j )

T and (δ j , η j ,ω
T
j )

T are parameter vectors to be
estimated. The use of of transformed outcome data on the right hand side of these
regression equations, to incorporate past history, is not required and the use of untrans-
formed data in the linear predictor is also commonly used for this purpose. Other
choices for extending the increments model to discrete outcomes are possible but we
restrict ourselves to a linearised outcome in this paper. Algorithms for the multiple
imputationmethods and associatedmodelling assumptions are described inAppendix.

5 Comparisons Based on Simulated Missingness

5.1 Missingness in the CARDERA Trial

In this section, we compare the imputation approaches described in Sects. 3 and
4 using data from the CARDERA trial. We use ACR(24)20 to denote the ACR20
value at 24 months, with P(ACR(24)20 = 1) being the parameter of interest. Of
the 467 randomised patients in the CARDERA trial, there are 334 patients for whom
complete sets of observations (i.e. all relevant outcomes at all time points) are recorded.
We use these 334 patients for whom complete data exist as a sample on whom a
missingness structure will be applied such that inference made using imputed data can
be compared to the original, ‘true’, data. Our interest lies in examining the performance
of the multiple imputation methods on data that resemble closely that which would
be obtained in a real longitudinal study. As such, we feel that it is more appropriate
to apply missingness structures to data from the CARDERA trial rather than simply
generating data.

5.2 Structure of Simulated Datasets

Using data on the 334 patients for whom no outcomes are missing, we introduce
approximately 20 % missingness, balanced over the four treatment groups, so that
imputed outcomes can be compared with known outcomes. This is repeated to create
five datasets across which each patient exhibits missing outcomes exactly once and
missingness is always balanced by treatment group through stratification. We label
the five datasets A, B, C, D, E and Table 1 provides a summary of the datasets with
respect to their composition. This is done firstly where outcomes are missing only
at 24 months for the selected patients and secondly where outcomes are missing at
12, 18 and 24 months for the same patients. Thus, we have five datasets of each type
(missingness at 24 months only and missingness at 12, 18 and 24 months) on which
imputation can be performed and compared to the original dataset in which there is
no missingness. Missingness is applied completely at random with no conditioning
on any patient features or outcomes. This missing completely at random assumption
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Table 1 Table showing the composition of the missing portions of each dataset with respect to treatment
group

Treatment group No. of patients exhibiting missing outcomes in datasets A–E

A B C D E

None 16 17 17 17 16

CSP 16 15 15 15 15

PDN 17 17 17 17 17

Both 18 18 18 18 18

Total 67 67 67 67 66

Each dataset (A–E) features approximately 20 % of outcomes missing at 24 months (and, secondly, at 12,
18 and 24 months)

[13] ensures that the ML- and LI-based imputation methods are directly comparable
because the sets of assumptions for both are met.

5.3 Models Used for Estimation

We carried out the multiple imputation techniques described in Sect. 4 and Appendix
with these five datasets, with imputations being performed ten times for each of the
five datasets. In addition, we imputed missing ACR(24)20 values directly using an
auto-regressive logistic regression model under the assumption of a Bernoulli distrib-
ution for ACR(24)20 where MLE was used for parameter estimation. We refer to this
method of multiple imputation as the ‘direct’ method. For each imputed dataset, we
considered two logistic regression models for the estimation of P(ACR(24)20 = 1)
for each treatment group - an additive model and an interaction model. For notational
convenience, we use indices to define treatment groups rather than explicitly defining
explanatory variables. The indices r and s are defined as:

r =
{
1 if patient is prescribed CSP;

0 otherwise

and

s =
{
1 if patient is prescribed PDN;

0 otherwise.

