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Abstract 

 

The Nuclear factor κB (NF-κB) signaling pathway controls important cellular events 

such as cell proliferation, apoptosis and immune responses. Pathway activation occurs 

rapidly upon TNFα stimulation and is highly dependent on ubiquitination. Using 

cytoplasmic to nuclear translocation of the NF-κB family member p65 as a read-out, we 

screened a synthetic siRNA library targeting enzymes involved in ubiquitin (Ub) 

conjugation and de-conjugation. We identified F-Box protein only 7 (FBXO7), a 

component of SCF-Ub ligase complexes as a negative regulator of NF-κB signaling. 

FBXO7 binds to, and mediates ubiquitination of cIAP1 and TRAF2, resulting in 

decreased RIP1 ubiquitination and NF-κB signaling activity. 
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Introduction 

 

The Nuclear factor κB (NF-κB) signaling pathway controls important cellular events 

such as cell proliferation, apoptosis and immune responses (Chen & Goeddel, 2002). 

Binding of TNFα to TNF-Receptor 1 (TNF-R1) promotes rapid recruitment of a multi-

protein complex known as the TNF-R1 signaling complex (TNF-RSC), consisting of 

TRADD, TRAF2/5, cIAP1/2, LUBAC and RIP1. TRADD functions as an adaptor 

protein recruiting TRAF2, which through constitutive association co-recruits cIAP1 and 2 

(cIAP1/2) (Chan, 2007). 

NF-κB signaling relies heavily on ubiquitination. Both TRAF2 and cIAP1/2 are 

ubiquitin (Ub) ligases proposed to attach K63-linked Ub chains to RIP1. However, RIP1 

K63-ubiquitination and NF-κB signaling activity are restored upon reconstitution with an 

Ub-ligase activity-deficient TRAF2 mutant in TRAF2-/- MEFs (Vince et al, 2009), 

suggesting that TRAF2 serves as a scaffold enabling cIAP1/2-mediated ubiquitination of 

RIP1 (Mahoney et al, 2008). This in turn leads to recruitment and activation of the 

TAK/TAB kinase complex and the Inhibitor of ΙκB Kinase (IKK) complex, consisting of 

IKKα, -β and NEMO, by binding to the K63-linked Ub chains on RIP1 (Kanayama et al, 

2004; Wu et al, 2006). Moreover, K63-linked ubiquitination of TRAF2 has been reported 

to aid in recruitment of the IKK complex (Li et al, 2009). Recently it was also found that 

linear Ub chains formed by the linear Ub chain assembly complex enhance recruitment of 

NEMO to RIP1, thus increasing NF-κB signaling activity (Haas et al, 2009). Once the 

IKK complex is active, it phosphorylates IκBα, targeting this inhibitor for ubiquitination 

by SCFβTRCP and proteasomal degradation (Yaron et al, 1998). Subsequently, the NF-κB 
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transcription factor hetero-dimer (p50/p65) translocates from the cytoplasm to the 

nucleus and induces target gene transcription (Baldwin, 1996). 

In addition to being the likely candidate as the K63-Ub ligase for RIP1, cIAPs 

have several other targets within the NF-κB signaling pathway including NEMO, TRAF2 

and themselves by auto-ubiquitination (Samuel et al, 2006; Tang et al, 2003; 

Varfolomeev et al, 2007). However little is known about how cIAP Ub ligase activity and 

substrate specificity is regulated. 

A number of de-ubiquitinating enzymes (DUBs) have been firmly placed as 

negative regulators of NF-κB signaling. The Cylindroma tumor suppressor protein 

(CYLD) de-ubiquitinates NEMO and TRAF2 (Brummelkamp et al, 2003; Trompouli et 

al, 2003), while USP15 reverses βTRCP-mediated ubiquitination of IκBα (Schweitzer et 

al, 2007). Moreover, the dual-activity protein A20 removes K63-Ub chains from RIP1, 

and targets it for proteasomal degradation (Wertz et al, 2004). Finally a number of other 

DUBs influence NF-κB signaling upstream of, or at the level of IκBα (Harhaj & Dixit, 

2011). 

