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Abstract

Background: Link prediction in biomedical graphs has several important applications including predicting
Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can
be done using a classifier to output the probability of link formation between nodes. Recently several works have used
neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were
done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate
performances with comprehensive metrics or explain when or why neural network methods outperform. We
investigated how inputs from four node representation algorithms affect performance of a neural link predictor on
random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to
DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and
report performance across five metrics.

Results: In random- and time-sliced experiments when the neural network methods were able to learn good node
representations and there was a negligible amount of disconnected nodes, those approaches outperformed the
baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes,
baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the
approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual
nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on
links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while
neural network methods benefit from large amounts of data, they require considerable amounts of computational
resources to utilise them.

Conclusions: Our results indicate that when there is enough data for the neural network methods to use and there
are a negligible amount of disconnected nodes, those approaches outperform the baselines. At low recall levels the
approaches are mostly equal but at higher recall levels and average performance at individual nodes, neural network
approaches are superior. Performance at nodes without common neighbours which indicate more unexpected and
perhaps more useful links account for this.
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Background
The biomedical domain has a wealth of datasets which
encapsulate varied, useful information and can be repre-
sented as graphs. It is useful to know if any information is
missing from these or what information may be added to
them in the future. Link prediction is the task of proposing
links which are not currently part of a graph but should
be or could become a part of it. If the information in these
datasets are represented as graphs, link prediction has
application in various biomedical information processing
tasks. These include predicting Drug-Target Interactions
(DTI) for drug re-purposing, predicting Protein-Protein
Interactions (PPI), facilitating Literature Based Discovery
(LBD) for generating hypotheses from publications and
automating knowledgebase completion.
Link prediction has been used for predicting DTI by

applying it to graphs representing drugs/chemicals and
the proteins which they interact with [1, 2]. It has also
been used to facilitate LBD by applying it to bibliographic
networks [3, 4] and term co-occurrence networks [5].
Kastrin et al. [6] also used it on MeSH [7] to demon-
strate its use on graphs of organised knowledge. Grover
and Leskovec [8] used it to predict PPI from a subset of
the BioGRID graph [9].
Some of these methods do not make use of the infor-

mation contained in the structure of graph, which can aid
in link prediction. Others which do use this information
either do so using approaches which are only able to draw
a limited amount of patterns from the graph or provide
restricted datasets to their methods. This work makes use
of information in the graph by using methods which are
able to extract non-linear patterns from graph structure
and use this information to predict the likelihood of a link
forming between two nodes.
This is possible in large part to the recent rise in the

number of works using various neural networks to embed
graphs in low-dimensional spaces. These produced vec-
tors of real numbers which are representations of a graph’s
nodes that aim to place similar nodes close to each other in
the vector space and dissimilar ones far apart based on the
structure/topology of the graph. These vectors are called
embeddings and the methods that create them include
DeepWalk [10], node2vec [8], LINE [11], SDNE [12] and
HOPE [13].
These opened the possibility of using rich represen-

tation as inputs to neural link predictors which output
how likely it is for a link between two nodes to form.
Several works have already begun to explore this avenue
and report promising results, however their approaches
have not comprehensively addressed the issues of using
these methods for link prediction. Particularly lacking
are experiments in realistic settings like time-slicing,
where graphs are split so that predictors are evaluated
on how well they predict chronologically later links, and

evaluating performances with metrics where all nodes
have equal weight as link prediction applications may
need to perform well across most nodes as opposed to
fewer hub nodes.
In this work we employed four graph embedding algo-

rithms: DeepWalk, LINE, node2vec and SDNE. We inves-
tigated how a neural predictor, using representations from
these methods, performs on link prediction in biomedical
graphs containing information which can be used for sev-
eral bioinformatics tasks including DTI, PPI and LBD. We
compared this approach to the performance of established
baseline methods Common Neighbours (as used in [14]),
Adamic-Adar [15] and Jaccard Index [16]. These methods
were chosen because they continue to be very competitive
and challenging baselines for link prediction [12, 17], are
conceptually simple and scale well to large graphs.
We report results on graphs which represent real

biomedical information in settings where links were ran-
domly removed as well as where links were removed by
time-slicing. These results are evaluations with metrics
that weigh the performance at each node equally and
those which do not as they illustrate different aspects
of a predictor’s performance and can be useful depend-
ing on its application. These contributions together pro-
vide large-scale comparisons and analyses that inform
and explain the best approaches to link prediction and
highlight areas of further research.
The “Related work” section details related works and

gives necessary background information. The “Important
considerations” section presents some factors which affect
link prediction experiments and thus interpretability and
applicability of results. Details of themodels, methods and
datasets used are in the “Methods” section. Our experi-
mental setup is given in the “Experiments” section. We
analyse the results and their implications in the “Results
and discussion” section. The “Conclusions” section con-
cludes the work and gives possible future directions.

