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Abstract—TID2013 is a subjective image quality assessment
dataset with a wide range of distortion types and over 3000
images. The dataset has proven to be a challenging test for
objective quality metrics. The dataset mean opinion scores were
obtained by collecting pairwise comparison judgments using the
Swiss tournament system, and averaging votes of observers.
However, this approach differs from the usual analysis of multiple
pairwise comparisons, which involves psychometric scaling of the
comparison data using either Thurstone or Bradley-Terry mod-
els. In this paper we investigate how quality scores change when
they are computed using such psychometric scaling instead of
averaging vote counts. In order to properly scale TID2013 quality
scores, we conduct four additional experiments of two different
types, which we found necessary to produce a common quality
scale: comparisons with reference images, and cross-content
comparisons. We demonstrate on a fifth validation experiment
that the two additional types of comparisons are necessary and in
conjunction with psychometric scaling improve the consistency
of quality scores, especially across images depicting different
contents.

I. INTRODUCTION

One of the purposes of subjective image quality assess-
ment is the construction of a metric for evaluating image
degradation or enhancement as perceived by humans. Human
judgments can be elicited via different types of experiments,
such as explicit rating or comparative judgment approaches.
Comparative judgment experiments have gained acceptance in
subjective quality evaluation because of their simplicity. In a
typical pairwise comparison experiment, observers are shown
two images and are asked to select the one which appears
to have a better quality. This approach greatly simplifies the
task, as it avoids the need to rate each image explicitly. The
quality scores can then be inferred from the matrix of pairwise
comparisons by vote counting or psychometric scaling, with
the latter having the advantage of providing a scale in which
distances can be interpreted in terms of probability of better
perceived quality.

One of the most recent and extensively evaluated image
quality datasets (TID2013 [1], [2]) uses a crowd-sourcing
experiment with pairwise comparisons in order to measure
image quality. However, the quality scale was produced by
dividing the number of votes given to each condition by the
number of observers. The present paper shows the limita-
tions of such an approach in comparison to the probabilistic
framework that psychometric scaling provides. We construct
the psychometric scale using the well-known Thurstone Case
V model [3], and compare both strategies in simulated and
real-world experiments. In addition, we complement TID2013

dataset with comparisons across different contents and with
reference images, as neither were originally included in the
dataset. Both are crucial for constructing a common quality
scale. We show how inclusion of these additional comparisons
changes the quality scale and how psychometric scaling helps
to reduce the amount of inconsistencies. The new scale for
TID2013 is available at the repository associated to this paper1.

II. RELATED WORK

There are different methods for generating a scale of human
preferences [4]. One of the ways to generate such a scale
is through explicit rating, in which observers are asked to
assign a numeric quality score to each object. All judgments
are then averaged to produce mean opinion scores. Another
way to generate the scale is to use comparative judgement
experiments. In comparative judgement, observers are asked to
compare two or more objects in terms of some quality criteria.
Comparisons can be made in a pairwise or set-wise fashion,
although pairwise comparisons are usually preferred for sim-
plicity. All collected comparisons are later used to produce
the final quality scores. Two commonly used methods to infer
quality scores from pairwise comparisons are psychometric
scaling and vote counts. Fig. 1 shows an example of both
explicit ratings and pairwise comparisons with TID data.
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Fig. 1: Examples of full-reference explicit rating and no-
reference pairwise comparison measurements.

A. TID2013

TID2013 presents 3000 distorted conditions (25 contents, 24
distortion types and 5 levels of distortions). Approximately 30

1https://doi.org/10.17863/CAM.21517



observers were involved in the measurement of every content,
totalling more than 900 observers.

Each observer in one experiment only performed compar-
isons within one content, i.e. no cross-content comparisons
were performed. In the pairwise comparison experiments the
less distorted condition had to be chosen with the help of
the reference displayed alongside. The pairs of conditions
to compare were chosen following the Swiss chess system
[5]. With this method, all conditions are compared the same
predefined number of times. The first comparisons are chosen
at random. In later stages, conditions are sorted based on the
number of times they were previously selected by an observer,
and conditions having similar quality compete in pairs.

The matrix of comparisons in TID2013 therefore has an in-
complete unbalanced design with 25 disconnected components
and no comparison to reference. Absence of cross-content
comparisons and comparisons with the reference makes it
impossible to construct a unified quality scale for all contents.

