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Abstract

Fbxo7 is an unusual F box protein that augments D-type cyclin complex formation with Cdk6, but not Cdk4 or Cdk2, and its
over-expression has been demonstrated to transform immortalised fibroblasts in a Cdk6-dependent manner. Here we
present new evidence in vitro and in vivo on the oncogenic potential of this regulatory protein in primary haematopoietic
stem and progenitor cells (HSPCs). Increasing Fbxo7 expression in HSPCs suppressed their colony forming ability in vitro,
specifically decreasing CD11b (Mac1) expression, and these effects were dependent on an intact p53 pathway. Furthermore,
increased Fbxo7 levels enhanced the proliferative capacity of p53 null HSPCs when they were grown in reduced
concentrations of stem cell factor. Finally, irradiated mice reconstituted with p53 null, but not wild-type, HSPCs expressing
Fbxo7 showed a statistically significant increase in the incidence of T cell lymphoma in vivo. These data argue that Fbxo7
negatively regulates the proliferation and differentiation of HSPCs in a p53-dependent manner, and that in the absence of
p53, Fbxo7 expression can promote T cell lymphomagenesis.
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Introduction

Fbxo7 is a member of a protein family defined by the presence

of an F-box domain, which binds the Skp1 protein [1–3]. Through

this interaction, F-box proteins are recruited as components

of SCF-type E3 ubiquitin ligases, which target proteins for

ubiquitination [4–8]. Fbxo7 has been reported to catalyse the

ubiquitination of HURP/DLG7, a regulator of mitotic spindle

assembly, marking the protein for degradation by the proteasomes

[9]. Fbxo7 also promotes ubiquitination of cIAP1, an inhibitor of

apoptosis family member which regulates canonical and non-

canonical NF-kB signalling [10]. Fbxo7 also has been shown to

interact directly with the cell cycle regulators, p27 and Cdk6, and

stabilize their association with D-type cyclins [11]. Both cyclin D

and Cdk6 are proto-oncogenes, and as Fbxo7 increases this kinase

activity, it is also a putative proto-oncogene. In support of this

idea, the over-expression of Fbxo7 in immortalised fibroblasts

augmented the levels of Cdk6 bound to D-type cyclins and led to

transformation [11,12]. These cells were invasive, capable of

anchorage-independent growth, and formed tumours when

injected subcutaneously into athymic nude mice. Moreover,

Fbxo7-mediated transformation of NIH3T3 cells was Cdk6-

dependent, as siRNA-mediated reduction of Cdk6 reversed

transformed phenotypes [11].

This ability of Fbxo7 to transform immortalised fibroblasts

raised questions regarding the potency, cellular context, and

mechanisms by which Fbxo7 may act as an oncogene. Cdk6 is

the predominant G1 kinase in haematopoietic cells [13], where it

plays an important role in proliferation and in negatively

regulating terminal differentiation [14–18]. In support of this,

mice lacking Cdk6 have thymic and splenic hypoplasia and mild

defects in haematopoiesis [19,20]. Conversely, the amplification

of Cdk6 is associated with splenic marginal zone lymphoma and

B cell chronic lymphocytic leukaemia [21,22]. Because our

previous data indicated a direct and specific relationship between

Fbxo7 and Cdk6, we assayed the functional effects of Fbxo7

expression in foetal liver (FL)-derived, primary haematopoietic

stem and progenitor cells (HSPC). Fbxo7 was retrovirally

transduced into wild-type (WT) and p53 null cells, and its effects

in vitro on lifespan, colony formation, cell proliferation and

differentiation, as well as its ability to promote tumourigenesis in

vivo were assayed. Our results demonstrate that increased Fbxo7

expression suppressed colony formation capacity and altered the

differentiation of HSPCs, while stimulating proliferation and

lymphomagenesis. These data argue that Fbxo7 has oncogenic

activity and that this is largely dependent on the growth

conditions and p53 status of the cell.

Results and Discussion

Fbxo7 decreased colony formation by HSPCs, in a p53-
dependent manner

As a source of HSPCs, FLs were harvested from E13.5

mouse embryos and infected with recombinant retroviruses

expressing either GFP or human Fbxo7-IRES-GFP from the

MSCV promoter. GFP+ cells were collected by flow cytometry
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(Figure 1A), and immunoblotting of these cell lysates demonstrated