 Recruitment of the TNF-RSC and the ensuing ubiquitination events triggering 

signaling activation occur quite rapidly. In fact, within minutes of TNFα stimulation 

target gene activation can be measured. In the context of this biological timeframe we set 

out to identify new modulators of regulatory ubiquitination within NF-κB signaling. We 

performed a siRNA screen based on cellular redistribution of p65 upon TNFα 

stimulation, using a library targeting DUBs and proteins involved in Ub conjugation. We 

identified several negative regulators of NF-κB signaling and focused on the F-box only 

protein 7 (FBXO7), a member of the F-box protein family, which confers substrate 
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specificity to SCF-Ub ligase complexes. We show that FBXO7 is a negative regulator of 

NF-κB signaling, modulating ubiquitination levels of several components of the TNF-

RSC, and ultimately lowering NF-κB signaling activity. 
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Results 

 

A siRNA screen searching for novel regulators of NF-κB signaling 

To identify modulators of regulatory ubiquitination in NF-κB signaling we performed an 

imaging-based screen based on sub-cellular redistribution of NF-κB p65, using a 

commercially available siRNA library targeting DUBs and other proteins involved in 

ubiquitination. Cells were transfected with the siRNA library, left for 72 hours, 

stimulated with TNFα for 20 minutes or left untreated prior to fixation (Fig 1A). 

Immunofluorescence labeling was used to stain endogenous p65, and DNA was stained 

with DAPI to define nuclei. Images were acquired using an automated microscope, 

analyzed with CellProfiler software (Carpenter et al, 2006), and the nuclear - cytoplasmic 

(Nuc/Cyt) ratio of the p65 signal was calculated (Fig 1B). 

The siRNA pools that significantly altered Nuc/Cyt ratio of p65 were selected for 

further validation. Of the selected 15, including CYLD and A20, 6 showed reproducible 

phenotypes, and 3 were validated with 2 unique siRNAs, decreasing the chance of off-

target effects. Inhibition of these three proteins lead to increased nuclear accumulation of 

p65 upon TNFα stimulation (Fig 1C,D). These novel modulators of NF-κB signaling 

include the DUBs OTU domain-containing aldehyde-binding protein 2 (OTUB2), and 

signal transducing adaptor molecule binding protein (STAMBP) (Nijman et al, 2005). 

The remaining hit FBXO7 belongs to the F-box protein family, which in the context of 

Skp, Cullin, F-box (SCF) Ub ligase complexes, confer substrate specificity (Winston et 

al, 1999). Interestingly, FBXO7 can both stabilize and destabilize its interactors (Hsu et 

al, 2004; Laman et al, 2005), and certain recessive mutants of FBXO7 have been linked 
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to early-onset Parkinson-pyramidal syndromes (Di Fonzo et al, 2009; Shojaee et al, 

2008). Furthermore a study suggested that cIAP1, a well-established positive regulator of 

NF-κB signaling, is ubiquitinated by SCFFBXO7(Chang et al, 2006). However, the effect 

of this modification on NF-κB signaling was not examined. We therefore set out to 

investigate how FBXO7 might influence the NF-κB pathway. 

 

F-box only protein 7 is a negative regulator of NF-κB signaling 

Having established that FBXO7 inhibition leads to increased accumulation of nuclear 

p65, we examined whether NF-κB target gene activation is affected. We measured 

activation of the NF-κB target genes IL8 and A20 by Q-RT PCR in cells transfected with 

siRNAs targeting TNF-R1, CYLD, or FBXO7. As expected, knockdown of TNF-R1 

impairs activation of IL8 and A20, while knockdown of the negative regulator of NF-κB 

signaling CYLD results in transcriptional hyper-activation (Fig 2A). Similarly, FBXO7 

knockdown also results in hyper-activation of IL8 and A20 after TNFα treatment. 

Importantly, in an independent cell line, immortalized BJ primary fibroblasts, knockdown 

of FBXO7 shows similar effects (Fig 2B). 

Next, we tested whether over-expression of FBXO7 suppresses NF-κB signaling. 