Related work
Link prediction in general and biomedical domains
Liben-Nowell and Kleinberg [17] first formulated the link
prediction problem in social networks. Existing link pre-
diction works have mostly focused on determining which
links will form next in various social networks. These links
can represent friendships [18, 19], collaborations and co-
authorships [19, 20], citations [21] and online transactions
[21] among others. Link prediction has also been used
on large-scale knowledge-bases to add missing data and
discover new facts [22, 23].
Katukuri et al. [3] used supervised link predic-

tion on a large-scale biomedical network of concept
co-occurrence in documents to generate hypotheses.
They used manually-created features to predict links
which represented hypotheses in a time-sliced corpus.
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Wang and Zeng [1] performed link prediction for propos-
ing DTI using Restricted Boltzmann Machines (RBMs).
Lu et al. [2] used similarity indices, such as Common
Neighbours and Katz Index, to predict links in a DTI
network.

Node representations as embeddings
Graphs encode knowledge and can be processed to extract
information which may not be easily seen before. For a
machine to perform this processing, the graph must be
represented in a format which it can use, usually by rep-
resenting nodes as vectors of real numbers. Works on
node representation aim to devise methods which can
create vector representations which preserve the original
information in the graph. In general the information in a
graph can be classified as first or second (or higher) order
proximity [11, 24].
Given two nodes in a graph, first order proximity is

concerned with the strength of the direct link between
them. Second order proximity between two nodes com-
pares their neighbourhoods and classes them as similar
if their neighbourhoods are similar. The extent to which
a method can preserve the proximities of a graph when
creating representations determines its quality. The node
representations created by recent research models each
node as a vector in a space where similar nodes are
located close to each other. These vectors are often called
node embeddings and referred to in this work as such.
Figure 1 visualises a portion of this vector space for one

of the datasets used in this work created with one of the
methods used. There has been a proliferation of methods
which seek to create these node embeddings from graphs
and it would be unwieldy to include all of them in this
work, so we utilise four of the most popular ones whose
implementations are freely available online.

DeepWalk [10] uses random walks on graphs to learn
latent representations of nodes and encodes them in a
continuous space. It does this by treating randomwalks on
graphs like sentences in a natural language and generalizes
recent advancements in language modeling [25] devel-
oped for word sequences to graphs. This makes it easy to
use existing language modeling tools to implement, but it
consequently lacks an objective function which explicitly
captures the graph’s structure.

Large-scale information network embedding (LINE)
[11] explicitly defines two optimization functions to cap-
ture the structure of the graph. One captures first order
proximity and the other captures second order prox-
imity. They report that training their model with each
setting then concatenating the outputs gave the best
performance.

Node2vec [8] is similar to DeepWalk in how it pre-
serves higher order proximity between nodes. It does
so by maximizing the probability of the occurrence of

Fig. 1 Visualisation of ‘Viral Pneumonia’ and ‘Hydrochloric Acid’ from PubTator dataset. Nodes representing respiratory infections are close to the
former while those of acids and other chemicals are close to the latter
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subsequent nodes in random walks over a graph. The dif-
ference to DeepWalk is that node2vec’s random walks are
parameterized to provide a trade-off between prioritis-
ing breadth-first or depth-first walks. Choosing the right
balance enables node2vec to preserve first- and second-
order proximity between nodes to potentially produce
more informative walks, leading to superior embeddings.

Structural deep network embedding (SDNE): [12]
argue that the shallow models which the other methods
use cannot adequately capture the highly non-linear struc-
ture of most graphs. Since deeper models have proven
successful at capturing non-linearity in complex data, they
use them to create representations. Their model jointly
optimises unsupervised and supervised parts. The unsu-
pervised part produces an embedding for a node which
can reconstruct its neighborhood. The supervised part
applies a penalty when nodes deemed to be similar are
mapped far from each other in the vector space.