the expression of endogenous Fbxo7 in both WT and p53 null

HSPCs and also the robust expression of the transduced human

Fbxo7 (Figure 1B). The effect of Fbxo7 expression in HSPCs was

tested by in vitro colony formation assays. Equal numbers of GFP+

cells were seeded into media promoting growth and differentiation

along the granulocyte/macrophage (G/M) lineage. After 10–14

days, both the total number of cells per well and the number of

colonies per well were counted as measures of proliferative

capacity and colony forming capacity, respectively. The effect of

Fbxo7 expression was compared to the MSCV control in both

WT and p53 null cells using a serial replating assay. Despite some

variability, there was a consistent reduction in the colony forming

capacity of Fbxo7 expressing cells as compared to the MSCV

control, and a commensurate decrease in the total number of cells

per well. On the first plating, Fbxo7 expression caused a 33%

reduction on average in the number of colonies formed by WT

cells (Figure 1C) and a 25% reduction in the total number of cells

(Figure 1D). In p53 null cells, however, Fbxo7 expression caused

only an average 9% reduction in colony number and 17%

Figure 1. Fbxo7 expression reduced the colony forming capacity and number of WT and p53 null cells. (A) Representative FACS plots of
retrovirally infected FL cells showing GFP expression. (B) Expression of Fbxo7 in cells assayed by immunoblotting and Ponceau S staining as a loading
control. (C) Table of quantification of the number of colonies at each passage. Number in parentheses is the percent decrease relative to the MSCV
control. Error is represented as the SD. Quantification is of two independent experiments for each cell type. (D) Graphs of the quantification of total
numbers of either WT (left) or p53 null (right) cells at each passage. Error is represented as the SD. Quantification is of two independent experiments
for each cell type. * denotes statistical significance, P value,0.05; ** P value,0.01.
doi:10.1371/journal.pone.0021165.g001
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reduction in total number of cells. On the second replating, the

expression of Fbxo7 in WT cells reduced the number of colonies

and the total number of cells by 66% and 63%, respectively. In

p53 null cells, Fbxo7 expression reduced colony number by 21%

and total cell number by 29% on the second replating. The P

values for the effect of Fbxo7 expression on the total number of

cells per well on the second replating were significant at 0.006 for

WT cells and 0.047 for p53 null cells (Figure 1D). We also

observed that neither WT nor p53 null cells expressing MSCV or

Fbxo7 were capable of being replated more than 3 times

indicating that the lifespan of these in vitro cultured HSPCs had

not been altered in these experiments. These data demonstrate

that the expression of Fbxo7 had a suppressive effect on colony

forming capacity of WT HSPCs and to a lesser extent, p53 null

cells. This suggests that in WT cells, Fbxo7 expression activated a

p53-dependent response, which limited colony formation.

It was possible that the suppression of colony formation caused

by Fbxo7 expression of might be due to an effect on the cell cycle.

The stronger effect was seen in WT HSPCs, so GFP+ WT HSPCs

expressing either the MSCV control or Fbxo7 retroviral vector

were sorted and seeded as above. Five days later, cells were pulse-

labelled with EdU, harvested and stained with propidium iodide to

enable the identification of G1, S or G2/M phase populations by

FACS analysis. No significant differences in the percentages of

cells in each phase were observed between MSCV and Fbxo7

expressing cells (Figure 2A), indicating that Fbxo7 had not altered

the cell cycle of HSPCs. To investigate the possible effects of

Fbxo7 expression on cell cycle regulators, protein lysates were

produced from sorted control and Fbxo7-expressing WT and p53

null cells, which were assayed for the effects on the levels of G1

and S phase cell cycle regulators. No significant changes were

observed in the total levels of D-type cyclins, cyclins E and A,

Cdk2 and Cdk6 or p27 (Figure 2B). To assess whether the

expression of Fbxo7 in sorted HSPCs altered the levels of Cdk6

associated with D type cyclins, lysates made from equal numbers

of retrovirally infected GFP+ WT HSPCs were immunoprecipi-

tated with antibodies to cyclins D2 and D3, and immunoblotted

for the presence of Cdk6. However, the amount of Cdk6 co-

immunoprecipitating with D-type cyclins was unchanged

(Figure 2C). In addition, the levels of phosphorylation on serine

780, a D-cyclin/Cdk specific site, in the retinoblastoma protein

were unchanged (Figure 2B). These data indicate that the levels of

cyclin D/Cdk6 complexes, activity, and the entry into S phase

were not affected by Fbxo7 expression in HSPCs.

Fbxo7 affected G/M, but not erythroid, differentiation
Fbxo7 expression had a strong suppressive effect on colony

formation and proliferation of HSPCs, so we next wanted to

determine whether its expression also affected their differentiation.

Equal numbers of retrovirally infected FL-derived HSPCs were

seeded and incubated under standard growth conditions. After 14

days, cells were harvested and immunostained for the expression

of cell surface markers Ly6C/G (Gr1), which is a myeloid

differentiation antigen whose expression increases during granu-

locyte differentiation, and CD11b (Mac-1), which is a macrophage

differentiation factor. We observed that 55.64% of WT cells

expressing the MSCV control were Ly6C/G+ CD11b+ (Figure 3A).