A NF-κB luciferase reporter was co-transfected with plasmids encoding either wild type 

(WT), or a F-box deletion mutant (ΔF) FBXO7 that no longer forms a SCF complex. We 

found that over-expression of WT but not ΔF FBXO7 suppresses the activity of the NF-

κB luciferase reporter upon stimulation with TNFα (Fig 2C). We conclude that the 

regulation of NF-κB signaling by FBXO7 depends on SCFFBXO7 complex formation, and 

that FBXO7 negatively regulates NF-κB signaling. 
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FBXO7 acts upstream of IkBα degradation 

Next, we investigated whether FBXO7 influences IκBα protein degradation upon TNFα 

stimulation. Cells were transfected with siRNAs targeting CYLD or FBXO7. TNFα time-

course experiments were performed and IκBα phosphorylation and degradation was 

visualized by Western blots. As expected, knockdown of CYLD causes increased IkBα 

protein degradation, even without TNFα stimulation (Fig 3A). Knockdown of FBXO7 

results in a similar phenotype but degradation is primarily affected upon TNFα treatment, 

in agreement with the nuclear translocation assays (Figure 1C). Conversely, over-

expression of WT but not the ΔF FBXO7 results in IκBα stabilization, explaining the 

diminished signaling seen upon over-expression in reporter experiments (Fig 3B & 2D). 

These observations point to the TNF-RSC as the site of action for FBXO7, supported by 

the previously reported FBXO7 - cIAP1 interaction (Chang et al, 2006). 

 

FBXO7 promotes ubiquitination of bound cIAP1 

To gain further insight into possible sites of action of FBXO7 in the context of the TNF-

RSC, we examined if FBXO7 interacts with TNF-RSC components. First, in co-

transfection experiments with tagged versions of either WT or ΔF FBXO7 and cIAP1, we 

confirmed that cIAP1 binds to WT, but also ΔF FBXO7 (Fig 4A). These interactions 

were not influenced by TNFα stimulation (data not shown). Next, we investigated 

whether cIAP1 is ubiquitinated by SCFFBXO7. We observed no change in the 

ubiquitination levels of total cellular cIAP1 in the presence of exogenous FBXO7 (data 

not shown). However, when scaling up FBXO7-cIAP1 co-immunoprecipitation 
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experiments (IP), we found that cIAP1 specifically bound to WT but not ΔF FBXO7, is 

highly ubiquitinated (Fig 4B). 

   

FBXO7 binds to, and ubiquitinates TRAF2 

TRAF2 and cIAP1/2 are constitutively bound to each other and co-recruited to the TNF-

RSC upon TNFα stimulation (Chan, 2007). We therefore asked whether FBXO7 might 

also interact with TRAF2 and be a constitutive member of the complex. We immuno-

precipitated Flag-TRAF2 from cells that had been co-transfected with GFP-FBXO7 WT 

or ΔF constructs. We found that FBXO7 binds to TRAF2 (Fig 5A), independently of 

TNFα (data not shown). We next examined whether FBXO7 also affects TRAF2 

ubiquitination. Cells were transfected with constructs expressing Flag-TRAF2, HA-Ub 

and GFP-FBXO7 WT or ΔF. To avoid possible ubiquitination contamination from other 

proteins we lysed cells in denaturing RIPA buffer. We then performed Flag-IPs and 

immuno-blots for HA and found that there is a significant increase in TRAF2 

ubiquitination upon over-expression of WT FBXO7 (Fig 5B). In summary FBXO7 binds 

to cIAP1 and TRAF2, and promotes ubiquitination of both proteins, the consequence 

being decreased NF-κB signaling.  

 

FBXO7 lowers RIP1 ubiquitination 

Since TRAF2 and cIAP1 are both important for ubiquitination of RIP1, we investigated 

whether FBXO7-induced changes in TRAF2 and cIAP1 ubiquitination alter RIP1 

ubiquitination. In co-IP experiments we tried to determine whether FBXO7 and RIP1 

interact but we were unable to detect this interaction (data not shown). We then measured 
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RIP1 ubiquitination levels in cells transfected with Flag-RIP1, HA-Ub and GFP-FBXO7 

WT or ΔF. We found that over-expression of WT FBXO7 diminishes RIP1 ubiquitination 

compared to the inactive ΔF FBXO7 (Fig 5C). We hypothesize that this decrease reduces 

recruitment and activation of kinase complexes, preventing IκBα degradation, and as a 

consequence lowers NF-κB signaling. 
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Discussion 

We screened a siRNA library for modulators of regulatory ubiquitination in NF-κB 

signaling. Employing cellular redistribution of the NF-κB subunit p65 as a read-out, we 

identified and verified three new regulators. We focused our attention on F-Box only 

protein 7 (FBXO7), which has different known functions. In the context of SCFFBXO7 

proteasomal degradation of Hepatoma Up-Regulated Protein is promoted (Hsu et al, 

2004). Other functions such as stabilization of Cdk6/CyclinD complexes, and pro-B cell 

differentiation have recently been linked to FBXO7 nuclear localization (Nelson & 

Laman, 2011; Meziane et al, 2011). Contrarily, our data show that in NF-κB signaling, 

FBXO7 exerts its function in the cytoplasm. 