Node embeddings for link prediction
There have been several works which used the embed-
dings created from neural network methods for link
prediction. The evaluation metrics mentioned here are
explained in the “Meaningful evaluation metrics” section.
To the best of our knowledge, none of these works
included time-sliced datasets.
Grover and Leskovec [8] evaluated node2vec embed-

dings on three graphs, including a PPI subset of BioGRID,
and compared the results to Common Neighbours,
Jaccard Index, Adamic-Adar and Preferential Attachment.
This work evaluated using Area Under the Receiver
Operator Characteristics Curve and its largest graph con-
tained 19,706 nodes and 390,633 links.
Wang et al. [12] used the embeddings created from

SDNE on a single dataset of 5242 nodes and 28,980 links.
They compared to LINE, DeepWalk, GraRep, Laplacian
Eigenmaps and Common Neighbours. They evaluated
using precision at k for the full network andMean Average
Precision (MAP) for a sparse version of the graph.
Ou et al. [13] performed link prediction on two graphs

to compare performance of HOPE to Partial Proxim-
ity Embedding, LINE, DeepWalk, Common Neighbours
and Adamic-Adar. The larger graph had 834,797 nodes
and 50,655,143 links. They randomly sampled 0.1% of
node pairs for evaluation but the amount used for cre-
ating embeddings is not reported. They evaluated using
precision at k.
Goyal and Ferrara [24] compared the performances

of Laplacian Eigenmaps, Graph Factorization, node2vec,
SDNE and HOPE to perform link prediction on four
datasets including a PPI subset of BioGRID. They evalu-
ated using precision at k and MAP to determine how per-
formance corresponded to changes in vector dimensions.

They experimented on five random subsets of each graph
created such that each subset contained 1,024 nodes.

Important considerations
This section presents some factors which affect link pre-
diction experiments and thus the interpretability and
applicability of their results. To the best of our knowl-
edge, no previous study using node embeddings for link
prediction has taken all of these factors into consideration.

Link prediction setting
There are two main link prediction settings. In random-
slicing, a percentage of the links are removed randomly
and evaluation consists of predicting the removed links.
Time-slicing (or literature-slicing) aims to take the tem-
poral evolution of the graph into account and only links
formed after some point in time, t, are removed. The state
of the graph before t is given to the link predictor and its
aim is to predict links formed at a later time. The first
setting is applicable when the current knowledge repre-
sented by the graph is incomplete and link prediction aims
to complete it as well as when the temporal data for the
graph is unknown or irrelevant. The second can be used
to predict the future state of the graph and so can sug-
gest feasible links to investigate. This setting can make
link prediction more challenging for two reasons: 1) new
nodes can be introduced to the graph at later time peri-
ods which will present little or no information to the link
predictor to use as these nodes will have no links to other
nodes in the time period which the predictor uses to make
predictions and 2) in evolving graphs, the easier links tend
to form before more difficult ones, so the links to be
predicted in later time periods tend to be more difficult.

Meaningful evaluationmetrics
Several metrics which measure different aspects of the
predictor’s performance have been used to evaluate link
prediction methods. It is useful to distinguish between
metrics which weigh all nodes in the network equally and
metrics which do not. We refer to the former as an node-
equality metrics and the latter as link-equality metrics.
Node-equality metrics can be robust to performance at
hub nodes, which tend to be easier for link prediction,
and some link prediction applications are more concerned
with how a predictor performs across a cross-section of
nodes than how many links it predicts across the entire
graph. This is analogous to the difference between micro-
and macro-averaging. The following metrics were used in
this and previous works. In-depth explanations of these
metrics can be found in several works including [24, 26].

Area under the precision-recall curve: Recall measures
what percentage of positives were returned. Precision
measures what percentage of the results are true positives.
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These metrics are used to construct a Precision-Recall
Curve which illustrates how the increase in recall affects
precision. The area under this curve is a link-equality
metric.

Area under the receiver operating characteristics
curve: True positive rate is equivalent to recall. The false
positive rate measures how many negatives were returned
as false positives by the predictor. These metrics are used
to construct a Receiver Operating Characteristics (ROC)
Curve which illustrates this relationship. The area under
this curve is a link-equality metric.

Precision at k: The above metrics measure performance
across all recall levels but some uses of link prediction are
only interested in the quality of highly ranked results. Pre-
cision at k or the top k predictive rate is the percentage of
true positives among only the top k ranked links. This is a
link-equality metric.