Subjective image quality scores presented in TID2013 are
given in vote counts. Vote counts were obtained for each
content separately by taking the total number of times a
condition was selected as better and dividing by the number
of observers. Every observer compared each condition within
one specific content in nine pairwise comparisons, producing
a scale between 0 and 9.

B. Comparative judgment and psychometric scaling

Comparative judgment approaches, such as pairwise com-
parisons, present numerous advantages over other types of
explicit rating: i) they lead to a very simple experimental
task and are therefore well suited for non-expert participants
and crowd-sourcing experiments, ii) they avoid calibration
issues frequently encountered with explicit rating [6], iii) they
generally provide higher sensitivity and a lower measurement
error [7], [8] and iv) the number of comparisons can be
reduced using adaptive procedures [9], allowing for more
evaluations for a given amount of time, effort and cost.

The results of a pairwise comparison experiment are usually
represented using a count matrix C, where each element cij
measures the number of cases in which condition Ai has been
selected over condition Aj .

1) Psychometric scaling: Suppose we aim to compare n
conditions A1, . . . , An with unknown underlying true quality
scores q = (q1, . . . , qn), qi ∈ R. The role of psychometric
scaling is to use aggregated comparison data to estimate scores
q̂ = (q̂1, . . . , q̂n) that approximate true quality q.

Estimated qualities q̂ can be derived by recovering the un-
derling relationships or distances between them: dij = q̂i− q̂j .
Once these distances are inferred, the problem is transformed
into one of dimensionality reduction.

Models for comparative judgment in psychometric scaling
construct a quality scale in which distances dij between
conditions Ai and Aj in the quality scale can be interpreted
as a function of the probability of better perceived quality pij :

P (Ai � Aj) = pij = F (dij , sij), (1)

where F is a cumulative distribution function of a random
variable pertaining to the linear model chosen (e.g. Thurstone
models assumes that F follows a Normal distribution with a
standard deviation σij = sij [3], and Bradley-Terry assumes a
logistic function with a parameter sij [10]). Models for psy-
chometric scaling often use the Thurstone case V assumption
and set σij constant across all conditions. In practice, both
Thurstone and Bradley-Terry present very similar solutions.
In this paper we focus on the Thurstone case V model.

Probabilities pij can be estimated using the empirical infor-
mation from the matrix C:

p̂ij =
cij

cij + cji
, i 6= j. (2)

These empirical probabilities can be used to estimate distances
between scores: d̂ij = F−1(pij , σij).

Psychometric scaling aims to find estimated scores q̂ such
that distances between scores closely resemble distances d̂ij .
The simplest way to do so is to solve a least square optimiza-
tion problem of the form [11]:

arg min
q̂2,...,q̂n

n−1∑
i=1

n∑
j=k

((q̂i − q̂j) − d̂ij)
2, (3)

where q1 is often set up as an anchor to 0, since scores are
relative. This solution is simple but presents several problems:
i) unanimous answers, in which all observers agree (pij = 0
or pij = 1), resulting in an infinite distance between Ai and
Aj , and ii) confidence in the measurements is not considered.

A more elegant solution is provided by Maximum Likeli-
hood using the Binomial distribution:

arg max
q̂2,...,q̂n

∏
i,j

(
nij
cij

)
F (dij , σij)

cij (1− F (dij , σij))
nij−cij ,

(4)
where nij = cij + cji.

The choice of σij determines the relationship between dis-
tances in the quality scale and probabilities of better perceived
quality. Often, σij is set to 1.4826, so that a distance of 1 unit
can be interpreted as 75% of observers seeing a difference.
These distance units are referred to as Just-Objectionable-
Differences (JOD) [7] and are used throughout this paper.

2) Vote counts: If F in Eq. 1 is set to the uniform
distribution, Eq. 3 corresponds to ranking conditions according
to q̂i = (1/n)

∑n
j=1 p̂ij or q̂i = (1/n)

∑n
j=1 cij . This last idea

is usually referred to as vote counts — the number of times
one condition was selected as better than any other condition.
However this approach has limitations, i.e. qi ≥ qj doest not
imply pij ≥ 1

2 , when there are transitivity violations in the
data or when conditions are not compared the same number
of times.

In those situations, psychometric scaling algorithms are
usually preferred. These algorithms will not only produce
the correct ranking, but also capture the magnitude of the
differences between conditions in a principled way. Moreover,
vote counts do not explicitly account for the relative qual-
ity difference between the conditions, whereas psychometric



scaling infers the scores by considering relationships among
all compared conditions.