Then, if we define πrs = P(ACR(24)20 = 1|r, s), we write the ‘additive’ model as

log

(
πrs

1 − πrs

)
= α + βr + γs

with the identifiability constraints β0 = γ0 = 0. The model is described as ‘additive’
because the combined effect of CSP and PDN, compared to MTX only, is obtained
through the addition of the parameters βr and γs . Furthermore, if we define l to be
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an alternative treatment group index such that l ∈ {1, 2, 3, 4} (with treatment group
numberings defined as: 1 = “None”, 2 =“CSP”, 3 = “PDN”, 4 = “Both”) then a
regression model that includes an interaction to the model for πrs , which we term the
interaction model, can be written as

log

(
πl

1 − πl

)
= φl ,

where πl = P(ACR(24)20 = 1|l). This model was considered in case the combined
effects of CSP and PDN would not be considered as additive.

5.4 Results

We present tables of results that show both the estimated linear predictors for the
additive and interaction models, together with estimates of P(ACR(24)20 = 1). The
multiple imputation and parameter estimation was performed for each of the five
datasets (A, B, C, D and E) described in Table 1. In addition, we considered multiple
imputationwhere either missingness occurred at 24months only or wheremissingness
occurred at each of 12, 18 and 24 months. For brevity, we present sample means of
parameter estimates and associated standard errors using imputation results from the
five simulated datasets (since results were similar), although full results are available
from the authors.

5.4.1 Missingness at 24 Months

Table 2 provides a summary of estimated linear predictors (log–odds of the event
{ACR(24)20 = 1}) and probabilities of the event {ACR(24)20 = 1} calculated using
both the additive and interaction prediction models, for each treatment group, where
missingness occurred at 24 months only for patients who had non-complete data.

Examining Table 2, we see that each imputation method has produced linear pre-
dictor and probability estimates that lie reasonably close to those calculated using the
true data (column 5 of Table 2). As we would expect, the standard error estimates for
estimators produced using imputed data are larger than those produced using the true
data. There are no obvious differences in estimation performance, for any method.
In addition, the standard error estimates for parameters estimated using data where
imputation was performed using linear increments are generally larger than those for
parameters where missing data were imputed using maximum likelihood. We might
expect this, since fewer assumptions are made in the LI multiple imputation process
when compared to the MLE multiple imputation process.

Multiple imputation is often viewed as a method to obtain an unbiased estimate of a
population mean or some other population-level parameter. In this work, our aim is to
produce a population-level estimate of P(ACR(24)20 = 1). At the individual level, the
calculation of ACR(24)20 relies directly on accurate estimates of the constituent values
for ACR(24)20, outlined in Sect. 2. This places importance on the accuracy of these
individual-level values. Table 3 provides a summary of the differences between the true
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Table 2 Table showing the average linear predictor estimates, together with associated standard errors, and
estimates of P(ACR(24)20 = 1) for the different treatment groups using both the additive and interaction
estimation models

Treatment group Imputation method

MLE LI DIRECT TRUE Data

Additive Model: Average Linear Predictor Estimate (Standard error)

None −0.571 (0.204) −0.595 (0.210) −0.540 (0.219) −0.514 (0.196)

CSP −0.380 (0.205) −0.384 (0.213) −0.307 (0.217) −0.322 (0.199)

PDN −0.473 (0.201) −0.515 (0.208) −0.480 (0.206) −0.458 (0.193)

Both −0.283 (0.197) −0.304 (0.202) −0.247 (0.199) −0.265 (0.187)

Additive Model: Average Estimate of P(ACR(24)20 = 1)

None 0.361 0.356 0.368 0.374

CSP 0.406 0.405 0.424 0.420

PDN 0.384 0.374 0.382 0.388

Both 0.430 0.425 0.439 0.434

Interaction Model: Average Linear Predictor Estimate (Standard error)

None −0.374 (0.232) −0.400 (0.238) −0.338 (0.246) −0.316 (0.222)

CSP −0.598 (0.250) −0.601 (0.260) −0.529 (0.259) −0.539 (0.238)

PDN −0.671 (0.238) −0.713 (0.248) −0.687 (0.247) −0.658 (0.229)

Both −0.110 (0.222) −0.132 (0.226) −0.068 (0.248) −0.089 (0.211)