Mean average precision (MAP): Given a ranked list of
predicted links relevant to a particular node, we calcu-
late the precision after each true positive. The average
of these values gives the average precision for that node.
This done over all nodes in the graph gives a single value,
node-equality measure.

Averaged R(elevant)-precision: Similar to MAP but
instead of calculating the precision after each positive link
in the list of results for a given node, precision is only cal-
culated with the top R results. R is determined by how
many true positives exist for the node. The main differ-
ence from MAP is that this metric does not consider the
remainder of the ranked list outside of the top R. This also
gives a single value, node-equality measure.

Scalability, sparsity and negatives
Biomedical and other real-world graphs reflect com-
plex relationships between numerous entities so methods
employed to make use of them must be able to scale, usu-
ally to hundreds of thousands of nodes and millions, or
billions of links.
Supervised machine learning approaches require both

positive and negative examples to train models. Graphs
tend to be sparse as only a fraction of potential links are
actually formed. While a link between two nodes in a
graph confirms a relationship, the absence of a link does
not confirm a lack of relationship. The assumption that
most node pairs which do not have a link have no rela-
tionship is not always true. This means that these links
can potentially be used as negative examples in supervised
machine learning techniques for link prediction. In real-
world situations, the model will inevitably encounter such

links and it will be trained on some negative examples
which would later turn out to be positive.
Due to the problems of large size and extreme sparsity,

it is usual to create negatives for training and testing by
sub-sampling from the list of potential negative links. The
manner in which this sub-sampling is done can affect the
performance of the link predictor. Yang et al. [26] looked
in great detail into these issues and how they can affect
link prediction evaluation. The issue of scalability also
affects the ratio of negative to positive examples in the
evaluation data. In real-world situations unformed links
far outweigh the formed ones, but it is often computation-
ally prohibitive to replicate the real positive to negative
ratio.

Node combinationmethod
A neural network approach to link prediction with node
embeddings requires the model input to be a single vec-
tor so the embeddings of the nodes involved in a link need
to be combined. This can be done in several ways which
can affect the predictor’s performance. Concatenating the
embeddings is simple and preserves all information but
doubles the size of the input. Grover and Leskovec [8]
used four methods which preserve the input size and we
experimented with all five methods, detailed in Table 1.

Methods
Datasets
The graphs we use were created from the following
datasets. The graph details can be found in Table 2.
Manually Annotated Target and Drug Online

Resource (MATADOR): This is an open online DTI
database [27]. It includes interaction between chemicals
and proteins. Following [2] the Chemical and Protein IDs
are used to form a bipartite DTI graph. Thus the links in
this graph represent interactions between chemicals and
proteins representing drugs and targets respectively.
BiologicalGeneral Repository for InteractionDatasets

(BioGRID): This is an open database created from manu-
ally curating experimentally-validated genetic and protein
interactions that are reported in peer-reviewed publica-
tions [9]. The latest release [28] includes over 1 million

Table 1 Node Combination methods. Binary operators are
element-wise

Operator Definition

Average fi(u)+fi(v)
2

Concatenate f (u) . f (v)

Hadamard fi(u) ∗ fi(v)

Weighted-L1 |fi(u) − fi(v)|
Weighted-L2 |fi(u) − fi(v)|2
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Table 2 The datasets and their relevant details (undirected link
count)

Node Link Has Link
Dataset count count dates type

BioGRID 65,026 1,076,308 Yes Published
interactions

MATADOR 3,704 15,843 No Drug-target

interactions

PubTator 265,148 6,854,054 Yes Literature co-
occurrences

Genetic and Protein interactions across all major organ-
ism species and humans. Links in this graph represent
biomedical interactions from published, experimentally-
validated genetic and protein interactions, including PPI.
We use version 3.4.147 of this dataset.
PubTator: Biomedical entities recognised by PubTator

[29] mentioned in the titles and abstracts of PubMed
publications from 1873 to 2017 were used to create this
dataset. A link exists between two biomedical entities if
they co-occur in a single sentence. The annotations were
downloaded on June 20th, 2017.