As SCF levels can affect the differentiation of G/M progenitor

cells and enhance their response to other cytokines [23], we also

tested the effect of reducing the SCF concentration to 20 ng/mL,

and this decreased the Ly6C/G+ CD11b+ population to 16.68%

(Figure 3B). Fbxo7 expression in WT HSPCs strongly inhibited

the appearance of the double positive population, which

accounted for only 3.06% and 3.83% of the cells, at 50 and

20 ng/mL of SCF, respectively. We noted that the effect of Fbxo7

expression was attributable mainly to a decrease in CD11b

expression as Ly6C/G was still expressed and even slightly

enhanced when Fbxo7 was introduced (Figure 3A, B, E).

When identical experiments were performed using MSCV

transduced p53 null cells, the number of double positive cells was

reduced by 19% compared to WT cells (comparing left-most

panels in 3A and 3C), even though p53 null cells formed colonies

and proliferated as well as WT HSPCs when grown in 50 ng/mL

SCF (Figure 1C, D). The expression of Fbxo7 in p53 null cells also

reduced the double positive Ly6C/G+ CD11b+ population to 29%

compared to the 45% seen in the MSCV control (Figure 3C).

However, when measured against the strong suppressive effect that

Fbxo7 expression had on the Ly6C/G+ CD11b+ population in

WT HSPCs, this amounted to a 9.5 fold increase in the double

positive population in p53 null cells expressing Fbxo7 (comparing

right-most panels in 3A and 3C). This suggests that the Fbxo7

suppression of CD11b expression was p53 dependent. As with WT

cells, when p53 null cells were grown in 20 ng/mL SCF, the

double positive population was sharply reduced to 8.33%, and this

was also due mainly to a lack of CD11b expression (Figure 3D).

These data imply that SCF promoted CD11b expression, enabling

myeloid differentiation. Finally, the expression of Fbxo7 in p53

null cells grown in 20 ng/mL SCF did not alter the double positive

population significantly; however, the number of Ly6C/G+ cells

increased from 41.43% to 70.35%. This contrast the effect of

Fbxo7 expression when cells were grown in 50 ng/mL SCF which

suppressed slightly the number of Ly6C/G+ cells from 58.88% to

50.96% (Figure 3F). This demonstrated that the effect of Fbxo7 on

granulocytic differentiation was influenced strongly by the levels of

SCF. These data showed that at higher SCF levels and p53

expression, Fbxo7 acted to suppress CD11b, whilst at lower SCF

conditions in cells lacking p53, Fbxo7 strongly enhanced Ly6C/

G+ expression. Therefore, these data indicated that the effect of

Fbxo7 in HSPCs on G/M differentiation was determined both by

the p53 status and the growth conditions in the assays.

We next tested the ability of Fbxo7 to affect differentiation along

the erythroid lineage. WT and p53 null cells were seeded in

standard conditions for erythropoiesis. No statistically significant

differences were observed in the number of erythroid colonies

formed by Fbxo7 expressing or by control HSPCs on either

background, nor in the number of cells co-staining with anti-CD71

antibody, which recognizes transferrin receptor and Ter-119,

which recognizes an erythroid specific marker, and which together

delineate the later stages of erythroid lineages (negative data not

shown). This suggests that the effects of Fbxo7 expression on

colony formation, proliferation and differentiation in vitro were

specific to HSPCs differentiated along the G/M lineage.

In sum these in vitro experiments showed that Fbxo7 affected the

proliferation and differentiation of HSPCs along particular cell

lineages, and moreover, its function was sensitive to specific

growth and genetic conditions.

Fbxo7 increased proliferation of p53 null HSPCs when
stem cell factor (SCF) was reduced

As SCF can act as a survival factor for progenitor cells with only

limited effects as a mitogen [23], we next tested whether increasing

Fbxo7 expression could compensate for reduced SCF signalling. In

these experiments, the concentration of SCF was reduced, while

FCS, IL-3 and IL-6 concentrations were maintained. As expected,

the number and size of colonies formed by WT HSPCs was

reduced when the SCF was decreased from 50 ng/mL (standard

conditions) to 20 or 8 ng/mL (Figure 4A), and consistent with our

results in Figure 1C, Fbxo7 reduced the number of WT HSPCs

Fbxo7 Expression Promotes Lymphomagenesis
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colonies under standard growth conditions. However, at lower

SCF concentrations, Fbxo7 expression did not significantly alter

the number of colonies formed by WT HSPCs (Figure 4A) or the

total number of WT cells that grew (Figure 4B, C). We conclude

that Fbxo7 exerts its inhibitory effect on colony formation at a

threshold concentration of SCF above 20 ng/mL and that

increased Fbxo7 expression did not substitute for reduced SCF

signalling.