Interaction Model: Average Estimate of P(ACR(24)20 = 1)

None 0.408 0.402 0.416 0.422

CSP 0.355 0.355 0.371 0.368

PDN 0.338 0.329 0.335 0.341

Both 0.473 0.467 0.483 0.478

Results are shown where multiple imputation was performed for all outcomes using maximum likelihood
estimation (MLE), for all outcomes using linear increments (LI), direct imputation of ACR(24)20 usingML
(DIRECT) and estimates produced using data prior to the application of a missingness structure (TRUE
Data). Missing data occurred at 24 months only

Table 3 Table summarising the
differences between the imputed
ACR(24)20 values and the true
ACR(24)20 for each imputation
method, for those cases where
outcomes were missing at
24 months across the ten
multiple imputation runs

Difference Imputation method

ACR(24)20: Imputed − True MLE LI DIRECT

−1 547 614 581

0 2387 2344 2189

+1 406 382 570

ACR(24)20 values and the imputed ACR(24)20 values aggregated for all ten imputation
runs and the three methods of multiple imputation, where outcomes were missing.
The results indicate that the MLE- and LI-based methods both predict ACR(24)20
correctly in themajority of cases, with similar proportions of correct predictions (71%
and 70 % of predictions were correct, respectively). The direct imputation method
was slightly less successful at correctly predicting ACR(24)20 (66 % of predictions
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were correct). When direct imputation of ACR(24)20 is performed, it is possible that
individual-level predictions of ACR(24)20 may tend to be drawn close to the MLE
of the population mean and this could compromise such individual-level predictions.
This would be typical of prediction from simple MLE-based models, where shrinkage
to the estimate of the population mean is well known [3,4]. The imputation of each
outcome separately, either by MLE or using the LI method may be more appropriate
for individual-level predictions.

Figure 1 shows histograms of the outcomes including imputed values, using
each imputation method, at 24 months for each outcome used in the calculation of
ACR(24)20. In addition, histograms of the true values of the outcomes are shown. The
histograms show the estimated distributions of the individual outcomes to be broadly
similar for each imputation method, except for the tender and swollen joint counts
where the MLE-based method appears to have drawn a relatively large proportion
of imputed outcomes close to the observed sample mean outcome, in each case. This
might suggest that MLE-based imputation of binomial outcomes is desirable when the
aim is to achieve an accurate and precise estimate of the population mean. LI-based
imputation is perhaps less likely to provide as precise an estimate of the population
mean as the MLE-based methods, although the overall distributional shapes obtained
via LI estimation may be more like those seen for the true data, especially for non-
normally distributed outcomes.

5.4.2 Missingness at 12, 18 and 24 Months

We also considered a situation where the approximately 20 % of patients that have
missing outcomes have these outcomes missing at each of 12, 18 and 24 months. To
simulate this scenario, missingness was introduced completely at random at 12months
in 20% of patients. Corresponding patients were then deemed as having ‘dropped-out’
of the trial at 12 months and their outcomes for 18 and 24 months were also deleted.

The outcome of interest remains the value of ACR(24)20 but, in this case, missing
outcomes are imputed successively at 12 then 18 then 24 months, using each of the
MLE and LI imputation methods. As previously mentioned, imputations were carried
out ten times and the estimated linear predictors were combined using Rubin’s rules
under the additive and interaction models separately.

Results of these analyses that parallel those for the datasets when missingness is
only at 24 months are given in Tables 4, 5 and in Fig. 2. The patterns of results are
very similar to those seen when missingness was only at 24 months.