Settings for training node representation methods
The hyper-parameter settings for DeepWalk and LINE
were the same as used in [12] which is a recent work
which compared both of those methods. Parameters for
node2vec which overlapped with DeepWalk’s were set to
the same values. All methods created embeddings of 100
dimensions as this was determined to be a good value on
datasets which are not used as part of this work.
DeepWalk: window size = 10, walk length = 40, walks

per vertex = 10. LINE: learning rate = 0.025, number
of negative samples = 5 and total number of samples
= 10 billion. According to [11], LINE performs best when
it is run twice to obtain first- and second-order proxim-
ity embeddings which are concatenated and L2 normal-
ized. We follow their recommendations. For each order
we created half the number of dimensions as needed so
that we had the appropriate number when concatenated.
node2vec: window size, walk length and walks per ver-
tex were the same as DeepWalk’s. The parameters p and
q were 2 and 4 respectively as randomly chosen from
the optimal set given by the creators [8]. We used SDNE
implementations from both [24] and [12] with hyperpa-
rameters as used by [24]: α = 1e-6, β = 5, ρ = 0.3, xeta =
1e-4 and nu1 & nu2 = 1e-3.

Neural link predictor and baselines
The neural link predictor was a binary classifier imple-
mented as a feed-forward neural network with a single
hidden layer containing 100 Rectified Linear Units [30].

It accepted the vector representation of two nodes repre-
senting a link by combining their individual vector repre-
sentations with operators defined in Table 1 and output
the probability of a link forming between the nodes. These
probability scores were used to create a ranked list of all
links in the evaluation set. The model was trained for 7
epochs. This minimalist model was chosen so that the
contribution from each node embedding method could
be compared without the confound of the contribution of
a powerful neural network model. The other parameters
were determined to be a good values based on datasets
which are not used as part of this work.
We employed three baseline methods which have been

used successfully for link prediction: Adamic-Adar, Com-
mon Neighbours and Jaccard Index. It is necessary to
modify these slightly for bipartite graphs following [31].
Their definitions are in Table 3.

Experiments
We experimented with both link prediction settings
explained in the “Link prediction setting” section where
possible. For the MATADOR dataset, there was no tem-
poral data so no time-sliced experiments could be done.
The existing links of each graph were split into 3 seg-

ments whose details follow. For the random-slice exper-
iments, 60% of the links were used to create the node
embeddings, 10% was used to train the neural link predic-
tor where necessary and the remaining 40% were used to
evaluate the predictors. The data used to train the model
was also used to create the embeddings since there is no
reason to withhold that information from the node rep-
resentation methods and more information will lead to
better representations. The test set is larger than is usu-
ally found in machine-learning works but being able to
demonstrate good results with reduced training data is a
desirable quality. For time-slice experiments, we sought
to have similar split sizes as the random-sliced, but exact
sizes were not possible as it depends on the amount of
links in a year. The details of the time slices are in Table 4.
For both settings, after splitting the existing links, we
then sub-sampled negative examples by randomly sam-
pling from all the possible node pairs without a link
while maintaining a 1:1 ratio of positive to negative links.
Following [8], graph connectivity was maintained in the

Table 3 Baseline methods for node pair (u, v) with neighbour
sets N(u) and N(v). N̂(x) are the neighbours of the neighbours of x

Bipartite
Name Definition definition

Adamic-Adar 1
log(|N(u)∩N(v)|)

1
log(|N(u)∩N̂(v)|)

Common Neighbours |N(u) ∩ N(v)| |N(u) ∩ N̂(v)|
Jaccard Index |N(u)∩N(v)|

|N(u)∪N(v)|
|N(u)∩N̂(v)|
|N(u)∪N̂(v)|
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Table 4 Time-sliced details (Note: Induction includes Train)

Link Time Link Link
Dataset use slice count percentage (%)

BioGRID Induction 1970-2014 678,994 63.08

Train 2013-2014 121,442 11.28

Test 2015-2017 397,302 36.91

PubTator Induction 1873-2003 4,069,683 59.38

Train 2001-2003 614,031 5.90

Test 2004-2017 2,784,371 40.62

random-sliced data, but this was not possible to enforce in
the time-sliced data as the links in each slice were deter-
mined by what year they were added to the dataset. Due
to the varying sizes of the graphs, for precision at k we
let the total amount of positives which can be returned
dictate the k. We report k to be 30% of all possible pos-
itives here. Results on additional k values can be found
in the Additional file 1. We implemented the baselines
listed in the “Neural link predictor and baselines” section
and used them on the same induction, train and eval-
uation subsets. We used Scikit-learn [32] to efficiently
calculate most of the metrics on the predictions of the
models.