As with WT HSPCs, the number of colonies formed by p53 null

HSPCs was also reduced when the concentration of SCF was

reduced (Figure 4A). Moreover, Fbxo7 expression in p53 null

HSPCs did not affect colony formation, irrespective of the SCF

concentration. However, Fbxo7 expression increased the prolifer-

ation of p53 null cells when grown in 20 ng/mL SCF (Figure 4B).

A comparison of the ratios of total cell numbers expressing Fbxo7

normalised to MSCV of either WT or p53 null cells showed that

Fbxo7 expression provided a significant growth advantage to p53

null cells compared to WT (Figure 4C). Strikingly, the number of

cells per colony, rather than colony formation, was specifically

affected. Thus the average number of MSCV control cells per

colony was approximately 2,800 as compared to 6,600 for Fbxo7-

expressing cells, representing a 2.4 fold increase. These data

demonstrate that Fbxo7 was capable of enhancing cell prolifer-

ation under specific genetic and growth conditions. In addition,

Figure 2. Fbxo7 expression enhances the proliferation of p53 null cells grown at a reduced SCF concentration. (A) FACS plot of EdU
incorporation, showing forward scatter (FSC) on the x-axis and (SSC) side scatter on the y-axis for the left hand panels, with the gated population
used for EdU analysis and anti-EdU conjugated to Alexafluor647 on the x-axis and propidium iodide intensity on the y-axis for the right hand panels.
(B) Immunoblotting for the expression of various cell cycle regulators, as indicated, in WT and p53 null cells expressing Fbxo7 or the empty MSCV
vector. (C) Immunoblotting for Cdk6 in immunoprecipitations of D-type cyclins from equal numbers of sorted WT cells expressing either Fbxo7 or the
empty MSCV vector.
doi:10.1371/journal.pone.0021165.g002
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these were the same genetic and cytokine concentrations in which

Fbxo7 expression affected G/M differentiation to increase the

proportion of Ly6C/G+ cells (Figure 3D). One further implication

from these data is that Fbxo7 expression in p53 null HSPCs might

be capable of substituting for cytokine signalling to relieve growth

factor dependence.

Fbxo7 contributed to tumour formation in vivo
We next tested whether increased Fbxo7 expression in HSPCs

would promote tumourigenesis. WT and p53 null FL cells

expressing either Fbxo7-IRES-GFP or the empty MSCV control

vector were used to reconstitute irradiated mice. Prior to injection,

the percentage of GFP+ cells was assayed and ranged from 2–15%

for the Fbxo7-IRES-GFP vector infected populations and 4–20%

for the vector control (Figure 1A). The mixed population of

infected and uninfected cells was injected into irradiated mice. At

10 months post-reconstitution, all of the animals reconstituted with

WT HSPCs expressing either MSCV or Fbxo7 were healthy

(n = 10 each; negative data not shown). However, a significant

number of animals reconstituted with p53 null cells showed signs

of illness between 5 and 7 months post-reconstitution. These

included 2 out of 10 mice reconstituted with cells expressing

MSCV only and 7 out of 10 mice reconstituted with cells

expressing Fbxo7. The two survival curves differed significantly,

P = 0.0304. This difference in survival between the animals

reconstituted with p53 null HSPCs expressing either MSCV or

Figure 3. Fbxo7 expression alters the expression of markers of myeloid differentiation. FACS analysis of immunostaining for Mac1
(CD11b) on the x-axis and Gr1(Ly6C/G) on the y-axis for WT cells grown at 50 ng/mL (A) or 20 ng/mL (B) of SCF. FACS analysis of immunostaining for
Mac1 (CD11b) and Gr1(Ly6C/G) for p53 null cells grown at 50 ng/mL (C) or 20 ng/mL (D) of SCF. Table of percentages of either Mac1 (CD11b) or
Gr1(Ly6C/G) positive cells for WT cells (E) and p53 null cells (F).
doi:10.1371/journal.pone.0021165.g003
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Fbxo7 indicated that Fbxo7 expression had a statistically

significant influence on tumour-free survival time (Figure 5A).

The two mice reconstituted with p53 null HSPCs expressing

MSCV both had splenomegaly and one animal also had enlarged

inguinal lymph nodes and tumour cells infiltrating the kidney. The

mice reconstituted with p53 null HSPCs expressing Fbxo7 had

splenomegaly and enlarged lymph nodes, and in addition, one

animal had thymoma. H&E staining showed the presence of

tumour cells in these immune tissues and also disseminated into

other organs, including liver, lung, and kidney (Figure 5B).