In this regard, Zerman et al. compared the results of psy-
chometric scaling and vote counts to the scores obtained in a
direct rating experiment [12]. They showed that psychometric
scaling scores are stronger related to rating scores than vote
counts, confirming that quality magnitudes are better captured
when pairwise comparison data is scaled.

III. SCALING SIMULATION

In order to compare the scores produced by vote counts
with those produced by psychometric scaling, we use a
Monte Carlo simulation. Since ground truth is not available
in TID2013, simulation of these experiments is necessary to
draw conclusions about the consistency of both vote counts
and psychometric scaling. Two types of data were used as the
ground truth in our simulation: i) randomly generated quality
scores within a fixed range and ii) TID2013 vote counts for
content 1.

A. Simulation procedure

Simulation of an experiment was designed to mimic the
Swiss chess system used in TID2013. In the simulation of a
comparison between two conditions, every simulated observer
chooses condition Ai over Aj with a probability defined by
P (Ai � Aj) ∼ N(qAi − qAj , σ), where we set σ = 1.4826.
Comparison matrices produced by every simulated observer
are aggregated together. Vote counts are produced by summing
elements along the rows of the resultant matrix i.e. the number
of times every image was preferred divided by the number of
observers. Psychometric scaling is produced using Maximum
Likelihood estimation with the Thurstone Case V model and
the Matlab code provided in [7]. The Spearman Rank Ordering
Correlation Coefficient (SROCC) and Root Mean Squared
Error (RMSE) are calculated for vote counts and psychometric
scaling results. Simulation is repeated 1000 times and SROCC
and RMSE values are averaged.

The simulation replicated the protocol from TID2013, i.e.
every condition was compared 9 times, in 3 random and
6 sorted rounds using Swiss system, by 30 observers. True
quality scores were set to vary between 0 and 9 in the
experiment with randomised data (similar to the scale in
TID2013) and true quality scores were assigned random vote
counts from content 1 in the simulation with TID data.

B. Simulation results

The results of the simulation are depicted in Fig. 2. The pos-
itive difference between psychometric scaling and vote counts
in SROCC and negative in RMS, regardless of the number
of conditions, indicates that psychometric scaling consistently
outperforms vote counts in estimating both the ranking and the
scale. The difference in SROCC between psychometric scaling
and vote counts increases with the number of conditions,
and so psychometric scaling is preferable as the number of
conditions increases.

(a) (b)

(c) (d)

Fig. 2: (a), (b) Simulation of the experiment with TID data.
(c), (d) simulation of the experiment with random data.

0

Fig. 3: Representation of different types of comparisons nec-
essary to position all contents on a common quality scale.

IV. PSYCHOMETRIC SCALING OF TID2013

The experimental procedure in TID2013 presents two im-
portant limitations. Firstly, although reference images were
used to help observers to choose between distorted images,
they were never compared with distorted conditions. Existence
of a common quality anchor for every content, i.e. a reference
image, is necessary for constructing a fully connected graph
of comparisons. Secondly, comparisons across different con-
tents were not performed. Without cross-content comparisons,
contents cannot be accurately scaled [12]. Therefore original
TID2013 scores cannot be compared across different contents.
These required types of comparisons are shown in Figure 3.

A. Experimental setup

We extend the data collected in TID2013 with five addi-
tional experiments. The first experiment was used to include
reference images. The next three include cross-content com-
parisons and further comparisons to the reference to improve
the scale. The last experiment is a validation experiment, used



to evaluate the quality of scales produced by vote counts and
psychometric scaling. We later use comparisons from all five
experiments to construct the final scale. Each experiment had
10 participants, with each participant completing 300 trials.
Overall additional 15,000 comparisons were collected. For the
design of the first four experiments, we take into account the
fact that it is often more informative to compare conditions
that are of similar quality (which is the main motivation for
the use of the Swiss system in TID2013). We asked observers
to select the better quality image among distorted ones. The
order of comparisons in every experiment was randomized. We
ensure that ITU recommendations are met and that the time
for performing one experiment does not exceed 30 mins, so as
to prevent observer tiredness from influencing the experiment
outcomes.