Results and discussion
The scores presented in the result tables are the means
of three runs of each experimental setting. Scores in bold
represent the best score for a particular metric. The best
score and all other scores were tested for statistical signif-
icance using a two-tailed t-test with α = 0.05. Scores with
an asterisk (*) are not significantly different from the best
score, scores without an asterisk are significantly different.
The standard deviation of the means reported here were
excluded to aid readability but can be found in the full
result tables in the Additional file 1 which accompanies
this paper.

The performance of the neural classifier with inputs
combined using Hadamard, Weighted-L1 and Weighted-
L2 are not the best performers in any experiments so they
are left out of the tables in this section. The results for
embeddings created with SDNE are much poorer than the
others and are left out of these tables for space consider-
ations. The full set of results containing these figures can
be found in the Additional file 1. It also contains analysis
about interesting results involving DeepWalk embeddings
combined with Weighted-L1 and -L2. The most efficient
reference implementations of SDNE available exceeded
our computational resources for the BioGRID and Pub-
Tator graphs, so we report no results for them in those
settings.

MATADOR
These results are in Table 5. The Common Neighbours
and Jaccard Index baselines are the best performers
across all metrics. This can be attributed to the graph
being too small for the neural network methods to cre-
ate good embeddings for each node which lead to poor
input to the neural link predictor. For precision at k,
averaged and concatenated DeepWalk embeddings also
produce comparable results. Adamic-Adar performs the
worse of the baselines despite the fact that it is common
neighbours-based. This is because the algorithm weighs
a small amount of shared items between entities high
and a higher amount of shared items less. As we are
only using amount of common neighbours as the shared
item between two nodes here, links which score high for
common neighbours will score lower for Adamic-Adar.

BioGRID
Random-slice: The results of this experiment are in
columns 3-7 of Table 6. Concatenated and averaged
node2vec embeddings are the best performers across 4
of the 5 metrics and the best performer in the remain-
ing metric is not significantly better. Averaged LINE

Table 5 MATADOR random-slice results

Node AUC AUC Avg. Prec
Method combination (ROC) (PR) MAP R-prec @ k

Deep- Average 95.93 95.82 89.81 86.86 98.77*

Walk Concat 94.97 94.83 88.30 84.63 98.34*

LINE Average 80.63 81.30 67.74 61.04 91.65

Concat 81.16 81.82 68.53 61.42 92.00

node- Average 78.38 78.75 66.42 59.32 88.67

2vec Concat 77.62 77.54 65.44 58.40 87.25

AA N/A 91.97 88.40 87.16 85.06 86.87

CN N/A 97.27 97.04* 95.47 94.64 98.74*

JI N/A 97.23* 97.10 94.72 92.29 98.96

(Bold: best score, *: not statistically different from best)
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Table 6 BioGRID random-slice and time-slice results

Random slice Time slice

Node AUC AUC Avg. Prec AUC AUC Avg. Prec
Method combination (ROC) (PR) MAP R-prec @ k (ROC) (PR) MAP R-prec @ k

Deep- Average 97.69 97.62 79.24 73.86 99.30 89.40 90.10 68.94 63.30 97.25*

Walk Concat 97.74 97.65 82.48 77.70 99.18 92.12 92.78 71.61 65.96 98.04

LINE Average 98.10* 97.80* 83.13* 78.22* 99.54* 91.86 92.31 72.85 67.76 97.40

Concat 98.08 97.76 82.94 78.04 99.29 93.55 93.74 73.60 68.57 97.90

node- Average 98.32* 97.97* 85.70* 81.17* 99.38* 95.25 95.43 74.91 70.39 98.26

2vec Concat 98.51 98.26 86.49 81.84 99.49* 93.66 94.66* 73.48 68.77 98.40*

AA N/A 86.10 90.75 70.97 57.65 96.13 77.46 87.69 74.84 61.39 98.10

CN N/A 91.20 94.96 75.72 69.81 99.64 85.07 91.81 76.20 67.73 99.38

JI N/A 90.80 93.95 73.93 68.79 98.59 84.74 90.20 75.60 67.49 97.45

(Bold: best score, *: not statistically different from best)