Immunohistochemical analysis demonstrated that tumour cells in

both the MSCV and Fbxo7 samples were CD3+ CD202,

indicating a T cell lineage (Figure 5C and data not shown).

To assess whether the transplanted HSPCs had repopulated the

immune systems of the mice and contributed to tumour formation,

lymph nodes and spleens were analysed for GFP expression.

Surprisingly, although spleens harvested from MSCV control

animals showed the presence of GFP+ cells, ranging from 0.02% to

7%, no GFP+ cells were detected in spleen or tumour samples

isolated from mice reconstituted with Fbxo7-p53 null HSPCs

(negative data not shown). This was despite the fact that GFP

expression had been established prior to injection (Figure 1A), and

robust Fbxo7 expression was confirmed in HSPCs in parallel in

vitro experiments (Figure 1B). Moreover, immunohistochemistry

for Fbxo7 was performed on tissue sections containing tumour

cells, and Fbxo7 expression was found to be either negative or only

Figure 4. Fbxo7 acts as a proliferative factor in p53 nulls grown in reduced SCF. (A) Table of the quantification of colony number of WT
and p53 null cells grown at different concentrations of SCF. (B) Graphs of the total cell number at three concentrations of SCF in WT and p53 null cells
expressing Fbxo7 compared to MSCV. (C) Graph of ratio of the number of either WT or p53 null cells expressing Fbxo7 compared to MSCV at different
concentrations of SCF. In these experiments, the error is represented as the SD, and quantification is of three independent experiments.
doi:10.1371/journal.pone.0021165.g004
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Figure 5. Fbxo7 cooperates with p53 mutation to promote lymphomagenesis in vivo. (A) Graph of Kaplan-Meier survival curve of mice
reconstituted with p53 null FL cells infected with retroviruses expressing either MSCV control (n = 10, dashed line) or Fbxo7 (n = 10, solid line). (B) H&E
staining and immunohistochemistry was conducted as previously described [11] for (C) CD3 and (D) Fbxo7 in tissue samples from mice reconstituted
with Fbxo7-expressing cells. Size bar is 50 mm. (E) PCR amplification reactions for either the p53 null allele (top) or the GFP gene in the MSCV vector
(bottom) performed on genomic DNA isolated from paraffin-embedded tissue samples from mice reconstituted with p53 null HSPCs infected with
retroviruses bearing either the empty MSCV vector or the MSCV vector expressing Fbxo7. Numbered samples consist of pooled biopsies from
multiple organs (liver, spleen, thymus, intestine, kidney, heart) from mice in the two different cohorts, as indicated. ‘T’ denotes samples which
consisted of tumour tissue only. For positive controls for the PCR reactions, in the p53 reaction (top), ‘pos’ denotes a reaction where genomic DNA
from a p53 null mouse was added, and for the GFP reaction (bottom) ‘pos’ denotes a reaction where MSCV plasmid DNA was added. ‘Neg’ denotes
reactions where no template DNA was added.
doi:10.1371/journal.pone.0021165.g005
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weakly positive (Figure 5D). These data raised the possibility that

p53 null cells infected with the Fbxo7-IRES-GFP retroviruses

either did not participate in long-term reconstitution or tumour

formation, or alternatively, that there was a preferential down-

regulation of transgene expression from the Fbxo7-IRES-GFP

vector. To distinguish between these two possibilities, we tested

directly whether DNA sequences from retrovirally-infected p53

null HSPCs could be detected in tissue and tumour samples by

PCR analysis. Sequences from both the p53 null allele and from

the GFP gene from the MSCV vector were detected (Figure 5E),

confirming the presence of retrovirally transduced p53 null

HSPCs. This therefore suggested that the lack of GFP expression

in Fbxo7-derived tumour cells and the weak expression of Fbxo7

expression in tissue samples was due to the Fbxo7-IRES-GFP

transgene being either only weakly expressed or silenced

altogether. There is considerable evidence that the MSCV vector,

although efficiently expressed in HSCs is also eventually subject to

silencing by DNA methylation. Silencing can be reversed by

treatment with 5-azadeoxycytidine demonstrating that DNA

methylation directly participates in the repression of the promoter,

and in fact, cytosine methylation of two clusters of CpGs in the

MSCV LTR have been shown to be important for its

transcriptional silencing [24–28]. Another possibility for the lack

of GFP and Fbxo7 expression is that Fbxo7 had a ‘hit-and-run’

effect on tumour promotion, so that even though it was expressed

initially in the injected HSPCs, its expression was down-regulated

in the tumours. Moreover, the fact that GFP expression was

detected in the tumour cells derived from the MSCV cohort of

animals suggests that the tumours from animals in the Fbxo7

cohort did not require, or perhaps could not tolerate, continued

Fbxo7 expression for proliferation or survival. This differs from

our previous findings of the high expression of Fbxo7 seen in lung

and colon cancer biopsies and in the transformation of fibroblasts

[11]. However, this difference may reflect the fact that in epithelial

cells, Fbxo7 may have its proto-oncogenic effect via the up-

regulation of the Cdk6 activity whereas in HSPCs, Fbxo7 does not

appear to increase cyclin D/Cdk6 activity, and the mechanism by

which Fbxo7 promotes tumour formation is different.