1) Inclusion of reference: For the first experiment, we scale
each content separately and compare each reference image to
four conditions (within the same content) that have the best
quality score, so as to gain the most information from the
comparisons [7]. This produces 25 ∗ 4 = 100 comparisons,
which allow the inclusion of reference images in the quality
scale. Each measurement is repeated 3 times by each of the
10 observers. We use the newly collected data to scale the
dataset, where we assume all reference images to have a
common quality score of zero. In this scale conditions can
have both positive and negative scores, where a positive score
is attributed to image enhancement and negative to image
distortions.

2) Inclusion of cross-content comparisons and scale refine-
ment: For the next three experiments, we include 300 more
comparisons, most of which were cross cross-content, i.e. 40
comparisons to the reference, 240 cross content comparisons
and 20 within content comparisons. After each experiment
we rescaled the data and used produced results to select
comparisons for the next experiment.

3) Validation experiment: In order to compare the consis-
tency of both scales (VC and JOD), we conduct an additional
experiment. Using both scales (as represented in the left part
of Fig. 4), we can find the cases in which VC and JOD
differ the most. This strategy is referred to as Maximum
differentiation (MAD) competition [13] and it is used to
compare subjective and objective image quality metrics. We
select 150 pairs of conditions Ai, Aj for which JOD is as
different as possible and VC scores are as close as possible
i.e. argmaxij(|JODi−JODj | − |VCi−VCj |). And similarly
for Ai, Aj for which VC are different and JOD are similar. To
promote diversity we allow each content to participate only in
50 comparisons. Overall we select 300 pairs of images with
150 images in each group and ask 10 observers to perform a
pairwise comparison experiment.

B. Results and discussion

We firstly compute the correlation between the probability
of an image being better (inferred from the validation exper-
iment following Eq. 2) and the difference in quality scores
in both VC and JOD scales for selected validation images.

The SROCC between VCi− VCj and pij is 0.52 and the
SROCC between JODi− JODj and pij is 0.69, indicating that
the output of our new JOD scale reflects better image quality.
After this validation experiment, we can include the data
from the last experiment into our psychometric scale. Now,
the SROCC is 0.84, meaning that psychometric scaling can
successfully include the information of collected comparisons,
thus the scale can be further improved in the presence of
inconsistencies. The SROCC is, however, still far from 1,
this is because the psychometric scaling finds the best one-
dimensional scale taking into account all relationships in the
data, which might not be optimal for a subset of selected
conditions.

Fig. 5 can also be used to validate both scales. This figure
shows the histograms of probabilities P (Ai � Aj |SCi�SCj),
which describe the percentage of observers selecting one
condition over another given scores SCi � SCj in either JOD
or VC scales. The histogram on the left shows the first 150
pairs of conditions Ai and Aj for which JODi � JODj and
VCi ≈ VCj . Similarly the histogram on the right shows the
last 150 pairs of conditions Ai and Aj for which JODi ≈
JODj and VCi � VCj . Ideally, the best scale should present
a large P (Ai � Aj) for most cases. The concentration of
counts around P (Ai � Aj) ≈ 1 is higher for JOD, the counts
for the VC scale gradually increase, whereas for the JOD the
change is abrupt, with a sharp rise of the counts. The number
of counts with high probability P (Ai � Aj) > 0.7 is also
greater for JOD scaled data.

Another way of evaluating the consistency of both scales is
to compute the log likelihood of observing the data collected
in the validation experiment for two hypotheses: Ai ≈ Aj ,
and hence P (Ai � Aj) = 0.5 and Ai � Aj , and hence
P (Ai � Aj) = 0.9 (not 1 since the average distance between
pair of images chosen is 2 JOD, corresponding to ≈ 90% of
observers choosing one image over another). For image pairs
in which JODi � JODj and VCi ≈ VCj the log likelihood
of data under the assumption Ai ≈ Aj is -672.98 and under
the assumption Ai � Aj -393.34, suggesting this that the
JOD scale better explains the validation data. Whereas for
image pairs in which VCi � VCj and JODi ≈ JODj the log
likelihood of data under the assumption Ai ≈ Aj was -546.98
and under the assumption Ai � Aj is -543.47. This indicates
that conditions far apart in the VC scale are equally likely to
come from both hypotheses.