embeddings are not significantly different from the best
performer in any metric. In general the neural network
approaches outperform the baselines. This is not surpris-
ing as it is a favourable condition for the neural network
methods: there is a large amount of data to induce the
node embeddings with and, since connectivity is guar-
anteed, all nodes have a chance of getting an embed-
ding which is better than its random initialization. These
embeddings would then perform better in the neural link
predictor.
Common Neighbours is the best performer for preci-

sion at k, although it is not significantly better than four
neural network approaches. The chosen k focuses only on
the very highly ranked links and other works such as [2]
have already posited that Common Neighbours returns
good results at the top of its ranked list. Its failure to
perform well for the AUC metrics highlights that perfor-
mance degrades substantially lower in its ranked list of
links. Its poor performance at the node-level metrics also
indicate that the links which it is predicting correctly at
the top of its ranking are dominated by the links of hub
nodes.
Time-slice: These results are in columns 8-12 of

Table 6. Averaged node2vec embeddings are the best per-
former for three of the metrics and embeddings combined
by concatenation are not significantly worse in two of
the metrics. Common Neighbours performs the best in
two metrics, including one node-level metric where it is
significantly better than all other approaches. In general,
the performances of Common Neighbours and Jaccard
Index are not as far behind that of the neural network
approaches as they are for the random-sliced setting of
this dataset. This is due to a property of the dataset: it is
skewed towards later publications. Because of this bias,
when it is split by time-slicing, 14.5% of the nodes rep-
resenting entities in the test slice had never occurred in
the induction slice. This means that the neural network

approaches could not create good embeddings for them so
they are simply assigned their randomly initialized values
which negatively influenced the predictor’s performance.
It is interesting that the best performer for each of the

node-level metrics is different and the difference between
them is significant in each case. This indicates that the
neural predictor using averaged node2vec embeddings is
good at ranking true positives for a given node within
the top R while Common Neighbours is better at rank-
ing more positives at the very top of the lists but does not
capture some of these positives.

PubTator
Random-slice: These results are in columns 3-7 of
Table 7. Concatenated DeepWalk embeddings produce
the best results in three of the metrics and is not signifi-
cantly worse in another. Averaged and concatenated LINE
embeddings are on par with the best results except in a
single instance.
An interesting result is that Common Neighbours per-

forms the best for averaged R-precision in addition to its
performance for MAP being significantly worse than the
best. These indicate that it captures several true positives
for a given node within the top R but not rank them at
the top of that list and is prone to ranking some of the
true positives quite low. The approaches which outper-
form it for MAP but not for averaged R-precision are
better at ranking true positives just outside of the top R
than it is.
Time-slice: These results are in columns 8-12 of

Table 7. Similar to the random-sliced experiments on this
dataset, concatenated DeepWalk vectors produce the best
results in all metrics although there is a four-way tie for
precision at k. Averaged LINE embeddings are on par
with the best results here as well. The neural network
approaches vastly outperform the baselines. This is note-
worthy as this is the largest graph, in a difficult realistic
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Table 7 PubTator random-slice and time-slice results

Random slice Time slice

Node AUC AUC Avg. Prec AUC AUC Avg. Prec
Method combination (ROC) (PR) MAP R-prec @ k (ROC) (PR) MAP R-prec @ k

Deep- Average 98.85 99.01 83.67 75.97 99.93* 93.86* 95.51* 70.78* 62.16* 99.89

Walk Concat 99.20 99.30 91.01 85.46 99.94* 93.99 95.70 71.11 62.65 99.89

LINE Average 99.10* 99.23* 90.36* 84.56 99.97 88.68* 92.27* 55.61* 46.41* 99.89

Concat 99.13 99.24 90.07 84.03 99.95* 90.32 93.01 62.51 53.21 99.89

node- Average 98.71 98.90 82.98 75.29 99.94* 88.40 92.07 55.72 46.48 99.87

2vec Concat 99.16 99.21 88.94 82.14 99.92* 88.13 91.83 53.24 43.69 99.84

AA N/A 92.92 84.56 56.48 66.38 83.33 85.10 80.24 35.49 40.13 90.56

CN N/A 98.40 98.28 79.84 87.10 99.94* 88.37 88.83 43.67 46.59 99.84

JI N/A 92.36 87.59 65.44 59.74 91.21 86.08 83.52 38.66 38.75 94.27

(Bold: best score, *: not statistically different from best)

setting and with no apparent biases to hinder the neural
network methods.