The data presented here demonstrate that Fbxo7 can cooperate

with p53 deletion to promote tumour formation originating from a

primary stem or progenitor cell in vivo; however, as the time to

tumour onset was 5–7 months, this implied that other events

contributed to tumour formation. The mechanism by which

Fbxo7 expression promoted lymphomagenesis in p53 null HSPCs

did not appear to be mediated by increasing Cdk6 activity or

levels. Cdk6 has an important role in haematopoiesis being highly

expressed in the stem and progenitor compartment, but then

down-regulated in lineage committed cells [14]. For example,

Cdk6 has a specific role in the differentiation of myeloid and

erythroid lineages and must be down-regulated to allow terminal

differentiation [14,17]. One regulatory function for Cdk6 in the

myeloid lineage is to prevent the Runx1 transcription factor from

binding promoters which impose lineage-specific differentiation

[14]. We speculate that abundant expression of Fbxo7 might

inappropriately stabilize this non-canonical, kinase-independent

function of Cdk6 as cells proceed through lineage specification.

This extra Cdk6 activity might then promote expansion and/or

proliferation of specific populations of maturing cells or prevent

their terminal differentiation. As the tumours which arose were

CD3 positive, a simple hypothesis is that this occurred in the T cell

lineages in vivo. However, an alternate possibility is that this

occurred in the myeloid lineage and tumours arose via an indirect

mechanism. Our data also demonstrated that Fbxo7 had a robust

and specific effect on myeloid differentiation in a p53 null setting

grown at a standard SCF concentration. This combination of

factors resulted in an increase in double positive (Ly6C/G+

CD11b+) cells. It is therefore possible that the ability of Fbxo7 to

affect G/M differentiation modulated the appearance and lifespan

of myeloid-derived suppressor cells (MDSC) to promote tumour

formation in vivo. MDSCs are a heterogeneous population of

immature myeloid cells, which suppress T cell functions, inhibiting

both the innate and adaptive immune responses [29,30]. This

dampened T cell response curbs the host’s immune surveillance

and allows tumour progression [29,31,32]. Normally, host- and/or

tumour-derived cytokines from the tumour micro-environment

dictate the numbers of MDSCs. However, in our experiments

using HSPCs, one possibility is that increased Fbxo7 expression

disrupted normal myelopoiesis and increased the numbers of

immature myeloid cells in a cell intrinsic manner. Moreover,

Fbxo7 modulation of NF-kB signalling through ubiquitination of

cIAP1 [10] might provide an additional pro-inflammatory signal,

which is also hypothesized to contribute to the genesis and

activation of MDSCs [33]. Thus one indirect model for results

obtained in the in vivo lymphomagenesis assays is that a low level of

lymphomagenesis (20%) is seen upon reconstitution of irradiated

animals using retrovirally-infected, p53 null HSPCs. These

lymphomas may be due to insertional mutagenesis of retroviral

sequences coupled with an inability to undergo apoptosis due to a

lack of the p53 pathway. Reconstitution with Fbxo7-expressing

HSPCs caused an increase in MDSCs levels which subsequently

reduced host immune surveillance to increase the levels of

lymphomagenesis (70%). One way to address this would be to

determine whether the mice have MDSCs bearing the Fbxo7

transgene.