6 Example: Imputation of ACR20 at 24 Months in the CARDERA Trial

In this section, we apply the three methods of imputation described in Sect. 3 to the
actual missing values in the CARDERA trial dataset. In addition, we use a chained
equations approach, similar to that discussed in [20], to impute each constituent out-
come used in the calculation of ACR(24)20 at each time point where a missing value
occurs. The chained equationsmethod is flexible, allowing outcomes of different types
(both continuous and binary) to be imputed and relaxes the assumption of indepen-
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Fig. 1 Histograms of the variables at 24 months used to calculate ACR(24)20. ‘TRUE’ denotes the true
values, ‘MLE’ denotes values imputed by ML-based models and ‘LI’ denotes values imputed using linear
increments models. Missingness was simulated at 24 months only prior to multiple imputation
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Table 4 Table showing the average linear predictor estimates, together with associated standard errors, and
estimates of P(ACR(24)20 = 1) for the different treatment groups using both the additive and interaction
estimation models

Treatment group Imputation method

MLE LI DIRECT TRUE Data

Additive Model: average linear predictor estimate (standard error)

None −0.510 (0.209) −0.586 (0.221) −0.525 (0.226) −0.514 (0.196)

CSP −0.410 (0.210) −0.400 (0.221) −0.341 (0.229) −0.322 (0.199)

PDN −0.395 (0.202) −0.520 (0.208) −0.471 (0.217) −0.458 (0.193)

Both −0.294 (0.198) −0.334 (0.205) −0.288 (0.209) −0.265 (0.187)

Additive Model: average estimate of P(ACR(24)20 = 1)

None 0.375 0.358 0.372 0.374

CSP 0.399 0.401 0.416 0.420

PDN 0.403 0.373 0.384 0.388

Both 0.427 0.417 0.429 0.434

Interaction Model: average linear predictor estimate (standard error)

None −0.329 (0.239) −0.411 (0.247) −0.315 (0.253) −0.316 (0.222)

CSP −0.614 (0.254) −0.593 (0.263) −0.574 (0.276) −0.539 (0.238)

PDN −0.574 (0.236) −0.697 (0.247) −0.685 (0.253) −0.658 (0.229)

Both −0.133 (0.223) −0.179 (0.23) −0.101 (0.266) −0.089 (0.211)

Interaction Model: average estimate of P(ACR(24)20 = 1)

None 0.419 0.399 0.422 0.422

CSP 0.352 0.356 0.361 0.368

PDN 0.360 0.333 0.335 0.341

Both 0.467 0.455 0.475 0.478

Results are shown where multiple imputation was performed for all outcomes using maximum likelihood
estimation (MLE), for all outcomes using linear increments (LI), direct imputation of ACR(24)20 usingML
(DIRECT) and estimates produced using data prior to the application of a missingness structure (TRUE
Data). Missing data occurred at 12, 18 and 24 months

Table 5 Table summarising the
differences between the imputed
ACR(24)20 values and the true
ACR(24)20 for each imputation
method, for those cases where
outcomes were missing at 12, 18
and 24 months across the ten
multiple imputation runs

Difference Imputation method

ACR(24)20: Imputed − True MLE LI DIRECT

−1 651 787 788

0 2120 2053 1826

+1 569 506 726

dence between individual outcomes. The method can be implemented using standard
statistical software for MLE-based multiple imputation and can be compared with the
other methods for this example.

The true missingness mechanism of the CARDERA data is unknown, but it is
unlikely that missing data are missing completely at random. Results are presented
for both the additive and interaction models (with respect to trial arm) in Table 6,
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Fig. 2 Histograms of the variables at 24 months used to calculate ACR(24)20. ‘TRUE’ denotes the true
values, ‘MLE’ denotes values imputed by ML-based models and ‘LI’ denotes values imputed using linear
increments models. Missingness was simulated at 12, 18 and 24 months, prior to multiple imputation
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Table 6 Table showing the average linear predictor estimates, together with associated standard errors, and
estimates of P(ACR(24)20 = 1) for the different treatment groups using both the additive and interaction
estimation models

Group Imputation Method

MLE LI CHAINED DIRECT COMPLETE

Additive Model: linear predictor estimate (standard error)

None −0.608 (0.180) −0.623 (0.192) −0.591 (0.183) −0.553 (0.200) −0.540 (0.186)