General
We hypothesize that the superior performance of the neu-
ral network methods are due to the limitations in recall
of Common Neighbours and baselines based on it. It is
possible for links to form between nodes which have no
previous common neighbours and these methods would
fail in such cases. We investigated this limitation and the
effect it has on the performance of the link predictors. We
first quantified these links in the test examples of each
experimental setting then looked at how the best predic-
tors in each category ranked these links. In the latter, we
specifically looked at whether the links were ranked in
the top or bottom half of the overall ranked lists. Since
there are equal number of positive and negative links, a
good predictor would rank a high amount of links in the
top half. The neural network approaches performed vastly
better in those cases, although the varying amount of such
positives affected the overall effect.
For the MATADOR experiment, approximately 2% of

the positive links had no prior common neighbours. Com-
mon Neighbours ranked none of these links in the top half
of the rankings, but the best neural predictor ranked 26%
there. In the BioGRID random-sliced experiment, approx-
imately 16% of the positive links had no prior common
neighbours. Common Neighbours ranked about 11% of
these links in the top half, while the best neural predic-
tor ranked 71% in the top half. For the time-sliced version,
approximately 28% of the positive links had no prior com-
mon neighbours. CommonNeighbours ranked about 21%
of these links in the top half of the rankings, while the
best neural predictor ranked 69% there. In the PubTator
random-sliced experiment, approximately 2% of the pos-
itive links had no prior common neighbours. Common
Neighbours ranked none of these links in the top half,

while the best neural predictor ranked 51% there. For
the time-sliced version, approximately 21% of the pos-
itive links had no prior common neighbours. Common
Neighbours ranked about 11% of these links in the top
half, while the best neural predictor ranked 57% there.
In general, for the neural network approaches, concate-

nate and average were the best node embedding com-
bination techniques. Common Neighbours was the best
baseline approach especially as graphs increased in size
and remains quite an accurate heuristic for link predic-
tion. In cases where the purpose of link prediction is to
get only the very best links across the entire graph, then
it almost does not matter which approach is chosen for
a small enough k, but if the quality of links at higher
recall levels or the performance of the predictor across
most nodes is essential, the choice of method is an impor-
tant factor and the neural network approaches are clearly
superior if they have enough data.
The results showed that link prediction is a complex

task which requires comprehensive experiments to deter-
mine best approaches, that performance is dependent on
several things including the size of the graph and how it
is split and that it is necessary to discern how a particu-
lar approach is achieving performance. It also highlighted
that link prediction ought to be evaluated according to its
intended purpose and that AUC metrics may not capture
when and how well a particular approach works.

Conclusions
In this work we investigated how node embeddings cre-
ated with four graph embedding algorithms and combined
with various methods perform on link prediction in
biomedical graphs, with a neural link predictor. We tested
in settings where links were randomly removed and where
links are removed by time-slicing. We compared these
methods to the performance of established baseline meth-
ods and reported performance on five metrics which
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aim to capture different facets of a link predictor’s
performance.
Our findings in both random- and time-sliced experi-

ments indicate that where there is enough data for the
neural network methods to learn good representations
and there is a negligible amount of disconnected nodes,
those approaches could perform much better than the
baselines. However if the graph is small or there are large
amounts of disconnected nodes, existing baselines such
as Common Neighbours are a justifiable choice for link
prediction. At low recall levels the approaches are basi-
cally equal, but at higher recall levels across all nodes and
average performance at individual nodes, then the neu-
ral network approaches are clearly superior if they have
enough data. We found evidence that the neural network
methods do especially well in links which feature nodes
with no previous common neighbours.We also found that
while in general neural network methods benefit from
large amounts of data, they require considerable amounts
of computational resources to scale to large datasets.
These findings provide large-scale comparisons and anal-
yses that informs and explains the best approaches to link
prediction and highlight areas of further development.
The neural network approaches to link prediction pro-

vide a truly promising way forward but they are not the
best in all conditions and introduce added experimen-
tal considerations such as the creation of negatives and
the combination of node representations. It is also well-
known that the success of neural network methods greatly
rely on hyperparameter tuning.
For future work we wish to investigate the problem of

creating good negatives for using machine learning meth-
ods for link prediction. Randomly creating negatives is
experimentally valid but may create negatives which are
not reflective of real-world difficulty. The problem of
maintaining a large ratio of negative to positive links, as is
the case in the real-world, without being computationally
prohibitive is also worth exploring.
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