Another possible mechanism for Fbxo7-mediated lymphoma-

genesis is that other substrates of Fbxo7, reliant upon its

ubiquitinating activity, contributed directly to tumour formation

specifically in a p53 background. p53 has an established role in

maintaining low levels of basal NF-kB activity, as evidenced by the

fact that p53 null mice show hyperactive inflammatory and

immune responses [34,35]. As mentioned above, one ubiquitina-

tion substrates of Fbxo7 is cIAP1 [10], which is a regulator of NF-

kB signaling [36–38]. cIAP1 has also been shown to inhibit non-

canonical NF-kB activity by ubiquitinating NF-kB-inducing kinase

(NIK), a kinase that activates inhibitor kB kinase (IKK) which

subsequently triggers the processing of non-canonical NF-kB

transcription factors to their active form. We speculate that Fbxo7

expression stimulated the degradation or inactivation of cIAP1,

stabilizing NIK and triggering the constitutive activation of the

non-canonical NF-kB transcription factors. In wild type HSPCs

expressing Fbxo7, this activation of the NF-kB pathway alone was

insufficient to induce lymphoma. However, in the absence of p53

and with the expression of Fbxo7 further increasing already

elevated NF-kB signalling, these mutations cooperated to induce

lymphoma in T cells. The non-canonical NF-kB pathway may be

especially important to the oncogenesis of T cell lymphoma, as in

human T cell lymphomas its activation is evident and has been

shown to correlate with resistance to chemotherapy and poor

survival [39]. Lastly we note that although the pivotal roles of p53

and NF-kB pathways in cancer are robustly documented, rather

than having a simply synergistic or antagonistic relationship, the

crosstalk between them is highly specific to both cellular context

and external/internal stimuli [40]. We observed that the

functional effects of Fbxo7 expression were highly cell type-

specific and exquisitely sensitive to cytokine concentration,

suggesting the involvement of these pathways.

In sum, we report the effects of Fbxo7 over-expression in

primary, murine WT and p53 null HSPCs from FL under
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different growth conditions. Our studies suggest that the effect of

Fbxo7 expression is highly context-dependent and is influenced by

factors, like cell type, cytokine concentration and p53 status. In

addition, Fbxo7 can promote tumour formation from stem and

progenitor cells of this tissue. Our experiments argue that Fbxo7

has an important and sensitive role in balancing the proliferative

and differentiation capacities, and it possesses proto-oncogenic

activity in p53-deficient haematopoietic cells.

Materials and Methods

Construction and production of recombinant
retroviruses

Retroviruses were constructed in the murine stem cell virus

backbone which was generously provided by Scott Lowe [41].

Human Fbxo7 (isoform 1) cDNA was amplified by PCR and

subcloned into MSCV-IRES-GFP. Clones were fully sequenced

prior to use. Plasmid DNA constructs encoding either ‘empty’

MSCV-IRES-GFP or MSCV-Fbxo7-IRES-GFP retroviral vectors

were co-transfected with an ecotropic packaging vector [42] into

EcoPhoenix cells generously provided by Gary Nolan. At 48 h

post-transfection, viral supernatants were filtered and used for

infection of FL-derived HSPCs. Freshly isolated WT or p53 null

foetal liver (FL) cells from E13.5 embryos were seeded into 6-well

plates at a density of 26106 cells per well in 2.5 mL of media (40%

DMEM, 40% IMDM, 4 mM L-Glutamine, 0.1 mM b-mercap-

toethanol, 16% fetal bovine serum, 4% WEHI-3B conditioned

media, 20 ng/mL SCF, 2 ng/mL IL-6, 0.2 ng/mL IL-3; all

cytokines from Fitzgerald Laboratories). 24 hrs after seeding, cells

were infected with retroviral supernatants supplemented with

4 mg/mL polybrene. Infections were repeated 3 times in 48 hrs.

GFP+ cells were isolated by FACS using a Dako-Cytomation

MoFlo sorter for the indicated experiments.

Immunoprecipitation and Western analysis
Equal numbers of sorted GFP+ cells were lysed in HB buffer

(50 mM Hepes, pH 7.4, 150 mM NaCl, 20 mM EDTA, 1 mM

DTT, 10 mM b-glycerophosphate, 0.5% Triton-X-100, 10 mM

NaF and protease inhibitor cocktail (Sigma Aldrich). Lysates were

pre-cleared with Protein A/G Plus Agarose (Santa Cruz

Biotechnology (SCBT)) and then incubated at 4uC for 4 hrs with

normal mouse IgG (SCBT, sc-2025), anti-cyclin D2 (SCBT, sc-

181) or anti-cyclin D3 antibodies (SCBT, sc-6283). Immunopre-

cipitated proteins were captured using Protein A/G Plus agarose

beads and washed with HB buffer before being denatured in

Laemmli buffer, resolved by SDS-PAGE and analyzed by western

blotting for Cdk6 (SCBT, sc-177). Input proteins were also

analysed for cell cycle regulatory proteins by western blotting,

including pRb Ser780 (Cell Signaling #9307), pRb (Becton

Dickinson (BD) Pharmingen, 554136), Cdk2 (BD Pharmingen,

15536E), p27 (SCBT, sc-528), cyclin E (SCBT, sc-481), cyclin A

(SCBT, sc-751) and actin (Sigma Aldrich, A2066).