RIP1 is a key protein within the NF-κB signaling pathway with K63 Ub chains 

serving as recruitment platforms for the two kinase-complexes TAK/TAB and IKK 

(Kanayama et al, 2004; Wu et al, 2006). This K63-linked Ub conjugation depends on 

recruitment of TRAF2-cIAP1/2 complexes to the TNF-RSC with TRAF2 serving as a 

scaffold for cIAP1/2 (Mahoney et al, 2008). We showed that FBXO7 binds to both cIAP1 

and TRAF2 independently of TNFα, suggesting constitutive binding and co-recruitment 

to the TNF-RSC upon stimulation. We found that FBXO7 promotes ubiquitination of 

cIAP1 and TRAF2, leading to a decrease in RIP1 ubiquitination and lowered NF-κB 

signaling activity. Different scenarios can be envisioned to account for this decrease. 

SCFFBXO7 could target both cIAP1 and TRAF2 for proteasomal degradation thus 

preventing ubiquitination of RIP1 and signaling activation. However, in our experiments 

we did not see alterations in neither cIAP1 nor TRAF2 protein levels as a consequence of 

FBXO7 knock down or over-expression arguing against this idea (data not shown). We 
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note that this could also be due to rapid de novo protein synthesis. Within the context of 

NF-κB signaling, in addition to RIP1, cIAP1/2 can promote ubiquitination of NEMO, 

TRAF2 as well as auto-ubiquitination. However, at present it remains unclear how 

cIAP1/2 substrate selectivity is determined. We observed that cIAP1 specifically bound 

by FBXO7 is ubiquitinated. Perhaps this modification could switch cIAP1 substrate 

selectivity away from RIP1, thus decreasing kinase complex recruitment. One could even 

speculate that the Ub ligase activity of cIAP1 could be turned to TRAF2, possibly 

targeting this protein for proteasomal degradation. 

Some evidence exists that NF-κB induced inflammation may be involved in 

development of Parkinson’s disease (reviewed in (Flood et al, 2011)). As mentioned 

earlier, certain recessive mutants of FBXO7 have been linked to early-onset Parkinson-

pyramidal syndromes. We investigated whether such mutations might influence NF-κB 

signaling and thereby promote disease phenotypes using two FBXO7 patient mutants 

(R378G and R498X). However, neither binding to, nor ubiquitination of cIAP1 or 

TRAF2 was affected significantly by these mutations, and in NF-κB luciferase 

experiments patient mutants behaved like WT FBXO7 (data not shown). It remains 

possible that the investigated patient mutations give highly subtle phenotypes, or that 

defects are only noticeable in neuronal cell types. Alternatively, development of 

Parkinson-pyramidal syndrome may be a consequence of yet to be determined functions 

of FBXO7. 

In conclusion, this study strongly implicates a novel inhibitory role of FBXO7 at the 

TNF-RSC in modulating regulatory ubiquitination events in NF-κB signaling. Future 
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experiments will elucidate the precise mode of action further, expanding our knowledge 

of this complex regulated signaling pathway. 
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Methods 

The screen, siRNA sequences, Q-RT PCR primers, cell culture, and immunoblotting 

conditions used in this study are described in the supplementary information online. 

 

siRNA transfections and qRT-PCR 

U2OS cells and immortalized BJ primary human fibroblasts (BJET) were transfected 

with Dharmafect 1 or 3 (Thermo Scientific) transfection agents. Cells were refreshed 24 

hours after transfection, incubated for 48 hours, and treated with 10 ng/mL TNFα 

(Sigma) for 45min. RNA was isolated with Trizol (Invitrogen) or RNAeasy mini kit 

(Qiagen). cDNA was generated with SuperScript II kit (Invitrogen). FastStart 

MasterPLUS SYBR Green kit (Roche), and appropriate primers (supplementary data) 

were used to measure relative mRNA levels. The mean of the technical replicates is 

either shown directly, applicable to the representative figures, or used to summarize three 

independent experiments. 