CSP −0.482 (0.174) −0.486 (0.180) −0.452 (0.176) −0.380 (0.193) −0.353 (0.185)

PDN −0.511 (0.175) −0.545 (0.180) −0.480 (0.176) −0.481 (0.166) −0.505 (0.183)

Both −0.385 (0.179) −0.407 (0.184) −0.341 (0.179) −0.308 (0.174) −0.318 (0.180)

Additive Model: estimate of P(ACR(24)20 = 1)

None 0.353 0.349 0.356 0.365 0.368

CSP 0.382 0.381 0.389 0.406 0.413

PDN 0.375 0.382 0.367 0.382 0.376

Both 0.405 0.400 0.416 0.424 0.421

Interaction Model: linear predictor estimate (standard error)

None −0.442 (0.205) −0.493 (0.215) −0.427 (0.205) −0.435 (0.222) −0.396 (0.213)

CSP −0.647 (0.204) −0.614 (0.209) −0.614 (0.206) −0.495 (0.216) −0.499 (0.217)

PDN −0.683 (0.211) −0.680 (0.210) −0.649 (0.213) −0.602 (0.195) −0.647 (0.215)

Both −0.225 (0.198) −0.281 (0.200) −0.183 (0.198) −0.194 (0.202) −0.186 (0.204)

Interaction Model: estimate of P(ACR(24)20 = 1)

None 0.391 0.379 0.395 0.393 0.402

CSP 0.344 0.351 0.351 0.379 0.378

PDN 0.335 0.336 0.343 0.354 0.344

Both 0.444 0.430 0.454 0.452 0.454

Multiple imputation has been used to predict actual missing ACR(24)20 values from the CARDERA trial.
Results are shown where multiple imputation was performed for all outcomes using maximum likelihood
estimate (MLE), for all outcomes using linear increments (LI), for all outcomes using a chained equations
approach (CHAINED) and via direct imputation of ACR(24)20 using maximum likelihood (DIRECT). As
a comparison, results using complete cases only (COMPLETE) are also shown

in a similar manner to the results presented in Tables 2 and 4. We note that, since
ACR(24)20 is genuinely missing for these patients, there is no column in Table 6 to
show the ‘TRUE’ ACR(24)20 values. Estimates from a complete cases analysis are
also shown. For a comparison over time, Fig. 3 shows plots of mean estimates of
P(ACR(24)20 = 1) (obtained using Rubin’s rules) at each time point (6, 12, 18 and
24 months) for each imputation method, compared to equivalent estimates formed
using the complete cases data. Plots are shown separately for each trial arm.

Table 6 shows that the four methods perform similarly with regard to the prediction
of P(ACR(24)20 = 1) using both the additive and interaction models. The similarity
of the MLE and LI methods is encouraging and suggests that each of these methods
would be applicable for the multiple imputation of ACR(24)20, subject, as always,
to their respective assumptions regarding the pattern(s) of missingness within the
dataset. We note that the chained equations approach, which does not necessarily
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Fig. 3 Plot of sample mean estimates of P(ACR(24)20 = 1) at each time point (6, 12, 18 and 24 months).
Results are shown where multiple imputation has been performed using the ML method (MLE), linear
increments method (LI), chained equations method (CHAINED) and direct imputation method (DIRECT).
Results for the complete cases data (Complete) are also shown. Separate plots are shown for each of the
four trial arms

assume independence amongst the different composite outcomes, has resulted in point
estimates and standard error estimates that lie close to those from both the MLE and
LI approaches. This suggests that the assumption of independence amongst outcomes
in the LI and MLE approaches seems to be plausible in this example. In principle,
a multivariate approach based on LI models [1] is possible but this would require
bespoke software.