Colony formation assays
Infected cells were collected by FACS sorting, counted on a

CASY cell counter (Scharfe Systems), and 4,500 cells were seeded

in triplicate in 1.1 mL of MethoCult methylcellulose-based media

(Stem Cell Technologies) per 35 mm well, as per manufacturer’s

protocol. For G/M differentiation, media was supplemented with

cytokines at the following ‘‘standard’’ concentrations: 50 ng/mL

stem cell factor (SCF), 10 ng/mL IL-3, 10 ng/mL IL-6. Colony

number and the total number of cells per well were counted 10 to

14 days later. Total numbers of cells were counted by extracting all

cells in a well. This was performed by diluting colonies embedded

in methylcellulose with 15 volumes of PBS, and centrifuging at

300 g for 8 mins at RT. Cell pellets were washed, and cell number

determined on a CASY cell counter. For serial replating, 4,500

cells were reseeded in methylcellulose as above. For erythroid

differentiation, media was supplemented with 2 units/mL of

erythropoietin (Sigma Aldrich), and colonies were counted 2 days

later. Experiments were replicated 2 to 5 times.

To detect cell surface markers, cells were extracted from

methylcellulose and incubated with antibodies against Ly-6C/G

(Gr-1) which were directly conjugated to PE and with biotin-

conjugated antibodies against CD11b (Mac-1) which were

detected with streptavidin conjugated to APC. All antibodies were

obtained from Caltag. 0.2 mg of each antibody was used for

staining 56105 cells in 50 mL of PBS for 30 mins at RT. Cells

were washed twice, diluted in PBS, and analysed on a Cyan ADP

MLE fluorescent analyser with Summit v4.3 software.

Tumour formation assays
This study was carried out in strict accordance with the

recommendations of the Home Office, and all efforts were made

to minimize suffering. The protocol was approved by the local

Ethics Committee at the University of Cambridge (License

Number: 80/2000). Mice were obtained from Charles River

Laboratories and maintained in individually ventilated cages. After

infection of foetal liver cells, GFP expression was confirmed by

flow cytometry. Infections ranged between 2–15% for Fbxo7

vectors and 4–20% for MSCV control vectors. Cells were washed

with PBS prior to injection via the tail vein into irradiated (1000

rads) recipients. Tissues were harvested from euthanized mice,

homogenized for FACS analysis to assess GFP expression, or fixed

in 4% paraformaldehyde/PBS prior to embedding in paraffin

wax. Tissue samples were sectioned and stained with hematoxylin

and eosin (H&E), or with antibodies to CD3, [43] CD20 (Dako),

or Fbxo7 as previously described [11].

Cell cycle analysis
Analysis of the cell cycle distribution of cells was performed

using Click-ITTM EdU Flow Cytometry Assay Kit (Invitrogen,

A10202). After 9 days of growth in methylcellulose, cells were

resuspended in 3 volumes of media (40% DMEM, 40% IMDM,

4 mM L-Glutamine, 0.1 mM b-mercaptoethanol, 16% fetal

bovine serum, 4% WEHI-3B conditioned media, SCF 50 ng/

mL, IL-3 10 ng/mL, IL-6 10 ng/mL). EdU (5-ethynyl-29-

deoxyuridine) was added to 15 mM, and cells were incubated at

37uC for 2 hrs prior to fixation in 2% paraformaldehyde. EdU

incorporation was detected as per manufacturer’s protocol, and

cells were analysed on a Cyan ADP MLE fluorescent analyser

(Dako).

PCR analysis
PCR reactions for the p53 null transgene or the GFP gene present

in the retrovirus were performed on DNA extracted from paraffin

embedded tissues from control and Fbxo7 mice. PCR reactions

were performed as follows: for amplification of the p53 transgene,

reactions were 35 cycles of 92uC for 30 sec, 63uC for 30 sec, 72uC
for 30 sec, using the forward primer 59-AGCCTGAAGAACGA-

GATCAG-39, and reverse primer 59-TATACTCAGAGCCG-

GCCT-39. For amplification of GFP sequences, a first-round

PCR reaction was performed for 35 cycles of 92uC for 30 sec, 66uC
for 30 sec, 72uC for 30 sec. The PCR product was purified using

QIAgene PCR purification spin columns and used in a second-

round PCR reaction of 30 cycles. For both reactions, the forward

primer 59-AGCCGCTACCCCGACCACAT, and the reverse

primer 59-CGGTTCACCAGGGTGTCGCC-39 were used.
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Statistical analysis
All the P values were calculated by Student’s t-test for two-tailed

distribution and equal variance between samples using Microsoft

Excel. Error is represented as the standard deviation. Kaplan-

Meyer survival curves were calculated using MedCalc software. A

logrank test was performed on the two survival curves, with a chi-

square statistical test.
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