 

Plasmids and Antibodies  

The Luciferase plasmid NF-κB-Luc is from Clontech, SV40-Renilla from Promega. 

pEGFP-FBXO7 and pVlag- FBXO7 were cloned by PCR amplification of IMAGE clone 

3611049. Sal I site containing PCR primers were used to make the ΔF mutant. pEGFP-

cIAP1 was cloned by PCR amplification of IMAGE clone 3908352. 

Antibodies: anti-GFP (FL) and (B-2), anti-p65 (C-20), anti-CDK4 (C-22), anti-Ub 

(P4D1) from Santa Cruz (S.C), anti-flag (M2) from Sigma, anti-pIkBα (5A5) and anti-

IκBα (L35A5) from Cell Signaling Technology, anti-cIAP1 (AF8181) from R&D 
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Systems, and anti-HA (12CA5) from a hybridoma culture supernatant from our lab. 

FBXO7 rabbit antibody (Laman et al, 2005). Normal mouse IgG from S.C was non-

immune control in IP experiments.  
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Figures 

 

Fig 1 

Screen for modulators of NF-қB signaling. (A) U2OS cells were transfected with the 

siRNA library, stimulated with TNFα or left untreated, and analyzed for cellular 

redistribution of NF-κB p65. Representative photos of unstimulated and TNFα stimulated 

cells showing endogenous p65 staining. (B) Control normalized ratios of Nuc/Cyt ratio of 

p65 intensity for the siRNA pools included in the screen. Error bars shown in red. (C) 

Summary of three independent experiments for redistribution of p65 upon knockdown of 

identified modulators or controls. A non-targeting (scrambled) siRNA smartpool was the 

negative control. (D) Summary of three independent experiments showing the 

knockdown efficiency determined by Q-RT PCR for mRNA levels of the identified 

genes. (C and D) *P < 0.05, values are mean +/- standard deviation. P-value computed 

from unpaired two-tailed t-test. 

 

Fig 2 

FBXO7 regulates NF-қB signaling. (A & B) Q-RT PCR for NF-қB target genes, A20 and 

IL8, activation in (A) U2OS and (B) immortalized primary human fibroblasts (BJET). 

Scrambled negative control was used for normalization. Values are mean +/- standard 

deviation of replicate measurements from a representative experiment. (C) NF-қB 

luciferase reporter assay in U2OS cells expressing either empty vector, Flag-tagged wild 

type FBXO7 (WT), or F-box deletion mutant FBXO7 (∆F). Values represent ratio of 

Luciferase over Renilla control activity +/- TNFα. *P < 0.05, values are mean +/- 
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standard deviation of four independent experiments. P-value computed from unpaired 

two-tailed t-test. 

 

Fig 3 

FBXO7 regulates NF-қB signaling upstream of IқBα degradation. (A) Western blot 

analysis of U2OS cells transfected with scrambled control, CYLD, or FBXO7 siRNAs, 

stimulated with TNFα for 5, 10, 15, 20 mins, or left untreated. L.E. and S.E.: Long and 

short exposure. (B) Western blot analysis of U2OS cells expressing empty vector (EV), 

Flag-FBXO7 WT, or ∆F. 

 

Fig 4 

FBXO7 interacts with and mediates ubiquitination of cIAP1. (A) Western blot analysis of 

a co-immunoprecipitation (IP) experiment in U2OS cells expressing GFP-cIAP1 and 

Flag-FBXO7 WT or ∆F. (B) Western blot analysis of in vivo ubiquitinated GFP-cIAP1 

co-IPed with Flag-FBXO7 WT or ∆F. 

 

Fig 5 

FBXO7 interacts with TRAF2 and alters ubiquitination of TRAF2 and RIP1. (A) Western 

blot analysis of a co-IP experiment in U2OS cells expressing Flag-TRAF2 and GFP-

tagged WT or ∆F FBXO7. (B & C) Western blot analysis of in vivo ubiquitination assays 

in HEK293 cells expressing HA-Ub, Flag-TRAF2 or Flag-RIPK1, GFP only, GFP- 

FBXO7 WT or ∆F. 

 



Figure 1.   Identification of F-box only protein 7 as a negative regulator of NF-kB signalling.
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Figure 2.   Identification of F-box only protein 7 as a negative regulator of NF-kB signalling.
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Figure 3.   Identification of F-box only protein 7 as a negative regulator of NF-kB signalling.
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Figure 4.   FBXO7 interacts with cIAP1 resulting in cIAP1 ubiquitination
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Figure 5.   Identification of F-box only protein 7 as a negative regulator of NF-kB signalling. 
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