Comparing the imputed data to the complete cases estimates (Fig. 3), we see that
the general patterns over time are similar between the complete cases estimates and
results from each imputation method and across all four trial arms with the exception
of the CSP group, for which discrepancies are more noticeable. Farewell [8] showed
that populationmeans estimated from aGEEwith anAR(1)working covariancemodel
are intermediate to the complete case and linear increments estimates. For the kind
of moderate-to-strong correlation typical of longitudinal data such as these, we might
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therefore expect the ML estimates also to be intermediate, but likely, nearer to the LI
extreme. This pattern is consistent with that seen in Fig. 3 and Table 6.

In Table 6, we see that the standard error estimates for the linear predictors are
comparable between the different imputation approaches and the complete case stan-
dard error estimate, for both the additive and interaction models. This suggests that
overall, for this example, the different approaches yield robust and comparably precise
estimates.

7 Discussion

We have explored the use of MLE- and LI-based methods for multiple imputation of a
binary composite outcome in a longitudinal clinical trial. Both methods were used to
impute values for the components of the composite outcome and we compared these
approaches and direct MLE-based imputation of the composite outcome.

The LI estimates of means used for multiple imputation are non-parametric and
do not depend on distributional assumptions. Conversely, the ML population mean
estimates depend on the distributional assumptions made. The LI estimates might,
therefore, be expected to be more robust if the distributional assumption is incorrect
and the MLEs more efficient if the assumption is correct. Nevertheless, the distribu-
tional assumptions are required in both methods for the repeat imputation of missing
outcomes.

In general, the missingness structure of any dataset will never be known exactly. All
imputation methods rely on assumptions regarding the missingness process and such
assumptions are untestable.As a result,wedid not attempt to explore themethods under
strictly defined missingness structures. In practice, sensible and practical intuition
would be important in defining an appropriate missingness structure, and we would
recommend that both MLE- and LI-based imputation models be explored and their
results compared under any definedmissingness structure. Some researchers have used
an LI approach to the multiple imputation of missing values as a comparison to an
MLE-based chained equations approach in the analysis of a clinical trial [11].

For a single outcome, it is well known that multiple imputation using MLE-based
models is an appropriate method to obtain an unbiased estimate of the population
mean, under the missing at random assumption that missingness does not depend
on unobserved data. We generated missingness under this assumption and observed
comparable performance of the twomethods. Comparable performance for estimation
of mean outcomes was also seen using direct imputation of the composite outcome.

The imputation of individual outcomes relies on modelling assumptions for each
individual outcome. If such modelling assumptions were correct, then this could result
in the imputation of individual outcomes beingpreferable to the direct imputation of the
composite outcome, because accurate accounting for missingness in both the individ-
ual outcomes and composite outcome would be made, resulting in a more complete
longitudinal dataset for analysis. However, we note that the adoption of modelling
assumptions for each individual outcome naturally makes the multiple imputation of
the individual outcomes reliant onmoremodelling assumptions than direct imputation
of the composite outcome.
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The similar performance of the component-based multiple imputation using LI
methods and MLE methods, in simulations when missingness is completely at ran-
dom and for the actual CARDERA trial data, which would be expected to have a
more general pattern of missingness, suggests that LI-based multiple imputation may
be a useful tool for the validation of MLE-based multiple imputation for missing
composite outcomes. Differing results might suggest that distributional assumptions
used in MLE-based multiple imputation models should be re-examined. Agreement
between the methods would be reassuring in this regard. Irresolvable disagreement
would motivate further discussion of the relative plausibility of the assumed missing
data mechanisms or statistical modelling assumptions.
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Appendix: Imputation Algorithms

Maximum Likelihood Model

We assume a normal distribution for all outcomes except for the TJC and SJC out-
comes, for whichwe assume binomial distributions. The initialML imputation process
for the normally distributed outcomes that contribute to ACR20 can be described as
follows.

1. Suppose that g(Yi j ) denotes the transformed outcome of interest for the i th indi-
vidual at time point t j , where g(Yi j ) is assumed to be normally distributed. A
model of the form given in (3) is defined at time points t j , j ∈ {2, 3, 4, 5}. That
is:

g(Yi j ) = α j + β j g(yi j−1) + γ T xi + εi j .