Fig. 4 shows the relationship between vote counts and JOD
scale produced by psychometric scaling. The plot in the left
part of Fig. 4 shows the relationship after including compar-
isons from the first four experiments. It can be seen that there
are some cases, e.g. content 5 and 8, which are consistently
ranked better on the JOD quality scale than the rest, and
others, such as contents 4, 10 and 12, which are consistently
ranked worse. There are several reasons for this effect. First
of all only a small number of cross-content experiments were
performed, and the selection of compared conditions might
not be sufficient to accurately capture all variations in the
quality. Secondly, annoyance caused by different distortions



Relationship between VC and JOD scales after different experiments
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Fig. 4: Relationship between VC and JOD scales when adding new data. Left part shows JOD scale using the data from the
first 4 experiments and a representation of the maximum differentiation competition used to select the validation comparisons.
One scale is kept constant, while we chose images that in the other scale greatly differ in quality. The final scale after including
all the comparisons from all five experiments can be seen in the right part.

is conditional on the content to which they are applied, for
example these are more noticeable on human faces. The
relationship between VC and the final psychometric scaling,
which includes the data from all experiments, is shown in
the right part of Fig. 4. Here the contents are more mixed
in the scale. Both scales have a large positive correlation
for conditions within the same content. We hypothesize that
this is because the original TID dataset contains many more
comparisons than the ones we collected, thus having a greater
impact on psychometric scaling. The overall SROCC between
VC and the final JOD scale is 0.9407.

A selection of pairs of images used for the validation
experiment which have the largest inconsistencies in both
scales is plotted in Fig. 6. Interestingly, most of the cases
are cross-content and cross-distortion. The first two rows of
pairs in Fig. 6 show obvious failures of the VC scale, which
are solved by the JOD scale. The last two rows show failures
in the JOD scale, which are however, less obvious.

C. Limitations

TID2013 comprises more than 400,000 comparisons, how-
ever, the dataset can still be improved in several ways: (i)
Unanimous answers (in which all observers agree) represent
56% of comparisons in the dataset and these may introduce
a bias in the scaling, as no upper bound is imposed on the
distance between compared conditions [7]. The majority of
these answers are due to some conditions being compared
only once by one observer because of the use of the Swiss
system and (ii) A greater number of additional comparisons
would improve the scaling further.

The psychometric scaling used in this paper has a number
of limitations: (i) observers or repetitions effects are not
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Fig. 5: Histograms of results of the validation experiment. The
horizontal axis is the probability of image Ai being better than
Aj , pij , inferred from the validation experiment.

considered (specific scaling models can can account for this);
(ii) the model represents quality in a one dimensional scale,
however due to transitivity violations present in the data, one-
dimensional scales might not be enoguh to represent quality
scores [14] and (iii) case V of Thurstone model was used,
however quality scores may have different variances.

V. CONCLUSIONS

In this paper we investigated how quality scores change
when they are computed using psychometric scaling instead
of averaging vote counts and extended the TID2013 dataset
by conducting five additional experiments. We showed that



JOD: -2.94 VC: 3.25 JOD: -0.8 VC: 3.218 JOD: -2.69 VC: 1.47JOD: -4.78 VC: 1.52 JOD: -1.77 VC: 2.96JOD: -3.45 VC: 2.95

JOD: -4.36 VC: 1.97 JOD: -2.4 VC: 1.97 JOD: -1.2 VC: 2.93JOD: -3.32 VC: 2.9 JOD: -2.74 VC: 1.86JOD: -4.53 VC: 1.84

JOD: -0.61 VC: 4.48 JOD: -2.53 VC: 2.24JOD: -0.61 VC: 5.87 JOD: -2.53 VC: 3.64

JOD: -3.69 VC: 0.48

JOD: -1.34 VC: 5.17

JOD: -0.78 VC: 4.13 JOD: -0.76 VC: 5.86

JOD: -1.33 VC: 2.67

JOD: -3.66 VC: 2.42JOD: -0.97 VC: 3.88 JOD: -0.94 VC: 5.66

Fig. 6: Representation of comparisons where VC and JOD scales differ the most and empirical probabilities are unanimous
(all observers agreed). In each pair the image on the left is the one which was not chosen by any of the observers and on the
right is the one chosen by all observers. First six pairs represent cases where VC failed to correctly rank conditions (but JOD
succeeded) and last six comparisons depict failure cases in JOD (where VC ranking succeeds).

psychometric scaling produces more accurate results than
vote counting in a simulated experiment, especially as the
number of conditions in the experiment increases. We also
demonstrated that the additional set of comparisons and psy-
chometric scaling improve the consistency of quality scores of
the TID2013.

As future work, active sampling methods could be used
to collect more data and reduce the number of comparisons
while maximising the information gain. We also plan to use the
newly scaled dataset to re-evaluate objective quality metrics.
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