Here g(yi j−1) denotes the observed, transformed outcome at the previous time
point and xi denotes as vector of indicator variables pertaining to treatment group
of the form:

xi = (
I ({Groupi = ‘CSP’}), I ({Groupi = ‘PDN ’}), I ({Groupi = ‘Both’}))T

for the i th individual, Groupi denotes the treatment group of the i th individual.
εi j ∼ N (0, σ 2

j ) is a mean-zero error term. The term I ({E}) denotes an indicator
function for the event E .

2. The model in Step 1 is fitted using complete (non-missing) cases at each time
point (t1, t2, t3, t4, t5) and MLE methods. Corresponding parameter estimates
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(α̂ j , β̂ j , γ̂
T
j , σ̂

2
j )

T are obtained, together with their associated asymptotic distrib-
utions.

3. A random draw is performed from each of the asymptotic distributions of
(α̂ j , β̂ j , γ̂

T
j , σ̂

2
j )

T , to reflect the uncertainty in these parameter estimates. This

creates a new set of parameter estimates, which we denote (α̃ j , β̃ j , γ̃
T
j , σ̃

2
j )

T .
4. Using the new parameter estimates, drawn in Step 3, we compute an estimated

mean transformed outcome variable at t j for the i th individual (where the corre-
sponding outcome variable is missing), given by

g̃(yi j ) = α̃ j + β̃ j g(yi j−1) + γ̃ T
j xi .

5. We use g̃(yi j ) as a proxy for E(g(Yi j )) and σ̃ 2
j as a proxy for Var(g(Yi j )). We

draw a value from a N (g̃(yi j ), σ̃ 2
j ) distribution and denote this draw g(imp)(yi j ).

6. The value g(imp)(yi j ) is transformed using the inverse function g−1() to obtain
an estimate of the outcome for the i th individual at time point t j . This value is
imputed into the dataset in place of the i th individual’s missing observation at time
point t j .

7. Steps 3–6 are repeated M ∈ N times to create values for M imputed datasets to
be analysed.

For the TJC and SJC, we use logistic regression models (because we have binomial
outcomes), and the following algorithm is used:

1. Suppose that π(Yi j ) denotes the probability of the event of interest (i.e. a tender
or swollen joint) for the i th individual at time point t j , where Yi j is the tender or
STC for the i th individual at time point t j . A model of the form given in (3) is
defined at time points t j , j ∈ {2, 3, 4, 5}. That is:

log

(
π(Yi j )

1 − π(Yi j )

)
= α j + β j yi j−1 + γ T xi .

Here yi j−1 denotes the observed tender/swollen joint count at the previous time
point and xi denotes as vector of indicator variables pertaining to treatment group
of the form:

xi = (
I ({Groupi = ‘CSP’}), I ({Groupi = ‘PDN ’}), I ({Groupi = ‘Both’}))T

for the i th individual, Groupi denotes the treatment groups of the i th individual.
2. The model in Step 1 is fitted to complete (non-missing) cases at each time point

(t1, t2, t3, t4, t5) using MLE methods, under the assumption that the joint count
is binomially distributed. Corresponding parameter estimates (α̂ j , β̂ j , γ̂

T
j )

T are
obtained, together with their associated asymptotic distributions.

3. A random draw is performed from each of the asymptotic distributions of
(α̂ j , β̂ j , γ̂

T
j )

T , to reflect the uncertainty in these parameter estimates. This cre-

ates a new set of parameter estimates, which we denote (α̃ j , β̃ j , γ̃
T
j )

T .
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4. An estimate for the probability of a damaged joint, for the i th individual at time
t j is computed as

π̃(yi j ) =
exp

(
α̃ j + β̃ j yi j−1 + γ̃ T xi

)

1 + exp
(
α̃ j + β̃ j yi j−1 + γ̃ T xi

)

5. Using π̃(yi j ) as a proxy for the ‘true’ probability of a tender/swollen joint at time
point t j , we make a random draw from a Bin(28, π̃(yi j )) distribution. We denote

this drawn value y(imp)
i j . The value y(imp)

i j is imputed into the dataset in place of the
i th individual’s missing observation at time point t j .

6. Steps 3–5 are repeated M ∈ N times to create values for M imputed datasets to
be analysed.

Linear Increments Model

The idea behind the LI method is to model the increments of a longitudinal process:
Yi j − Yi j−1. Although the LI estimates themselves are non-parametric (Eq. 2), we
require an assumption for the distribution of the outcomes so that random draws can
be made (although parameters need not be estimated using a method that relies on
distributional assumptions). Clearly, if we assume that g(Yi j ) is normally distributed,
then it follows that the increment g(Yi j ) − g(Yi j−1) is also normally distributed. This
is used for most of the outcomes involved in the calculation of ACR20. However,
the tender and swollen joint counts have binomial distributions, and so the increment
Yi j −Yi j−1 has no standard distributional form. To alleviate this problem, we consider
g(Yi j ) to be the empirical logit transformation of the joint count Yi j where Yi j ∼
Bin(28, πi j ). That is,

g(Yi j ) = log

(
Yi j + 0.5

28 − Yi j + 0.5

)
.

For all other outcomes that make up ACR20, the transformation is given by g(Yi j ) =
(Yi j )

1
2 . The imputation process for each outcome that is used to form ACR20 is

described below.

1. We define an LI model of the form

E(g(Yi j ) − g(Yi j−1)) = α j + βg(yi j−1) + γ T xi .

Here g(yi j−1) denotes the observed, transformed outcome at the previous time
point and xi denotes as vector of indicator variables pertaining to treatment group
of the form:

xi = (
I ({Groupi = ‘CSP’}), I ({Groupi = ‘PDN ’}), I ({Groupi = ‘Both’}))T

for the i th individual, Groupi denotes the treatment group of the i th individual.
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2. The model defined in Step 1 is fitted using generalised estimating equations (using
the method outlined in Sect. 3). From the model fit, we obtain estimated model
parameters (α̂ j , β̂ j , γ̂

T
j )

T , together with an estimated robust variance–covariance

matrix for (α̂ j , β̂ j , γ̂
T
j )

T , which we term �̂R.

3. To account for the uncertainty in the estimation of (α̂ j , β̂ j , γ̂
T
j )

T , we re-draw

the model parameters at random from a multivariate N ((α̂ j , β̂ j , γ̂
T
j )

T , �̂R) dis-
tribution, yielding corresponding updated parameter estimates, which we denote
(α̃ j , β̃ j , γ̃

T
j )

T .
4. Using the new parameter estimates, drawn in Step 3, we compute an estimated

increment value from t j−1 to t j for the outcome variable in the i th individual
(where the corresponding outcome variable is missing), given by

�̃(g(yi j )) = α̃ j + β̃ j g(yi j−1) + γ̃ T
j xi .

5. We calculate s2j−1, j as the sample variance of the difference in the observed,
transformed values (g(yi j ) − g(yi j−1)) between time points t j−1 and t j . Then,
a random value is drawn from a N (�̃(g(yi j )), s2j−1, j ) distribution. We call this

drawn value �(imp)(g(yi j )) and define it to be an imputed value for the difference
in transformed outcome from time point t j−1 to t j for the i th individual.

6. Using the imputed increment values from Step 5, an estimated of the missing
transformed outcome at time point t j is given by

g(imp)(yi j ) = g(yik) +
j∑

l=k+1

�(imp)(g(yil)).

Here, we assume that the outcome, for individual i , is observed up to time tk
for some k ∈ N , k < j . The value g(imp)(yi j ) is transformed to the original

scale, using the inverse function g−1(), to produce an estimated value y(imp)
i j that is

imputed into the original dataset to replace the i th individual’s missing observation
at time point t j .

7. Steps 1–6 are repeated M ∈ N times, for each outcome, to create values for M
imputed datasets to be analysed.
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